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A simple bulk model of electron-phonon coupling in metals has been partially successful in explaining
experiments on metal films that actually involve surface- or other low-dimensional phonons. However, by an
exact application of this standard model to a semi-infinite substrate with a free surface, making use of the
actual vibrational modes of the substrate, we show that such agreement is fortuitous, and that the model
actually predicts a low-temperature crossover from the familiar T5 temperature dependence to a stronger
T6 log T scaling. Comparison with existing experiments suggests a widespread breakdown of the standard
model of electron-phonon coupling in metals.
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I. INTRODUCTION

There has been great progress in the efforts to reach the
quantum limit of thermal conduction,1,2 where energy is car-
ried by one-dimensional �1D� channels of coherent phonons,
the single-phonon or quantum “optics” regime of phonon
dynamics,3–6 and the quantum limit of nanoelectromechani-
cal systems.7–12 In addition to their interest for investigating
fundamental phonon physics and macroscopic quantum phe-
nomena, low-dimensional phonon systems might enable sen-
sors, such as nanoscale bolometers and calorimeters,3,13,14

with unprecedented sensitivity, and may also find applica-
tions in quantum information processing.6,7,15,16 In contrast
to low-dimensional electron systems, which are typically
produced in semiconductor nanostructures by a combination
of band gap engineering and electrostatic confinement, low-
dimensional phonon systems require mechanical isolation
from their environments and are realized in freely suspended
structures. The phonon distributions in these systems are
controlled in situ by thermal coupling with metallic thin-film
heaters, and are measured via thermometry on the conduc-
tion electrons. But what is the relation between the electron
and phonon temperatures? Electrons and phonons are known
to become thermally isolated at low temperatures, leading to
pronounced “hot electron” effects,17,18 where the electron
and phonon temperatures differ considerably. Understanding
low-dimensional phonon systems therefore depends crucially
on understanding the thermal coupling between the electron
and phonon subsystems.

A widely used standard model of low temperature elec-
tron-phonon thermal coupling in bulk metals17–19 assumes �i�
a clean three-dimensional �3D� free-electron gas with a
spherical Fermi surface, rapidly equilibrated to a temperature
Tel; �ii� a continuum description of the acoustic phonons,
which have a temperature Tph; �iii� a negligible Kapitza-like
thermal boundary resistance20 between the metal and any
surrounding dielectric, an assumption that is usually justified
experimentally; and �iv�, a deformation-potential electron-
phonon interaction, expected to be dominant at long-wave-
lengths. In a bulk metal, the net rate P of thermal energy
transfer between the electron and phonon subsystems is18

P = �Vel�Tel
5 − Tph

5 � , �1�

where Vel is the volume of the metal, and

� �
8��5�kB

5 �F
2Nel��F�

3��4�vFvl
4 . �2�

Here � is the Riemann zeta function, �F is the Fermi energy,
Nel is the electronic density of states �DOS� per unit volume,
� is the mass density, vl is the bulk longitudinal sound speed,
and vF is the Fermi velocity. For a given power P applied to
the film, we can solve �1� for the relation between Tel and
Tph.

This model, which has no adjustable parameters, has suc-
cessfully explained some experiments,2,18,19 but others report
a power-law temperature dependence with significantly
smaller exponents,21,22 indicating an enhanced electron-
phonon coupling at low temperatures. However, the experi-
ments typically involve heating measurements in thin metal
films deposited on semiconducting or insulating substrates,
and the relevant phonons at low temperature are strongly
modified by the exposed stress-free surface. There has al-
ways been the question of how the surface would modify the
bulk result �1�. An experimental attempt to directly probe
such phonon-dimensionality effects was carried out by Di-
Tusa et al.,22 who intentionally suspended some of their
samples, necessarily modifying the vibrational spectrum, al-
though they found no significant difference from their sup-
ported films. In this paper, we argue that the paradox re-
ported in Ref. 22 is widespread, and all experiments known
to us on supported films actually contradict the standard
model when that model is modified to account for the actual
vibrational modes present in a realistic supported-film geom-
etry, illustrated in Fig. 1. Our results have important impli-
cations for the interpretation of experiments on a wide vari-
ety of low-dimensional phonon systems, and suggest that
future efforts on the electron-phonon coupling problem,
rather than focusing on reduced-dimensionality effects,
should be redirected towards understanding a breakdown
of the standard metallic electron-phonon interaction model
itself.
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II. GENERAL EXPRESSION FOR THE RATE
OF THERMAL ENERGY TRANSFER

