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A pseudospin-electron model based on the Blume-Emery-Griffiths model is used to describe the phase
transitions and phase separations in intercalated crystals. It is shown that, due to the one-site character of the
electron-electron and pseudospin-electron interactions, the partition function of such a model can be presented
as the product of the partition functions of independent pseudospin �with two shifted parameters� and electron
subsystems. The phase diagrams of the model as well as the phase separation diagrams and the dependencies
of the concentration of intercalated particles on their chemical potential are constructed: exactly for zero
temperature and in the mean field approximation for nonzero one. It is shown that in certain interval of
chemical potential values the direct interaction between intercalated particles and basic layer electrons leads to
the separation into phases with different particle and electron concentrations.
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I. INTRODUCTION

During the last decades the studies of intercalation pro-
cesses in layered crystals have been progressing very inten-
sively. The reason is the plenty of possibilities of their prac-
tical use: in hydrogen storage systems,1 rechargeable
high-energy batteries,2,3 electrochromic devices,4

superconductors,5 etc.
The intercalation is usually considered as an absorption of

guest particles on a host lattice. The hosts can be, for in-
stance, transition metal dichalcogenides, lead and bismuth
iodides, oxides of transition metals and graphite, mica, as
well as less studied A3B6 and A2

5B3
6 type compounds �InSe,

GaSe, Bi2Te3 , Bi2Se3�. Due to the weak van der Waals bond-
ing between the layers of these crystals, the guest particles
can be easily inserted. These latter can be different ions,
atoms, or molecules: lithium and halogen ions, hydrogen,
fluorine, and water molecules, organic molecules �for in-
stance, aniline C6H5NH2 and piperidine CH2�CH2�4H in
mica�, OH− ions, etc.

Guest particles occupy some energetically favorable posi-
tions in the van der Waals gap between basic layers of the
crystal and form a two-dimensional lattice. Therefore, tradi-
tionally lattice gas models have been used for description of
the intercalated particle subsystem in layered crystals.2 If all
positions are equivalent and intercalated particles have no
dipole moment, one can use the spin-1

2 Ising model. The
negative value of spin corresponds to the situation when
there is no particle at a lattice site, the positive one corre-
sponds to the reverse situation or vice versa. However, this
simple model does not suit the case of the intercalation of
dipole particles. If dipole moment of guest particles is per-
pendicular to basic layers of the crystal �both senses being of
the same probability at zero external field�, then three states
for each site are possible and, for describing the dipole lattice
gas of intercalated particles, we can use the spin-1 Ising
model �the Blume-Emery-Griffiths �BEG� model�. This
model is also applicable in the case when particles have no
dipole moment but can occupy two different positions: the

one nearer to the lower neighboring basic layer or the one
nearer to the upper one, the situation is equivalent to the
presence of dipole moment. This is observed, for instance, in
some transition metal dichalcogenides, where intercalated at-
oms occupy asymmetric tetrahedral sites,6 and in well-
known TiS2 intercalated by alkali metal atoms �Li or Na�,
where these atoms occupy trigonal sites �if their concentra-
tion is not too large�.7 Another example of using a spin-1
Ising model to intercalation compounds is given in Ref. 8.
There a special spin-1 Ising model on the triangular lattice
with nonzero interactions up to third nearest neighbors is
applied to ternary graphite intercalation compounds.

However, pure pseudospin models have an essential dis-
advantage: they do not take explicitly into account the direct
interaction between the intercalated particles and the atoms
of basic layers. To describe the intercalation process, we use
a pseudospin-electron model based on the BEG one. This
model takes into account the above-mentioned interaction
explicitly though in a simplified way: as an one-site interac-
tion of pseudospins with the electron subsystem. There is no
electron transfer but the direct pseudospin-pseudospin inter-
action is considered. One can find a brief review of the
pseudospin-electron model and related bibliography in Ref.
9. The model similar to the considered one but with pseu-
dospin S= 1

2 has been studied in Ref. 10.
Thus, the model that we consider combines two sub-

systems: pseudospin and electron ones. It will be shown that,
due to the fact that both the electron-electron and
pseudospin-electron interactions are of the one-site type, the
partition function of such a model splits into a product of
those for electron and pseudospin subsystems. The external
field and the single-ion anisotropy of the pseudospin sub-
system will be shifted and will depend on the temperature
and the parameters related to the electrons. Hence, the influ-
ence of the electron subsystem can be taken into account
exactly and the study of phase transitions and phase separa-
tions in this model can be reduced to the study of these
phenomena in the BEG model.

A very important problem is the choice of the signs of the
bilinear and biquadratic �dipole-dipole and quadruple-
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quadruple, respectively� interactions in the model. The direct
electrostatic interaction of charged particles or dipoles with
the same orientation perpendicularly to the plane, where they
reside, has the positive sign �repulsion�. But there is also an
indirect interaction between guest particles in intercalated
crystals, via the electron subsystem of covalently bonded at-
oms of basic layers. This indirect interaction, depending on
band structure and occupation of electron states, can be nega-
tive �attraction�.11 Moreover, the effective interaction be-
tween guest particles significantly depends on local deforma-
tions of the crystal lattice, caused by the presence of
intercalated particles.12 We will consider the case where the
bilinear interaction is negative and the biquadratic interaction
is less than the bilinear one taken with the opposite sign. In
this case the translational symmetry of the lattice does not
change, i.e., the lattice does not split into two or more sub-
lattices.

