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Extending recent numerical studies on two-dimensional amorphous bodies, we characterize the approach of
the elastic continuum limit in three-dimensional �weakly polydisperse� Lennard-Jones systems. While perform-
ing a systematic finite-size analysis �for two different quench protocols�, we investigate the nonaffine displace-
ment field under external strain, the linear response to an external � force, and the low-frequency harmonic
eigenmodes and their density distribution. Qualitatively similar behavior is found as in two dimensions: The
classical elasticity description breaks down below a surprisingly large length scale �, which in our system is
approximately 23 molecular sizes. This length characterizes the correlations of the nonaffine displacement
field, the self-averaging of external noise with distance from the source, and gives the lower wavelength bound
for the applicability of the classical eigenfrequency calculations. Moreover, we demonstrate that the position of
the “Boson peak” in the density of vibrational states is related to this self-averaging length �.
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I. INTRODUCTION

In a recent series of papers,1–3 we investigated the elastic
response of zero-temperature two-dimensional �2D� amor-
phous systems. Our studies were motivated by the idea that
such systems, although they appear perfectly homogeneous
when looking at the density field, may be described as het-
erogeneous from the point of view of the theory of elasticity.
The basic reason for this failure is now well identified: the
underlying hypothesis of affinity of elastic deformations, im-
plicit in standard elastic theory,4,5 need not apply to a disor-
dered system. The relevant issue is therefore the scale above
which a disordered, glassy system can be considered as ho-
mogeneous from an elastic point of view.

Obviously, this question is important for the vibrational
spectrum of such disordered systems; the excess of vibra-
tional states at intermediate frequencies in the spectrum �the
so-called Boson peak� has previously been assigned to the
existence of elastic heterogeneities,6,7 whose existence ap-
pears to be confirmed by recent experiments.8 Moreover, the
field of plastic deformation of glassy materials, which has
attracted considerable attention recently,9–14 may be expected
to be related to elastic heterogeneities. Other points of inter-
est include the experimental evidence for dynamical hetero-
geneities in deeply supercooled systems,15 which again could
be expected to give rise to “frozen-in” heterogeneities in
low-temperature systems.

Our previous studies were limited to 2D systems, as this
reduced dimension allows one to carry out calculations on
systems with large linear box sizes L using a limited number
of particles. These studies allowed us to establish, for a stan-
dard computational model system, the existence of a length
scale � that can reach a few tens of particles, and below
which classical elasticity breaks down. Similar conclusions
were reached by Goldhirsch and Goldenberg.16 This break-
down is revealed by a number of different diagnostics: �i�
The so-called Born expression for elastic constants is found
to give incorrect results. This failure can be traced back to

the importance of a nonaffine contribution to the microscopic
displacement field, while the derivation of the Born formula
assumes affine displacement at all scales. The analysis of the
correlation function of the nonaffine contribution to the dis-
placement field reveals � as the distance over which this field
is correlated, defining “soft” regions with large nonaffine dis-
placements. �ii� The study of low-frequency vibrations in
these model disordered systems shows that the predictions of
classical elastic theory are recovered only for wavelengths
larger than �, meaning the system is not homogeneous from
the point of view of elastic properties below this scale. �iii�
More recently, it was shown that the response to a point force
is dominated by fluctuations for distances to the source
smaller than �.3 Hence, � characterizes the self-averaging of
the noisy response within each configuration, which led us to
call it the self-averaging length. �iv� The influence of pres-
sure has been investigated in two dimensions, demonstrating
that � remains “mesoscopic” for low and moderate pressures,
typically of the order of 40 particle sizes, but decreases at
large pressures.17