The Hamiltonian we consider �suppressing spin� is

H = �
k

�kck
†ck + �

n

��nan
†an + 	H , �3�

where ck
† and ck are electron creation and annihilation opera-

tors, with k the momentum, and an
† and an are bosonic pho-

non creation and annihilation operators. The vibrational
modes, labeled by an index n, are eigenfunctions of the con-
tinuum elasticity equation

vt
2 � 
 � 
 u − vl

2 � �� · u� = �2u �4�

for linear isotropic media, along with accompanying bound-
ary conditions. vt and vl are the bulk transverse and longitu-
dinal sound velocities. 	H� 2

3�F�Vel
d3r�†�� ·u is the defor-

mation-potential electron-phonon interaction, with

u�r� = �
n

�2��n�−1/2�fn�r�an + fn
*�r�an

†� �5�

the quantized displacement field. The vibrational eigenfunc-
tions fn�r� are defined to be solutions of the elasticity field
equations, normalized over the phonon volume Vph accord-
ing to �Vph

d3rfn
* · fn�=	nn�. It will be convenient to rewrite the

electron-phonon interaction as

	H = �
kqn

�gnqck+q
† ckan + gnq

* ck−q
† ckan

†� , �6�

with coupling constant

gnq �
2

3
�F�2��n�−1/2Vel

−1�
Vel

d3r � · fne−iq·r. �7�

Note that we allow for different electron and phonon vol-
umes. Our results also apply to wire geometries if the elec-
trons are three dimensional.

The quantity we calculate is the thermal energy per unit
time transferred from the electrons to the phonons

P � 2�
kqn

��n��n
em�k → k − q� − �n

ab�k → k + q�� , �8�

where

�n
em�k → k − q�

= 2�	gnq	2�nB��n� + 1�nF��k��1 − nF��k−q��


	��k−q − �k + �n� �9�

is the golden-rule rate for an electron of momentum k to
scatter to k−q while emitting a phonon n, and

�n
ab�k → k + q�

= 2�	gnq	2nB��n�nF��k��1 − nF��k+q��	��k+q − �k − �n�
�10�

is the corresponding phonon absorption rate. nB is the Bose
distribution function with temperature Tph and nF is the
Fermi distribution with temperature Tel. The factor of 2 in �8�
accounts for spin degeneracy. It is possible to obtain an exact
expression for P; the result �suppressing factors of � and kB�
is

P =
m2Vel

2

8�4 �
n
�

0




d�	�� − �n�
 �

e�/Tel − 1
−

�

e�/Tph − 1
�


� d3k
	gnk	2

	k	


�� + Tel ln
1 + exp�
m�2

2k2 +
k2

8m
−

�

2
− ��� Tel�

1 + exp�
m�2

2k2 +
k2

8m
+

�

2
− ��� Tel���.

The logarithmic term in P can be shown to be exponentially
suppressed and negligible in the temperature regime �below
10 K� of interest and will be dropped. Carrying out the k
integration then leads to

P =
vl

4�Vel

24��5��0

�D

d�F���
 �

e�/Tel − 1
−

�

e�/Tph − 1
� , �11�

where

F��� � �
n

Un	�� − �n� �12�

is a strain-weighted vibrational DOS, with

Un �
1

Vel
�

Vel

d3rd3r�
� · fn�r��� · fn

*�r��
	r − r�	2 + a2 . �13�

Here �D is the Debye frequency. Un can be interpreted as an
energy associated with mass-density fluctuations interacting
via an inverse-square potential,23 cut off at distances of the
order of the lattice constant a. We have reduced the calcula-
tion of P to the calculation of F���. Allen24 has derived a
related weighted-DOS formalism.