Our paper is organized as follows: in Sec. II we introduce
a simplified pseudospin-electron model on the base of the
BEG one and we reduce it to a pure pseudospin model; in
Sec. III we investigate phase transitions and phase separa-
tions in the model at zero temperature. In Sec. IV the sym-
metry of the most general spin-1 Ising Hamiltonian is stud-
ied. All results of Secs. II, III, and IV are exact. In Sec. V we
analyze phase transitions and phase separations in the BEG
model within the mean field approximation. In Secs. IV and
V we reviewed some already known results but also present
several new ones. In Sec. VI we show the influence of elec-
trons on phase coexistence and phase separation surfaces and
present the dependencies of average number of guest par-
ticles per site on their chemical potential. In Sec. VII we
draw some conclusions.

II. HAMILTONIAN, PARTITION FUNCTION,
AND FORMULA FOR THE AVERAGE ELECTRON

NUMBER PER SITE

Consider a layered crystal with dipole particles interca-
lated between its layers and directed perpendicularly to them.
Each intercalated particle interacts with other particles and
with one or two electrons at the neighboring site of the basic
layer. There is also the one-site interaction between elec-
trons. We will describe the crystal by a lattice model. The
state of the ith lattice site is characterized by two numbers:
�Si

z ,nei�. Si
z=0,−1, +1 when the dipole particle on the ith site

is absent, orientated down or up, respectively; nei is the num-

ber of electrons at the ith site �0, 1, or 2�. Si
z2

is then the
number of dipole particles on the ith site �0 or 1�.

We can write the Hamiltonian of such a model using the
pseudospin formalism

H = Hs + Hse + He. �1�

Here

Hs = −
1

2�
ij

JijSi
zSj

z −
1

2�
ij

KijSi
z2

Sj
z2

+ �
i

�− hSi
z + E0Si

z2
�

�2�

is the Hamiltonian of the pseudospin S=1 model �the BEG
model�. The bilinear and biquadratic terms describe the in-

teractions between pseudospins that are dependent and inde-
pendent on the orientation, respectively, i.e., the dipole-
dipole and charge-charge �or particle-particle� interactions
between intercalated particles. −hSi

z is the energy of the ith
pseudospin in the external field and E0 is the single-ion an-
isotropy. −E0 is the chemical potential of intercalated par-
ticles.

The electron subsystem is described by the Hamiltonian
He

He =
U

2 �
i

nei�nei − 1� − ��
i

nei, �3�

where U is the Hubbard electron correlation at a site, and �
is the chemical potential of electrons. The Hamiltonian Hse
links together the pseudospin and electron subsystems

Hse = g�
i

neiSi
z + ��

i

neiSi
z2

, �4�

where g and � are the energies of the pseudospin-electron
interaction dependent and independent on the pseudospin
orientation, respectively. Hamiltonian �1� can be represented
as a sum of two-site and one-site Hamiltonians

H = �
ij

Hij + �
i

Hi. �5�

For the study of the phase transitions and phase separa-
tions in the system let us evaluate its partition function. Con-
sider states where pseudospins on k sites are orientated up, at
m sites down, and at the rest N−k−m�k+m�N� sites pseu-
dospins are equal to zero. It is easy to see that the contribu-
tion of these states in the partition function is as follows:

Zkm = ��
	km�

e−��ij
Hij
e−��−h�k−m�+E0�k+m���1 + e−��2g+2�+U−2��

+ 2e−��g+�−���k�1 + e−��−2g+2�+U−2�� + 2e−��−g+�−���m

��1 + e−��U−2�� + 2e���N−k−m

= ��
	km�

e−��ijHij
exp���− E0 +
1

2�
ln

r

t
+

1

�
ln

t

s



��k + m��exp���h +
1

2�
ln

r

t

�k − m��sN, �6�

where

r = 1 + e−��2g+2�+U−2�� + 2e−��g+�−��,

t = 1 + e−��−2g+2�+U−2�� + 2e−��−g+�−��,

s = 1 + e−��U−2�� + 2e��, �7�

	km� means that the sum is over the states with k pseu-
dospins orientated up and m down. The total partition func-
tion is equal to

Z = �
km

Zkm. �8�

Expression �6� without the factor sN represents the partition
function of the pseudospin model described by the Hamil-
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tonian Hs, but with the energies h̃ and Ẽ0 �instead of h and
E0� that depend on the electron parameters of the Hamil-
tonian H and on the temperature

h̃ = h +
1

2�
ln

r

t
= h +

1

2�
ln

r

s
−

1

2�
ln

t

s
,

Ẽ0 = E0 −
1

2�
ln

r

t
−

1

�
ln

t

s

=E0 −
1

2�
ln

r

s
−

1

2�
ln

t

s
. �9�

Let us consider the thermodynamic potential of the sys-
tem per site

� = −
1

�N
ln Z = −

1

�
ln s −

1

�N
ln�

km
��

	km�
e−��ijHij


�e−�Ẽ0�k+m�e�h̃�k−m�. �10�

The average number of particles, the average number of elec-
trons, and the average dipole moment per site are expressed
in terms of derivatives of �

n = 	Si
z2

� =
��

�E0
=

��

�Ẽ0

, ne = −
��

��
,

� = 	Si
z� = −

��

�h
= −

��

� h̃
. �11�

The expression for the average number of electrons per site
can be written as follows:

ne = −
��

��
= −

��

�Ẽ0

�Ẽ0

��
−

��

� h̃

� h̃

��
+

1

�

� ln s

��

= − n
�Ẽ0

��
+ �

� h̃

��
+

1

�s

�s

��

=
1

2�r

�r

��
�n + �� +

1

2�t

�t

��
�n − �� +

1

�s

�s

��
�1 − n� .