An obvious question that arises is the extent to which
these results may depend, qualitatively or quantitatively, on
the dimensionality of space. Three-dimensional �3D� sys-
tems, however, are considerably more difficult to study than
the 2D case. The limit of elastically homogeneous systems
requires lateral system sizes L much larger than �. Supposing
� to be comparable to what is observed in two dimensions
imposes an order of at least 105 particles to be considered, if
one wants to use the same tools and diagnostics in 2D and
3D systems. Although a number of studies have appeared
recently18–20 pointing to the existence of elastic inhomogene-
ities in various types of disordered systems, all of them were
realized for relatively small system sizes, making a direct
comparison to our previous results difficult. In the same way,
previous calculations of vibration modes in 3D systems have
been limited to rather small sizes.21–23 This work explores
systems with lateral sizes that are appreciably larger than the
expected scale of elastic heterogeneities.
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The aim of this work is therefore to characterize the elas-
tic behavior of large 3D systems, using the same computer
model and similar quench protocols as in our previous 2D
studies, and to explore possible relations between the non-
affine mechanical response and the excess of vibrational
states—the so-called Boson peak. System parameters and
quench protocols are summarized in Sec. II. In Sec. III, we
begin by analyzing the nonaffine local displacement field in
cubic samples submitted to uniaxial elastic deformation.
From previous experience,1,2 we know that this type of
analysis is the most cost effective in revealing the existence
of inhomogeneities and their length scale. We then discuss
the elastic response to a point force �Sec. IV� and corroborate
why � has been termed “self-averaging length.” Vibrational
properties at very low eigenfrequencies—obtained by diago-
nalization of the dynamical matrix—are considered in Sec. V
and the density of eigenstates—computed by means of the
finite temperature velocity autocorrelation function—is con-
sidered in Sec. VI. Our results are summarized in Sec. VII.

II. DESCRIPTION OF SYSTEMS AND SIMULATION
PROCEDURES

The initial configurations and their preparation are delib-
erately similar to those described in Ref. 1 for the 2D case.
The same slightly polydisperse Lennard-Jones potential
Uij�r�=4� ���ij /r�12− ��ij /r�6� has been used with �ij uni-
formly distributed between 0.8� and 1.2�. The correspond-
ing polydispersity index 0.12 is expected to be enough to
destabilize a polydisperse crystal,24 and indeed no sign of
crystallization or demixing was observed in our
simulations.25 The interaction energy scale � and the particle
masses m will be taken to be strictly monodisperse. In the
following, we will adopt Lennard-Jones units, i.e., the mean
diameter � will be our unit of length �and generically de-
scribed as the “particle size”�, while time will be expressed
in units of �=�m�2 /��1 ps. We studied systems at constant
density, �=N /L3=0.98, which corresponds for small tem-
peratures to a very low hydrostatic pressure ��P��0.2�. The
lateral size L of the periodic simulation box was varied be-
tween L=8 and L=64 �corresponding to N=500 and N
=256 000 particles�.

Disordered configurations are prepared by melting at high
temperature �kBT /�=2� an initially fcc configuration during
105 molecular dynamics steps �MDS� using standard con-
stant temperature molecular dynamics.1,25 After the system
was equilibrated, we begin the production run using two
types of minimization. The first one, called the “fast
quench,” uses a direct conjugate gradient minimization until
�according to numerical tolerance� the zero-temperature
equilibrium state is reached. This protocol was implemented
for all system sizes. The second “slow quench” protocol has
been used only up to L=40 �N=62 500�. In this case, the
liquid configuration is first equilibrated at kBT /�=1 and then
cooled down at stages �kBT /�=5.10−1 ,10−1 ,5.10−2 , . . . ,
10−3� where the system is “aged” �rather than “equilibrated”�
during 105 MDS.25 Finally, the zero-temperature state is
reached using conjugate gradient minimization. Unless indi-
cated otherwise, all the results refer to ensemble averages

�over 10 independent realizations� carried out with the fast
quench procedure.

III. RESPONSE TO A MACROSCOPIC UNIAXIAL
DEFORMATION

A. Computational procedure and nonaffine displacement fields

In this section, we investigate the elastic behavior of zero-
temperature cubic samples, prepared as described above,
submitted to an uniaxial traction. The procedure adopted is
the following. First, a global deformation of strain �xx�1 is
imposed on the sample by rescaling all the coordinates in an
affine manner, that is r�i

aff= �1= +�=�r�i where r�i stands for the
initial position of the particle i and r�i

aff is the resulting posi-
tion. Starting from this affinely deformed configuration �with
constant �=�, the system is then relaxed to the nearest energy
minimum, keeping the shape of the simulation box
constant.25 As a result, a displacement of the particles rela-
tive to the affinely deformed state is observed. This defines
the nonaffine displacement u� �r�i� of each particle i; that is,
u� �r�i��r�i

f −r�i
aff, where r�i

f stands for the final position of the
particle i after the relaxation.

A typical example for these displacements in the linear
elastic response limit �for a strain of �xx�10−7� is presented
in the first panel of Fig. 1. It displays the projection of u� �r��
on a plane containing the elongation direction for a system of
size L=40. �Note that projections on different planes are
similar.� Visual inspection of such snapshots suggests that
nonaffine displacements are strongly correlated over short
and intermediate distances. This impression is also confirmed
by Fig. 1�b� where we focus on the 10 % most mobile par-
ticles suggesting a connected cluster of these strong displace-
ments spanning the simulation cell. The long-range spatial
correlations of these displacements will be discussed below
in Sec. III D.