FIG. 1. �Inset� Conducting film of thickness d attached to insu-
lator. The top surface of the metal is stress free. �Main� Temperature
dependence of the thermal power exponent x for a 10 nm �solid
curve� and 100 nm �dashed curve� Cu film.
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III. HOT ELECTRON IN LOW DIMENSIONS

We now calculate F��� and P for a metal film of thick-
ness d attached to the free surface of an isotropic elastic
continuum with L→
; see the inset to Fig. 1. The film and
substrate are assumed to have the same elastic parameters,
characterized by a mass density � and bulk sound velocities
vt and vl. Where material parameters are necessary we shall
assume a Cu film; however, the qualitative behavior we ob-
tain is generic. The evaluation of F��� requires the vibra-
tional eigenfunctions for a semi-infinite substrate with a free
surface, which have been obtained in the classic paper by
Ezawa.25 The modes are labeled by a branch index m, taking
the five values SH, �, �, 0, and R, by a two-dimensional
�2D� wave vector K in the plane defined by the surface, and
by a parameter c with the dimensions of velocity that is
continuous for all branches except the Rayleigh branch m
=R. With the normalization convention of Ref. 25 we have

F��� = �
K

URK	�� − cRK� + �
m�R

�
K
� dcUmKc	�� − cK� .

�14�

The range of parameter c depends on the branch m, as indi-
cated below, and the frequency of mode mKc is cK.

Turning to an evaluation of �14�, the SH branch is purely
transverse, so USH=0. The normalized eigenmodes for the �
branches are25

f± =� K

4�cA
����−1/2�e−i�Kz − �±ei�Kz� + i�1/2


 �e−i�Kz + �±ei�Kz��eK + �±�1/2�e−i�Kz + �±ei�Kz�

+ i�−1/2�e−i�Kz − �±ei�Kz��ez�eiK·r,

where ����c /vl�2−1 and ����c /vt�2−1. Here

�± �
���2 − 1� ± 2i����2

��2 − 1�2 + 4��
, with 	�±	 = 1. �15�

Then

U± = �c3K/�vl
4Vel�I±�Kd,c� , �16�

where

I±�Z,c� � Re �
0

Z

dxdx�K0���x − x��2 + a2Z2/d2�


�ei��x−x�� − �±ei��x+x��� . �17�

K0 is a modified Bessel function. To obtain U± we use trans-
lational invariance in the xy plane to write �13� as

UmKc =
A

Vel
�

0

d

dzdz��
A

d2R
� · fmKc�R,z��� · fmKc

* �0,z��
R2 + �z − z��2 + a2 ,

�18�

where R��x ,y� is a 2D coordinate vector. Then we scale out
K, do the angular integration, and use the identity
�0


dRRJ0�R��R2+s2�−1=K0�	s	�, where J0 is a Bessel function
of the first kind.

Next we consider the m=0 branch, for which25

f0 =� K

2��cA
��iCe−�Kz + i�e−i�Kz + i�Aei�Kz�eK

+ �− �Ce−�Kz + ie−i�Kz − iAei�Kz�ez�eiK·r,

where ���1− �c /vl�2,

A �
��2 − 1�2 − 4i��

��2 − 1�2 + 4i��
, and C �

4���2 − 1�
��2 − 1�2 + 4i��

.

Then

U0 = �	C	2c3K/�vl
4Vel�I0�Kd,c� , �19�

where

I0�Z,c� � �
0

Z

dxdx�K0���x − x��2 + a2Z2/d2�e−��x+x��.

�20�

Finally, for the Rayleigh branch

fR =� K

KA
��ie−�Kz − i
 2��

1 + �2�e−�Kz�eK

− ��e−�Kz − 
 2�

1 + �2�e−�Kz�ez�eiK·r, �21�

where ���1− �cR/vl�2, ���1− �cR/vt�2, and K���
−����−�+2��2� /2��2.cR is the velocity of the Rayleigh
surface waves, given by cR=�vt, where � is the zero between
0 and 1 of �6−8�4+8�3−2�2��2−16�1−�2�, with ��vt /vl.
For Cu, �=0.52 and �=0.93; hence, cR=2.4
105 cm s−1.
Using �21�,

UR = �2�cR
4 K/Kvl

4Vel�IR�Kd� , �22�

where

IR�Z� � �
0

Z

dxdx�K0���x − x��2 + a2Z2/d2�e−��x+x��.