�12�

Taking into account expressions �7� for r , t ,s, after simple
transformations we will get

ne = 2 − c1�n + �� − c2�n − �� − 2c3�1 − n� , �13�

where the following notations were introduced:

c1 =
1 + e−��g+�−��

1 + e−��2g+2�+U−2�� + 2e−��g+�−�� ,

c2 =
1 + e−��−g+�−��

1 + e−��−2g+2�+U−2�� + 2e−��−g+�−�� ,

c3 =
1 + e��

1 + e−��U−2�� + 2e�� . �14�

Note, that ne→0 if �→−	, and ne→2 if �→ +	. Relation
�13� expresses the electron chemical potential in terms of the
concentrations of electrons and intercalated particles and the
average dipole moment of particles.

III. PHASE TRANSITIONS AND PHASE SEPARATIONS
AT ZERO TEMPERATURE

In the previous section we have reduced the partition
function of our pseudospin-electron model to the partition
function of the pure pseudospin model. Now we have to
consider the pseudospin model described by the Hamiltonian

�2� �but with the parameters h̃ and Ẽ0 instead of h and E0�.
For the first time this model was used by Blume, Emery, and
Griffiths in the context of superfluidity and phase separation
in 3He-4He mixtures.13 Therefore it is also called the Blume-
Emery-Griffiths model. It was investigated in many studies,
particularly in Refs. 13–18 in the mean field approximation.
Later we will use this approximation as well.

Let us consider the Hamiltinian

Hs = − J�
	ij�

Si
zSj

z − K�
	ij�

Si
z2

Sj
z2

+ �
i

�− h̃Si
z + Ẽ0Si

z2
� , �15�

where 	ij� means that the sum is over nearest-neighbor pairs
only, J and K are the strengths of the bilinear and biquadratic
interactions, respectively.

First of all, we will consider the model at zero tempera-
ture, i.e., the ground states of the system. In Ref. 19 the exact
ground-state diagrams for the most general spin-1 Ising
model on different lattices were constructed. We will use the
results of this study. It is shown there that in the case of
nearest neighbor interaction only the lattice does not split
into two sublattices if J
0 and J+K
0.

The ground-state diagram for this case is shown in Fig. 1.

FIG. 1. Phase diagram of the BEG model in the �h̃ , Ẽ0� plane at
zero temperature. Three different phases �A , B , C� are indicated.
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Three phases are possible: A, B, and C. When moving from
the phase A to the phase B the sign of � changes and n
remains the same; when moving from the phase A or B to the
phase C both values change discontinuously. If J�0, the
similar behavior is observed at nonzero temperature.

Now let us consider the shifts of the phase diagram
caused by electrons. To do this we shall investigate the zero
temperature behavior of the values �1/�� ln r, �1/�� ln t, and
�1/�� ln s, in terms of which the shifts are expressed

�h =
1

2
� 1

�
ln r −

1

�
ln t
 ,

�E0 = −
1

2
� 1

�
ln r +

1

�
ln t
 +

1

�
ln s . �16�

q1 = lim
T→0

1

�
ln r

= 0, − g − � + � � 0 �1�
− g − � + � , 0 � − g − � + � � U �2�
2�− g − � + �� − U , − g − � + �  U �3� ,

�
q2 = lim

T→0

1

�
ln t

= 0, g − � + � � 0 �1�
g − � + � , 0 � g − � + � � U �2�
2�g − � + �� − U , g − � + �  U �3� ,

�
q3 = lim

T→0

1

�
ln s = 0, � � 0 �1�

� , 0 � � � U �2�
2� − U , �  U �3� .

� �17�

The regions of different behavior of the shifts �h and �E0
are shown in Fig. 2 in the �� ,g� plane when 0�U��. We
employed the following notations for the regions: the first
number in the parentheses denotes which of inequalities, �1�,

�2�, or �3�, holds for q1 in Eq. �17�, the second and the third
numbers correspond to q2 and q3, respectively. The coeffi-
cients c1 , c2 , c3 �see Eq. �14�� tend to 1 in case �1�, to 1

2 in
case �2�, and to 0 in case �3�.

In Table I the shifts �h and �E0 are given for each region
and the changes of the average electron number per site ne at
the phase transitions when the field h is fixed are indicated.