In fact, the nonaffine response depends on the amplitude
of the strain imposed. In Fig. 2, we present the first moments
	�u� �r�i��2n
1/2n of the nonaffine displacements in a system of
size L=40, averaged over all particles of an ensemble, as a
function of the imposed strain. Both quench protocols give
very similar results. �Only one moment is given for the slow
protocol for clarity.� For ���p�L=40��10−6 �vertical line�,
all moments are �up to prefactors of order one� identical,
which demonstrates an unique strain dependence for all
beads. As one may also expect, a linear strain dependence is
found �bold line�. At �p�L�, however, the moments increase
suddenly and differ over more than an order of magnitude.
This suggests an inhomogeneous strain dependence of the
nonaffine displacement field from this value of the imposed
strain. This will also be discussed below �Fig. 3�. We stress
finally that the threshold �p�L� decreases extremely rapidly
with increasing system size. �A detailed quantitative descrip-
tion is beyond the scope of this study.� Hence, linear re-
sponse requires much smaller deformations for large L.

B. Plastic displacements and participation ratio

The elastic �reversible� character of the deformations for
small �xx is checked by carrying out the reverse transforma-
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tion and measuring the residual displacement of the particles,
v� i, which corresponds to plastic deformation. The moment
	�vi�
i of the residual displacement is indicated in Fig. 2. For
�xx��p it is negligible and the deformation is, hence, elastic.
Interestingly, elastic and linear elastic regimes coincide, as
can be seen from the figure. For larger strains the residual
displacements increase sharply over several orders of mag-
nitude and coincide roughly with the n=1 moment of the
nonaffine displacements. This shows that, for �xx	�p, the
nonaffine displacements are mainly due to plastic rearrange-
ments.

In view of the potential relationship with plastic deforma-
tion, it is interesting to investigate in some detail the spatial
features of the nonaffine displacement field. Qualitatively,
this can be achieved by representing, as shown in Fig. 1�b�,
the particles that have the 10% largest nonaffine displace-
ments. This picture shows that the nonaffine field for �xx
��p is rather delocalized, with the cluster formed by the
most mobile particles spanning the entire simulation cell. A
more quantitative view can be obtained by calculating the
participation ratio for the nonaffine displacements, defined
by

P �
1

N

��i
u� �r�i�2�2

�i
�u� �r�i�2�2

. �1�

This participation ratio is shown in Fig. 3 as a function of
�xx, for both quench protocols and L=40. �A similar partici-
pation ratio may be calculated for the residual plastic dis-
placements. In this latter case, however, the ratio at small � is
due to numerics and at high strain it is identical to the par-
ticipation ratio of the nonaffine displacements.� Obviously,
for sufficiently small deformations the displacements must
depend identically for all beads on the applied strain and P
has to become constant. As anticipated in Fig. 2, the pre-
sented data show that this coincides with the linear elastic
regime where all moments of the nonaffine displacements
are similar and the residual plastic field can be neglected.26

The central point is here that the plateau value of the partici-
pation ratio is large �25 % � indicating that the elastic non-
affine displacements involve a substantial fraction of the par-
ticles. When the deformation exceeds the plastic threshold
�p, however, the participation ratio falls rapidly, indicating
that a plastic deformation proceeds via well-localized
events.27 The implication from this difference in behavior is
that the localized events occurring in plastic deformation
cannot be directly inferred from the general pattern of non-
affine displacements. This does not mean that plastic dis-
placements and strong nonaffine elastic displacements are
completely uncorrelated. In other words, energy barriers
�which are relevant for plastic deformation� are not directly
related to the local curvature of the energy minima.28

Interestingly, the main influence of performing a slow
quench seems to be that the plasticity limit is increased,
meaning that the system has been brought to a slightly more
stable configuration with higher energy barriers without, ap-
parently, changing measurably the local curvature of the en-
ergy minima. In fact, properties such as the vibrational
modes discussed below, are much less affected by the quench
protocol.

In the reminder of this paper, we thus only focus on the
linear elastic response. We thus normalize the nonaffine dis-
placements by the second moment, i.e., u� �r�i� is replaced by
u� �r�i� / 	u�2
1/2, in order to consider a strain-independent re-
duced displacement field.