�23�

Carrying out the final summations over K leads to

F��� =
�2

vl
4d� cR

K
IR
�d

cR
� + �

vt

vl

dc
	C	2

2��
I0
�d

c
,c�

+ �
vl




dc
1

2��
�I+
�d

c
,c� + I−
�d

c
,c��� . �24�

This expression, combined with �11�, is our principal result.
Evaluation of �24� can be further simplified by the use of the
powerful identities

I±�Z,c� = Re�
2Z −
i�±

�
� f�Z,�� +

i�±

�
e2i�Zf*�Z,��

+ 2i
 �f�Z,s�
�s

�
s=�
� , �25�
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I0�Z,c� =
1

�
f�Z,i�� −

e−2�Z

�
f�Z,− i�� , �26�

IR�Z,c� =
1

�
f�Z,i�� −

e−2�Z

�
f�Z,− i�� , �27�

where

f�Z,s� � �
0

Z

dxK0��x2 + a2Z2/d2�eisx, �28�

thereby reducing the Im to a single one-dimensional inte-
gral, f .

The Im have distinct large- and small-Z character, crossing
over near Z=1. Because of the integration over c in �24�, F
and P accordingly exhibit a broad crossover behavior. How-
ever, once �d�cR, all branches will have assumed their
low-frequency forms. We define a crossover temperature

T� �
�cR

kBd
�29�

dividing regimes determined by the small and large �d /cR
behavior of F. In the large �d /cR limit the m= ±modes in
�24� can be shown to be dominant, and

lim
�d→


�
vl




dc
1

�
I±
�d

c
,c� = ��d . �30�

Therefore, we obtain

F��� → Fbulk��� � �3/vl
4, �31�

independent of d, leading to a high-temperature behavior

P → �Vel����D/Tel�Tel
5 − ���D/Tph�Tph

5 � , �32�

where � is the coefficient �2�, and where ��y�
��4!��5��−1�0

ydxx4 / �ex−1�. ��10� is about 0.97, and ��y�
rapidly approaches 1 beyond that, as shown in Fig. 2. Thus,
at temperatures above T� but sufficiently smaller than the
Debye temperature, the � factors are equal to unity, and we
recover the bulk result �1�.

We turn now to the low-temperature asymptotic analysis.
Briefly, using the small Z expansion

f�Z,s� → − Z ln Z + �1 + ln 2 + ��1��Z −
is

2
Z2 ln Z

+
is

2
�1

2
+ ln 2 + ��1��Z2 + O�Z3 ln Z� , �33�

where � is the Euler polygamma function, we find

F��� → Fbulk����− �
�d

cR
�ln
�d

cR
� + O
�d

cR
�� �34�

in the small �d /cR limit. Here

� �
1

K
+ �

vt

vl

dc
cR	C	2

2�c2�
+ �

vl




dc
cR�2 − Re��+ + �−��

2�c2�

�35�

is a constant determined by vl, vt, and cR. Each T5 function
in �1� therefore crosses over at low temperature as

T5 → − �
T6

T��ln
 T

T�� , �36�

with �=��6 /189��5�. For a Cu film, ��0.815 and �
�3.998. There are also mixed regimes possible, where only
one of the two terms in �1� has crossed over.

The most striking consequence of the crossover is that the
temperature exponent increases. In Fig. 1 we fit P �with
either Tel or Tph zero� to a power-law Tx with a temperature
dependent exponent x, and plot the exponent for a 10 nm
�T�=1.84 K� and 100 nm �T�=184 mK� Cu film. x�T� is
nonmonatonic, displaying a pronounced maximum near T�,
and drifts upward as T→0. Such behavior has not been ob-
served, even though many experiments2,18,19,22 have achieved
T�T�. The physical origin of the crossover is that, at low
temperature, the stress-free condition at the metal surface
penetrates into the film, reducing the strain and hence
electron-phonon coupling there. The characteristic distance
over which the boundary condition has an effect is of the
order of a bulk wavelength. When T�T�, only a thin outer
surface layer of the film has a significantly diminished strain,
and bulk behavior is expected. However, when T�T� the
entire metal film experiences a reduced strain.