The right arrow corresponds to the transition at h̃�0 �h�
−�h , � jumps from −1 to 0�, and the left arrow corresponds

to the transition at h̃0 �h−�h , � jumps from +1 to 0�. In
both cases the average number n of intercalated particles per
site jumps from 1 to 0. The phase coexistence line is deter-
mined by the equation

E0 + �E0 = �h + �h� +
J + K

2
. �18�

Up to now we have considered the grand canonical en-
semble where neither the number of intercalated particles nor
the number of electrons were fixed. Let us consider now the
case when the number of electrons is fixed. If, at nonzero
temperature, one constructed the graphs of ne�−E0� depen-
dency at different values of the electron chemical potential �
�all other parameters and the temperature are being fixed�,
one could see that if the temperature does not exceed a cer-
tain value, then in the �−E0 ,ne� plane there is the region, the
points of which do not satisfy the condition of absolute ther-
modynamic stability at any �. If the parameters E0 and ne are
such that the point �−E0 ,ne� drops into this region, then the
separation into two phases with different electron and par-
ticle concentrations occurs in the system. The separation re-
gions can be also considered in the �� ,ne� or �h ,ne� plane ��
denotes the thermodynamic temperature�, i.e., the separation
region is four-dimensional �in the �ne ,−E0 ,h ,�� space�. As
the temperature increases it becomes narrower and com-
pletely disappears at the critical temperature. The separation
regions can be also considered in the �n ,� ,h ,�� space.

FIG. 2. Regions of different behavior of the shifts �h and �E0

at zero temperature. 0�U��. The notations of regions are ex-
plained in the text.

TABLE I. The shifts �h and �E0 and the jumps of ne for dif-
ferent regions at zero temperature.

Region �h �E0 ne

�111� 0 0 0→0←0

�112� 0 � 0→1←0

�113� 0 2�−U 0→2←0

�121� �−g+�−�� /2 �−g+�−�� /2 1→0←0

�122� �−g+�−�� /2 �−g+�+�� /2 1→1←0

�123� �−g+�−�� /2 �−g+�+3�� /2−U 1→2←0

�131� −g+�−�+U /2 −g+�−�+U /2 2→0←0

�132� −g+�−�+U /2 −g+�+U /2 2→1←0

�133� −g+�−�+U /2 −g+�+�−U /2 2→2←0

�222� −g � 1→1←1

�223� −g �+�−U 1→2←1

�232� �−3g+�−�+U� /2 �−g+3�−�+U� /2 2→1←1

�233� �−3g+�−�+U� /2 �−g+3�+�−U� /2 2→2←1

�333� −2g 2� 2→2←2

I. V. STASYUK AND YU. I. DUBLENYCH PHYSICAL REVIEW B 72, 224209 �2005�

224209-4



Let us construct the phase separation regions in the �ne ,
−E0� plane at zero temperature. The results obtained above
should be supplemented by an additional suggestion that the
phase coexistence line at h=0 and nonzero temperature ex-
ists if J�0 and does not exist if J=0, and two other lines
exist in both cases. This suggestion is based on the results
within the mean field approximation given below.

If the interaction g is such that when changing � from −	
to +	 one crosses regions �113� �0�U���, �131� �g�
+U�, �123�, or �133�, then the region of separation into the
phases with ne=0 and ne=2 can exist. Region �113� always
produces such a separation, regardless of the value of h. The
conditions that shall be satisfied for the separation into
phases with ne=0 and ne=2 exists are given in Table II.

If a region of separation into the phases with ne=0 and
ne=2 exists in the �E0 ,ne� plane at zero temperature, then the
total separation region occurs between the following values
of E0:

E00 = �h� +
J + K

2
and E02 = �h − 2g� − 2� +

J + K

2
.

�19�

These values correspond to the regions �111� and �333�, re-
spectively. If there is no separation into the phases with ne
=0 and ne=2, then between E00 and E01 there is a separation
into the phases with ne=0 and ne=1, and between E01 and
E02 into the phases with ne=1 and ne=2. The value E01 is as
follows:

E01 = �h − g� − � +
J + K

2
, �20�

if �=h−g+�+U /2 lays beyond region �132�, or

E01 = g − � −
U

2
+

J + K

2
, �21�

if �=h−g+�+U /2 drops into region �132�. Thus, changing
the field h, one can control the width of the separation re-
gion.

Different types of separation regions at zero temperature
and J=0 are shown in Fig. 3. If J�0 then the phase transi-

tions at h̃=0 exist also at nonzero temperature and the sepa-
ration pattern can be more complicated �see Fig. 8�. The
reason is that at h�0 such �=�0 can exist that h+�h=0,

and the phase transition from h̃�0 to h̃0 occurs at this �0.
Then ne changes discontinuously and that leads to the ap-
pearance of the separation region that corresponds to the

phase coexistence line h̃=0 and extends up to the infinite
value of −E0. As one can see the shape of the separation
region at T=0 does not depend on the bilinear and biqua-
dratic couplings.