C. Hydrodynamic limit: Lamé coefficients

We turn now to the calculation of the Lamé coefficients 

and �, which characterize the elastic behavior of an isotropic
medium in three dimensions.5 Our results for these coeffi-
cients as a function of system size are shown in Fig. 4, which
compares two different ways of obtaining the coefficients. 
a
and �a are obtained under the assumption that the nonaffine
contribution to the total displacement field of the particles is
negligible. They are simply the Born estimates, which can
be, in a system with pairwise interactions potential U, com-
puted from the reference configuration by carrying out a
simple summation over all pairs of interacting particles �see,
for example, Refs. 1 and 9�: 
a=�a= �1/L3��i,j �U��rij�
− �1/rij�U��rij��xij

2 yij
2 /rij

2 . The second estimate corresponds to

FIG. 1. �Color online� Nonaffine part of the linear and reversible
displacements u� �r�i� for the imposed macroscopic uniaxial strain
�xx=10−7 for a system containing N=62 500 beads �L=40�: �a� pro-
jection on the �x−z�-plane for all particles close to the plane. The
length of the arrow is proportional to the displacement. �b� All
beads of the same configuration with the 10% strongest nonaffine
displacements. �The short lines indicate beads with direct mutual
interactions.� This subset of beads is strongly spatially correlated on
short distances, however, it is homogeneously distributed and iso-
tropic on larger scales.
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the “true” value of the elastic coefficients, obtained by com-
puting �by means of the usual Kirkwood expression2� the
incremental stress �̄� �Greek indices referring to cartesian
coordinates� after the relaxation that introduces the nonaffine
part of the displacement field.

The Lamé coefficients are then obtained from the standard
formulas �̄xx= �
+2���xx and �̄yy =
�xx for a deformation

tensor that has only an �xx component ��xx is here the global
deformation imposed on the sample�. For larger systems, we
obtain ��15 and 
�47. Hence, we find that the true values
of 
 and � differ considerably from the Born estimates,
which indicates the importance of nonaffine displacements in
determining the stresses in the material. This contribution
tends to lower the shear modulus � and to increase the co-

FIG. 2. �Color online� Different moments of nonaffine displacement field 	u�2n
1/2n as a function of the imposed strain �xx for systems of
L=40 obtained by means of the fast �open triangles� and the slow �full triangles� quench protocol. Both protocols show very similar results.
The bold line on the left indicates the linear slope 	u�2n
1/2n��xx. The vertical dashed line marks the limit of elastic response �p�L��10−6 for
L=40. Also given is the residual plastic displacement field 	�v� �
 �obtained by reverse deformation back to the original macroscopic shape�
for L=40 and L=32 �full symbols�. Residual fields below 10−9 are due to numerical inaccuracies, and the field can be considered as
reversible. The sudden rise at �p for L=40 corresponds nicely to the jump of the moments 	u�2n
1/2n. Note that the plasticity threshold �p

depends strongly on the system size.

FIG. 3. �Color online� Partici-
pation ratio of the nonaffine dis-
placement field in a 3D system
containing 62 500 particles �L
=40�, as a function of the uniaxial
strain �xx for both fast and slow
quench protocols averaged over
eight and five configurations, re-
spectively. The given lines are
guides to the eye.
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efficient 
. From the measured values of 
 and � we get a
bulk compression modulus K=
+2� /d�57, a Young’s
modulus E=8K� / �3K+���37, and a Poisson’s ratio �
= �3K−2�� /2�3K+���0.4.5 Remarkably, as well as for 2D
systems, the bulk modulus K would be correctly predicted by
the Born calculation. This means that the nonaffine part of
the deformation does not contribute significantly to the in-
crement in the isotropic pressure under compression or trac-
tion, but is mainly associated with shear deformations. �The
discussion of Fig. 6 below will elucidate this point.� Such a
situation would be natural in high-pressure systems, in which
the repulsive inverse power part of the potential dominates
the interaction and compression can be accommodated by an
affine rescaling of all coordinates. It is, however, less ex-
pected in our low-pressure systems.

D. Correlations in the nonaffine displacement field

The preceding results call for a more thorough analysis of
the correlations of the nonaffine displacement field, which
apparently cannot be neglected for macroscopic quantities
and should therefore be even more relevant for finite wave-
length properties.