IV. PREFACTOR

The experiments of Refs. 2 and 19, both using Cu films,
observe an approximate T5 dependence even well below T�.
It is therefore interesting to compare the observed prefactors
with the coefficient �, evaluated for Cu. Using a free-
electron gas approximation26 and measured elastic proper-
ties,27 we obtain 5.97
107 W m−3 K−5, which is at least an
order of magnitude smaller than observed, consistent with
our assertion that there is some unidentified mechanism en-
hancing the thermal coupling.

Noble metals are far from free-electron systems because
of their complex Fermi surfaces. Here we attempt to address
this shortcoming by regarding the Fermi surface quantities

FIG. 2. ��y� function.
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Nel��F� and vF as independently adjustable parameters, to be
obtained empirically from heat capacity and cyclotron reso-
nance data. First, the DOS inferred from heat capacity mea-
surements is a factor of 1.38 larger than the free-electron
value.28 Second, the Fermi surface, although largely spheri-
cal, extends beyond the first Brillouin zone boundary in the
�111� direction, thereby forming cylindrical necks that cross
the eight hexagonal zone faces, and cyclotron resonance
studies indicate that the Fermi velocity is highly anisotropic
near these necks. Therefore, we propose to replace the free-
electron value of vF in Eq. �2� with the Fermi-surface aver-
age v̄F of the anisotropic velocity field introduced by Lee29

and by Lengeler et al.30 in their attempts to accurately model
cyclotron resonance and heat capacity data.

From Refs. 29 and 30 we deduce that over most of the
Fermi surface, vF is approximately 75% of its free-electron
value, except within circular patches centered about the �111�
and equivalent directions, where it decreases linearly to ap-
proximately 40% at the boundaries of the cylindrical necks.
We model the Fermi surface as follows: Away from the necks
we take the surface to be that of a unit sphere. The radius of
the necks, indicated in Fig. 3, are observed to be about
10 deg, or ra=0.175 in our units. The total area of the Fermi
surface is 4�−8�ra

2 because of the necks. The average ve-
locity within each annular region of the type shown in Fig. 3,
with rb taken to be twice ra, is

� d2rvF

��rb
2 − ra

2�
=

4va + 5vb

9
= 0.59, �37�

in units of the free-electron velocity. The relative velocity on
the rest of the surface is 75%. Putting everything together we
then obtain, for the surface-averaged vF,

v̄F = 0.72 
 the free Fermi velocity. �38�

Including these DOS and Fermi velocity corrections in Eq.
�2� leads to the modified prefactor

� = 1.14 
 108W m−3 K−5, �39�

which is still considerably smaller than that measured. We
conclude that the experiments of Refs. 2 and 19 do not ob-
serve the constant prefactor �2� predicted for Cu.

V. DISCUSSION

Although not included in the model considered here, dis-
order in a metal film is expected to produce a low-temper-
ature crossover from the T5 dependence to a T6 scaling31

when the thermal wavelength becomes larger than the elec-
tron elastic mean free path �, a behavior which has not been
observed until very recently.32 Thus, in the typical “clean”
situation where ��d, the crossover predicted here will be
unaffected by disorder, and there will be a window of tem-
perature below T� where our results apply, until an even
lower temperature where a second crossover to the disor-
dered regime occurs. Furthermore, although thin films are
known to also scatter phonons strongly, measured values of
the phonon elastic mean free path33 are still much larger than
d in the temperature regime �below 10 K� of interest here.

In conclusion, we argue that a wide variety of experi-
ments contradict the predictions of an essentially exact ap-
plication of the standard model of electron-phonon thermal
coupling in metals to a supported-film geometry, suggesting
a widespread breakdown of that model.
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