IV. SYMMETRY OF THE BEG HAMILTONIAN

Consider now the BEG model at arbitrary temperature. To
complete the exact results in this model let us consider, as it
is done in Ref. 13, the symmetry transformations of the most
general spin-1 Ising Hamiltonian

HI = − J�
	ij�

Si
zSj

z − K�
	ij�

Si
z2

Sj
z2

− C�
	ij�

�Si
z2

Sj
z + Si

zSj
z2

�

+ �
	ij�

�− h̃Si
z + Ẽ0Si

z2
� . �22�

If C=0 it becomes the BEG Hamiltonian.
There are three transformations which transform pseu-

dospins 1 in −1, 0 in 1, 0 in −1 and vice versa, leaving,
respectively, pseudospins with values 0, −1, and 1 intact.
These are

Si
z → − Si

z, �23�

Si
z → 1 + 1

2Si
z − 3

2Si
z2

, �24�

Si
z → − 1 + 1

2Si
z + 3

2Si
z2

. �25�

Other possible transformations are the linear combinations of
these ones. The transformed parameters of Hamiltonian �15�
are as follows:

J1 = J, K1 = K, C1 = − C, h̃1 = − h̃, Ẽ01 = Ẽ0,

�26�

for transformation �23�,

J2 = 1
4 �J + K − 2C� ,

K2 = 1
4 �9J + K + 6C� ,

C2 = 1
4 �− 3J + K + 2C� ,

h̃2 = 1
2 �J − K + h̃ + Ẽ0� ,

Ẽ02 = 1
2 �3J + K + 4C + 3h̃ − Ẽ0� , �27�

for transformation �24�, and

J3 = 1
4 �J + K + 2C� ,

K3 = 1
4 �9J + K − 6C� ,

TABLE II. Conditions when the separation into phases with ne

=0 and ne=2 exists at zero temperature.

U g h

0 � 0 �−U Arbitrary

�−U � h �g−�+U� /2

� �+U hg−�+U /2

� 2� 0 U−� Absent

U−� � h �g−�+U� /2

� �+U hg−�+U /2

2� 	 0 U−� Absent

U−� �+U hg−�+U /2

0 	 �+U 	 h�g−�−U /2

hg−�+U /2
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C3 = 1
4 �3J − K + 2C� ,

h̃3 = 1
2 �− J + K + h̃ − Ẽ0� ,

Ẽ03 = 1
2 �3J + K − 4C − 3h̃ − Ẽ0� , �28�

for transformation �25�. Equalities �26� yield the symmetry

of the phase diagram with respect to the h̃=0 plane. If K

=3J and C=0, then only two parameters, h̃ and Ẽ0, change in
Eqs. �27� and �28�, the rest do not change. Hence, in this case
the transformations

h̃ → − J + 1
2 �h̃ + Ẽ0� ,

Ẽ0 → K + 1
2 �3h̃ − Ẽ0� �29�

and

h̃ → J + 1
2 �h̃ − Ẽ0� ,

Ẽ0 → K + 1
2 �− 3h̃ − Ẽ0� �30�

map the phase diagram in the �h̃ , Ẽ0 ,�� space into itself. This
fact will be used in the following section, when we will have
to deal with an analog of the van Laar point.20

V. PHASE TRANSITIONS IN THE BEG MODEL:
MEAN FIELD APPROXIMATION

All results that we obtained above are exact. To study the
phase transitions and the phase separations in the BEG

model �2� �with h̃ and Ẽ0 instead of h and E0� at arbitrary
temperature let us use the mean field approximation. Here,
we will mainly review some results from Refs. 13–18, how-
ever, some new results will be presented as well: the very
important equation for the critical lines, the equation for the
coexistence point of four phases, the equation for the van
Laar point in the mean field approximation.

A. Self-consistent equations

The Hamiltonian of the BEG model in the mean field
approximation reads as follows:

HMF = NJ�2 +
N

2
Kn2 + �

i

�− �h̃ + J��Si
z + �Ẽ0 − Kn�Si

z2
� .

�31�

Here and thereafter we will use the notations

J = �
j

Jij, K = �
j

Kij . �32�

The thermodynamic potential per site is given by

FIG. 3. Phase separation at zero temperature
in �−E0 ,ne� plane. J=0, K=0.25, �=0.5, U
=0.2. If ne and E0 are such that the point
�−E0 ,ne� drops into the separation region, the
separation into two phases with different values
of ne �0, 1, or 2� and n �0 and 1� occurs at the
same value of E0.
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� =
J

2
�2 +

K

2
n2 −

1

�
ln�1 + e−��−h̃−J�+Ẽ0−Kn� + e−��h̃+J�+Ẽ0−Kn�� .

�33�

The self-consistent equations read as follows:

e2��h̃+J�� =
n + �

n − �
,

e2��Ẽ0−Kn� =
4�1 − n�2

n2 − �2 . �34�

Taking into account Eqs. �34�, one can rewrite the expression
for the thermodynamic potential as follows:

� =
J

2
�2 +

K

2
n2 +

1

�
ln�1 − n� . �35�

Equations �34� yields the relation between n and �

n = � cth���h̃ + J��� �36�

or

�2 = n2 − 4�1 − n�2e−2��Ẽ0−Kn�. �37�

Let us study the phase transition pattern given by Eqs.

�34� and �35�. The phase diagram in the �h̃ , Ẽ0� plane at zero
temperature will be the same as in Fig. 1: the mean field
approximation leads to the exact result at zero temperature.