Following Refs. 1 and 2, the nonaffine correlation field
can be analyzed by computing the correlation function
C�r��	u� �r�i�u� �r� j�
. �The averages are taken over all pairs of
monomers �i , j� being a distance r apart.� As can be seen in
Fig. 5�a�, a decay over a typical length of 23 particle sizes is
observed �bold line�, before the correlation function exhibits
a negative tail. The 2D case included for comparison shows
qualitatively similar behavior. The anticorrelation can be as-
sociated visually in two dimensions with the solenoidal char-
acter of the nonaffine displacement field.1,2 The organization
of the nonaffine deformation in “vortices” is less obvious in

three dimensions as manifested by the about-seven-times-
weaker amplitude of the negative tail.

That the displacement field is, indeed, correlated over a
size ��� �as indicated by the direct visualization of Fig. 1�
is further clarified in Fig. 5�b�. Here we consider the system-
atic coarse graining of the displacement field U� j�b�
�1/Nj�i�Vj

u� �r�i� of all Nj beads contained within the cubic
volume element Vj of linear size b.2 In the figure, we have
plotted the �normalized� correlation function B�b�
��	U� j�b�2
 j / 	u�2
�1/2 versus the size of the coarse-graining
volume element b �normalized by L�. For both 2D and 3D
systems we find an exponential decay. It is well fitted by the
characteristic scales ��23 for three dimensions and ��42
for two dimensions. Apparently, � is similar to the distance
where C�r� becomes anticorrelated. Note that the total non-
affine displacement field of the box must vanish—since the
center of mass of the system is fixed—and therefore B�b�
→0 for b /L→1. This sum rule explains the curvature in the
data and the sharp cutoff on the right-hand side of the figure.

More systematically, the displacement field can also be
investigated in Fourier space U� �k����i=1

N u� �r�i�exp�ik�r�i�,
where the wave vectors k� must be chosen commensurate
with the periodic simulation box. Apart the normalization
factor 1 /Nj, this is close to the coarse graining of the dis-
placement field over a volume element. We can demonstrate
now that the nonaffine displacement field in three dimen-
sions is, indeed, of a predominantly solenoidal nature. This
has been anticipated by our previous studies on 2D systems1

and by the values of the elastic moduli � and K discussed in
Sec. III C. More quantitatively, the transverse and longitudi-
nal contributions to the displacement field can be numeri-
cally obtained by computing T� �k���−�1/k2�k� ∧ �k� ∧U� �k��� and
L� �k����1/k2�k��k�U� �k���. Obviously, U� =T� +L� , k�U� =k�L� , k� ∧U�
=k� ∧T� and k�T� =k� ∧L� =0. The norms of these quantities, for
instance,

FIG. 4. �Color online� Lamé
coefficients 
 �spheres� and �
�squares� vs system size L. Full
symbols correspond to the direct
measurement using Hooke’s law;
open symbols are obtained sup-
posing affine deformations �Born
term�. The effect of system size is
weak. The coefficients relying on
a negligible nonaffine field differ
by a factor as large as 2 from the
true ones. Clearly, a calculation
taking into account the nonaffine
character of the displacement is
necessary for disordered systems.
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k2ST�k� �
k2

N
	�T� �k���2
 =

1

N���i

k� ∧ u� �r�i�exp�ik� · r�i��2�
�2�

and similarly for the longitudinal part k2SL�k�, are the Fourier
transforms of �� ∧u� and �u. They are plotted in Fig. 6 as
functions of 
=2� /k. Note that all data points in this figure,
obtained for different system sizes, collapse well for wave-
lengths corresponding to the nonaffine displacement regime,

��. Note that the longitudinal contribution �bottom data� is
about 10 times smaller than the transverse one. This corrobo-
rates the predominantly solenoidal nature of the reversible
nonaffine displacement field. Moreover, we find that k2ST�k�
is more or less constant while k2SL�k� decreases weakly.

Since T� and L� are orthogonal this yields the algebraic rela-
tion 1/N	�U� �k���2
=ST�k�+SL�k��ST�k��1/k2 for the total
fluctuations, and large k. This confirms that spatial correla-
tions are long range.

Unfortunately, for larger 
 the statistics deteriorate be-
cause of the smaller number of wave vectors that can be
considered. Our data may suggest that ST�k� increases for

	�; however, new data with larger boxes and with better
statistics is warranted to confirm this. The Fourier transform
is thus not the best way to determine accurately a character-
istic length in this case. However, the three methods com-
pared here give complementary results. They all agree with
the existence of long-range correlations in the 3D nonaffine
reversible displacement field at small imposed external
strain, with a characteristic mesoscopic size �.