B. Critical lines

Now we will write the equations for the critical lines.
They can be found from the condition that both the deriva-

tives dh̃ /d� and d2h̃ /d�2 are equal to zero. Differentiating

twice Eqs. �34�, setting dh̃ /d� and d2h̃ /d�2 equal to zero,
and excluding the derivatives dn /d� and d2n /d�2, after
simple transformations we will have the following:

�2 =
�n −

1

J�

�n2 − n +

1

K�



�n − 1 +
1

K�

 , �38�

�Jn� − 1��2K2�J + K�n��n − 1���3 + K�3�J + K�n + J + 3K�

���n − 1���2 + �J + 6K���n − 1��� + 2� = 0. �39�

These equations, together with initial Eqs. �34� and the con-
dition for minimum of �, determine the critical lines. The

solution n=1/ �J�� of Eq. �39� corresponds to �=0, h̃=0,
and

Ẽ0 =
1

�
�K

J
+ ln��J − 1� + ln 2
 . �40�

It is just the critical line at h̃=0. If J=0, such a line does not

exist at h̃=0. The critical line at h̃�0 is determined by the
root of the second factor of Eq. �39� that satisfies the condi-

tion for minimum of �. This is a cubic with respect to
��n−1� and it can be solved analytically, but in view of
cumbersome analytical expressions for its roots we prefer to
solve it numerically.

It is easy to find the asymptotes of the critical lines. It
follows from Eq. �40� that

lim
Ẽ0→−	

� =
1

J
. �41�

This is the asymptote of the critical line at h̃=0. The corre-
sponding value of n tends to 1.

The asymptotes of the critical lines at h̃�0 are as follows:

Ẽ0 = �h̃� +
J + K

2
, � =

4

J + K
. �42�

The corresponding value of n tends to 1
2 .

C. Tricritical point, critical end point, and coexistence point
of four phases

We can find the tricritical point, i.e., the point where the

critical lines at h̃=0 and h̃�0 meet, by substituting n
=1/ �J�� �the root of the first factor� into the second factor of
Eq. �39�. Of three roots only one

�tc =
3J + 2K

�J + 2K�J
�43�

corresponds to the minimum for the thermodynamic poten-
tial. This solution defines the inverse tricritical temperature.

The tricritical point can be absent or the first order phase
transition surface can be branched and thus, one of its critical

point at h̃=0 will not be a tricritical one �Fig. 4�. Then, in the

FIG. 4. �Color online� Phase diagram of the BEG model at J
=0.35, K=1.0. All points of the phase coexistence surface, except

the points of the critical line at h̃=0 �the thickest one�, correspond
to the first order phase transitions.
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interval from this critical point until the critical end point �or
to the coexistence point of four phases�, � will be equal to
zero and one obtains from Eqs. �34�

n

1 − n
e−�Kn = 2e�Ẽ0. �44�

Since the points from this interval corresponds to the first
order phase transitions, Eq. �44� shall have two different
roots that correspond to the same value of �. It is evident
that it is possible at the condition that the roots are equal to
n and 1−n �at the critical point n1=n2= 1

2 �, and, in addition,
the following relation is obeyed

Ẽ0 =
K

2
+

1

�
ln 2. �45�

In this way we have obtained the equation of the phase co-

existence line starting at the critical point at h̃=0 ��=4/K�
and ending at the coexistence point of four phases or at the
critical end point.

The critical end point at h̃=0 shall satisfy both Eqs. �40�
and �45�. Hence, for the inverse temperature �ce at the criti-
cal end point one has

e�ce�K/2� = eK/J��ceJ − 1� . �46�

Note, that the solution �ce=2/J of this equation is superflu-
ous.

Let us find the limiting value of the ratio R=J /K that
bounds the region where the tricritical point exists. To do this
we need to substitute the expression for inverse tricritical
temperature in the previous equation. We will have

exp� K�J − 2K�
2J�J + 2K�
 =

2J

J + 2K
, �47�

from where

Rl =
J

K
� 0.263 028 3. �48�

�The solution J /K=2 is superfluous.� If RRl the tricritical
point exists.

Let us also find the value of R that bounds above the
region where the first order phase transition surface

branches. Then the critical point with �=4/K, Ẽ0= �K /2�
+ �1/�� ln 2= �K /2�+ �K /4� ln 2, and n= 1

2 moves down to
the triple-point line and becomes thermodynamically un-
stable. Thus, the limiting value of R is determined by the
following set of equations:

e8�J/K�� =
n − �

n + �
,

e8n−4 =
n2 − �2

�1 − n�2 ,

1

2

J

K
�2 +

1

2
n2 +

1

4
ln�1 − n� =

1

8
−

1

4
ln 2. �49�

We have from it

Ru =
J

K
� 0.360 402 66. �50�

If Rl�R�Ru the first order phase transition surface is
branched.

The set of Eqs. �49� represents a particular case of another
set of equations, the nontrivial ���0� solution of which
gives the coexistence point of four phases

e�K�1−2n� =
�1 − n�2

n2 ,

e�K�1−2n1� =
�1 − n1�2

n1
2 − �2 ,

e2�J� =
n1 − �

n1 + �
,

J

2
�2 +

K

2
n1

2 +
1

�
ln�1 − n1� =

K

2
n2 +

1

�
ln�1 − n� . �51�

D. An analog of the van Laar point

Now, let us find an analog of the van Laar point,20 i.e., the
value of R=J /K, at which three tricritical points exist: one of
them corresponds to the zero field and two others are sym-

metrical with respect to the h̃=0 plane �Fig. 5�. The second
factor of Eq. �39�, being a cubic in �n−1��, has therefore
three real roots, two of them should be equal, i.e., its dis-
criminant must be zero. This in turn produces another cubic
in n with the coefficients that depend on R. It shall also have
three real roots, two of which shall be equal, i.e., its discrimi-
nant must be zero. Hence, we obtain an equation in R

FIG. 5. �Color online� Phase diagram of the BEG model at the
van Laar point �J=1/3 , K=1�. Tricritical temperature is the same
for all three tricritical points.
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�n„�x�2�R + 1�nx3 + �3�R + 1�n + R + 3�x2

+ �R + 6�x + 2�… = 0, �52�

where x= �n−1��K, and �x�f�x�� denotes the discriminant of
the equation f�x�=0 as an equation in x. Equation �52� has
three real roots �−1,0, 1

3 � but only at

R = 1
3 , �53�

three tricritical points exist and correspond to the same tem-
perature

�tc =
27

7K
. �54�

At tricritical points the parameters have the following values:

n = 11
18, � = ± 1

6 ,

Ẽ0 = � 11
18 + 7

54ln7
4�K � 0.683 653K ,

h̃ = ± �− 1
18 + 7

54ln7
4�K � ± 0.0169 87K . �55�

The existence of three tricritical points with the same tem-
perature at R= 1

3 can be explained by the symmetry of the
Hamiltonian �22� �see Sec. IV�. This is an exact result though
the tricritical temperature itself is calculated in the mean field
approximation.

E. J=0 and K=0 cases

Let us consider now the particular cases: J=0 and K=0.
If J=0, one can obtain from Eqs. �34� and expression �35�

for � at J=0 the analytical expression for the phase coexist-
ence surface �in the same manner as for Eq. �45��

Ẽ0 =
K

2
+

1

�
ln�2 cosh��h̃�� . �56�

The corresponding phase diagram is shown in Fig. 6�a�. The
inverse critical temperature in this case is equal to

� =
4

K
. �57�

The equation for n at the phase transition point writes

e−�K�n−�1/2�� =
1 − n

n
. �58�

As we can see, n depends only on the temperature and the
biquadratic interaction K. At the critical temperature n= 1

2 .
If K=0, we obtain the inverse temperature from Eq. �39�

� = −
2

J�1 − n�
, �59�

and the expression for the average dipole moment per site
from Eq. �38�

�2 =
3n − 1

2
. �60�

These equations, together with Eqs. �34�, define the critical

line at h̃�0, and the critical line at h̃=0 is defined in this
case by the equation

e�Ẽ0 = 2��J − 1� . �61�

The inverse tricritical temperature is equal to

�tc =
3

J
. �62�

The phase diagram for the K=0 case is shown in Fig. 6�e�.

VI. PHASE TRANSITIONS AND PHASE SEPARATIONS
IN THE PSEUDOSPIN-ELECTRON MODEL

WITH S=1 IN THE MEAN FIELD APPROXIMATION

Let us consider now the influence of electrons on the
phase coexistence surface. As it was shown in Sec. I elec-
trons cause the shift of the phase diagram. Since the shift
depends on the temperature, the surface deforms �Figs. 6�b�,
6�d�, and 6�f��.

If the interaction of electrons with pseudospins does not
depend on the orientation �g=0�, then there is no shift along
the axis h and the phase coexistence surface remains sym-
metric with respect to this axis. But there are shifts along the
E0 axis, which deform the surface. When the pseudospin-
electron interaction � which does not depend on orientation
is sufficiently strong, then the transitions from the phase with
bigger n to the phase with smaller n, i.e., from the phase A or
B in the phase C, can occur �Fig. 7� while the temperature
increases. If there are no electrons, then such transitions may
be impossible, for instance, when J=0 �see Fig. 6�a��.

In the case of fixed average number of electrons the phase
separation takes place in a certain region of parameter val-
ues. As being already noted, it is crucial in the J�0 case

whether h̃ goes through zero or not when the electron chemi-
cal potential � changes from −	 to +	 �the temperature and
h being fixed�. If not, then the separation region is bounded
�Fig. 8�, otherwise it is unbounded and extends to infinity
along the −E0 axis �Fig. 9�. However, the separation caused

by the fact that h̃ goes through zero produces the phases that
differs by electron concentration only, because the concen-

tration of intercalated particles does not change on the h̃=0
surface.

The phase separation region in the �n ,�� plane for the

BEG model at h̃=0 is shown in Fig. 10. This diagram is
typical for symmetrical binary mixture �see for example Ref.
21 and also Ref. 18. The influence of the pseudospin-electron
interaction on the diagram is shown in Fig. 11. The interac-
tion with electrons smoothes out the separation curve; the
�-line disappears.

Let us study the behavior of the average number of elec-
trons per site n in relation to the chemical potential of inter-
calated particles −E0 when the temperature � and the average
number of electrons per site ne are fixed �in the real interca-
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FIG. 6. �Color online� �a�, �c�, �e� Phase diagrams of the BEG model at: �a� J=0, K=1.0; �c� J=0.2, K=1.0; �e� K=0, J=1.0. �b�, �d�,
�f� Phase diagrams of the S=1 pseudospin-electron model at: �b� J=0, K=1.0, g=0, �=1.0, U=0.2, �=−0.1; �d� J=0.2, K=1.0, g
=1.15, �=1.0, U=0.2, �=−0.1; �f� J=1.0, K=0, g=0, �=1.0, U=0.2, �=−0.1. In �d� projections of the thick lines on �h ,E0� plane are

indicated. All points of the phase coexistence surfaces, except the points of critical lines at h̃=0 or h=0 ��c�, �e�, and �f��, correspond to the
first order phase transitions.
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lation process ne does not change�. To do that one has to add
the equation for the chemical potential �13� to Eqs. �34� and
�35�. If �=	, then n=0. When −E0 increases, then n in-
creases monotonically as long as the point �−E0 ,ne� is out-
side of the separation region. In this region two phases with
different average numbers n1 and n2 of particles per site ex-
ist. As far as we are considering the J=0 case the number n1
and n2 do not depend on −E0, they depend on the tempera-
ture and K only �see Eq. �58��. Outside the separation region,
n monotonically increases again, tending asymptotically to 1.
Figure 12 shows how the behavior of n�−E0� depends on �

and the temperature. h is chosen near to zero.
As illustrated in Fig. 12, with the increase of � the sepa-

ration region moves in the direction of larger values of the
chemical potential of intercalated particles. The separation
region can narrow first and expand afterwards, in relation to
g. The increase of g narrows the separation region and, of
course, it narrows with the increase of the temperature and
disappears completely at the critical temperature. Further-
more, the difference n1−n2 of particle concentrations of two
phases decreases with the temperature increase. The value of
ne also influences significantly the width of the phase sepa-
ration region.

FIG. 7. Phase diagrams of the S=1 pseudospin-electron model
at J=0, h=0 and different values of �. Phase transitions from the
phase with bigger n to the phase with smaller n or even reentrance
phase transitions are possible while the temperature increases �they
are impossible at �=0�.

FIG. 8. �Color online� Phase separation at zero �straight lines�
and nonzero temperature and J=0.

FIG. 9. �Color online� Phase separation at zero �straight lines�
and nonzero temperature and J�0. If ne and E0 are such that the
point �−E0 ,ne� drops into separation region, the separation into two
phases with different values of ne occurs at the same value of E0. If
−E0�a the phases differ also by n; if −E0a the phases differ only
by ne, n being the same �J�0�.

FIG. 10. Phase separation in the �n ,�� space for the BEG model.

J=0.3, K=1, h̃=0.
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VII. CONCLUSIONS

A pseudospin-electron model based on the BEG model is
proposed and has been found to be applicable to describe the
essential features of the intercalation in layered crystals. Due
to the one-site nature of the electron-electron and
pseudospin-electron interactions in the model, the influence
of the electron subsystem can be taken into account exactly
by reducing the partition function of the system to the parti-
tion functions of independent pseudospin and electron sub-
systems. The fields of the effective pseudospin subsystem
turned to be shifted and depend on the temperature and the
parameters related to the electrons. In the case of nearest
neighbor interactions it is possible to construct the exact
ground-state phase diagram for the pure pseudospin model. It
allows one to study phase transitions and phase separations
in the pseudospin-electron model exactly at zero tempera-
ture.

At any fixed temperature the influence of electrons leads
to the shifts of the phase coexistence lines along the h and E0
axes. The shifts depends on the temperature, therefore the
phase coexistence surface deforms, and if the pseudospin-
electron interaction which depends on the orientation of
pseudospins is nonzero �g�0�, then the phase diagram is no
longer symmetric with respect to the field h.

In the case of fixed average number of electrons ne or
intercalated particles n= 	Si

z2� per site the phase separation
takes place. We studied the phase separation when ne is
fixed. Several types of the phase separation regions are then
possible at zero temperature in the �−E0 ,ne� plane. Their
width depends on the field strength h. If the interaction be-
tween pseudospins does not depend on their mutual orienta-

tion �the J=0 case�, then the separation region is bounded,
otherwise the phase separation regions unbounded on one
side are possible.

The application of the pseudospin-electron model to the
intercalation process in layered crystals which is the subject
of this study leads to an important conclusion: the phase
separation into the phases with different concentrations of
particles is caused by the fact that the number of electrons
that interact with intercalated particles is fixed, even if the
number of latter ones is not fixed. Thus, the insular structure
of intercalated layers observed in the experiments over a cer-
tain range of chemical potential of intercalated particles is
due to their interaction with the electrons of basic layers. If
the number of intercalated particles is also fixed, then a
“double” phase separation occurs. We will consider this case
in our future study.
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FIG. 11. Phase separation curves in the �n ,�� space for the
pseudospin-electron model at different values of the pseudospin-
electron interaction g. The intercalation with electrons smoothes out
the separation curve.

FIG. 12. �Color online� Dependence of the average number n of
intercalated particles per site on their chemical potential −E0. J
=0, K=1, h=0.001, ne=1, U=0.2. The rectangles indicate the
separation region. The temperature �=0.249 is very close to the
critical one ��cr=0.25�.
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