FIG. 5. �Color online� Charac-
terization of the nonaffine defor-
mation field in 2D �open spheres�
and 3D �bold lines�. The 3D
sample corresponds to a system
containing 256 000 particles �L
=64�. Note that the “fast” quench
protocol and the “slow” quench
protocol �not shown here� give
identical results. Data from Ref. 1
for a 2D system of linear size L
=104 is shown for comparison:
�a� C�r� as a function of the dis-
tance between pairs of beads r.
Note the negative—although
weak—correlation of the 3D cor-
relation function for r	23�. �b�
The �normalized� magnitude B�b�
of the nonaffine field averaged
over a volume element of lateral
size b is traced as a function of
b /L. The correlations decay with a
characteristic length �=23 for 3D
and �=42 for 2D, respectively.

LEONFORTE et al. PHYSICAL REVIEW B 72, 224206 �2005�

224206-6



IV. SELF-AVERAGING OF THE RESPONSE TO A POINT
FORCE

In two dimensions, we showed previously3 that the devia-
tions from continuum elasticity at small scales could be re-
vealed as well by studying the response of the system to a
localized force. The same effect is illustrated for three di-
mensions in Fig. 7. This plot is obtained as follows. A small
force is applied to the particles contained in a small region of
space �sphere of diameter 4�. The force is applied in the z
direction, and its magnitude is chosen small enough to re-
main in the �linear� elastic region.25 In order to maintain

global force balance, the system has periodic boundary con-
ditions in the x and y directions, but is immobilized by two
fixed walls in the z direction. The dimensions of the simula-
tion cell, which contains N=165 000 particles, are Lz�105
in the z direction and Lx=Ly �40 in lateral directions. The
Kirkwood stress tensor is then computed for small rectangu-
lar boxes of fixed size �3, 3, 5� centered at �x ,y ,z�.3,16,25

Those boxes are displaced in all the material by unit steps of
one in the three directions. For each step, the six components
of the stress tensor are calculated and averaged on a statisti-
cal ensemble of 200 configurations. Such an ensemble is
obtained by taking 10 independent configurations and, for

FIG. 6. �Color online� The
squared amplitudes of the Fourier
transforms k2SL and k2ST for the
div �lower data� and curl �upper
data� of the nonaffine deformation
field �see Eq. �2�� plotted as func-
tions of the wave length 

=2� / �k��. Different system sizes
have been included to demonstrate
that SL and ST are system size in-
dependent for small 
. Note that
the statistics deteriorates for large

.

FIG. 7. �Color online� Com-
parison of the incremental stress
fluctuations �����	��

2 

− 	��
2�1/2 with the mean vertical
component of normal stress 	�zz
,
for volume elements along the
vertical line �r=z, x=y=0�. The
mean stress decreases essentially
as 1/r2, as expected �without
logarithmic corrections� in three
dimensions for positions far from
the source and the fixed walls.
�Note that 	�zz
 has to decrease
less rapidly close to the walls, r
�L /2.� In contrast, the fluctua-
tions decay exponentially over the
whole available system. The char-
acteristic length scale is similar to
the size ��23� of the correlated
nonaffine displacements.
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each configuration, by changing the position of the point
source within the sample, reindexing the configuration in
such a way that the origin of the source still is placed in the
midplane, equally distant from the two fixed walls. In the
absence of the external force, the local stresses in amorphous
systems are usually nonzero �“quenched stresses”�. The rel-
evant quantity that defines the response to an external force
are therefore the incremental, rather than total, local stress
tensor. Once such a calculation is completed, the quantity of
interest is the fluctuations of the incremental stress tensor in
the statistical ensemble.3

In Fig. 7, both the average value and the fluctuations of
the stress tensor are shown. The average response is com-
pared to the prediction of continuum elasticity, which ap-
pears to be perfectly obeyed on average, even very close to
the source. This average response exhibits the 1/r2 decay
characteristics of the Green’s function of classical elasticity
in three dimensions. However, up to length scales of 50 the
fluctuations are considerably larger than the average value of
the stress. The fluctuations, on the other hand, decay expo-
nentially away from the source, with a characteristic length
23—the same value as obtained from the correlation func-
tions discussed in Sec. III. In fact, the relative stress fluctua-
tions, for instance, ��zz / 	�zz
, scale like exp�−r /��r2 and
show nonmonotoneous behavior �not shown�. They increase
first up to 2� �due to the decreasing mean stress�, but de-
crease ultimately exponentially. Hence, self-averaging of the
noisy signal within each configuration occurs on distances
set again by �. Unfortunately, our simulation boxes are yet
too small to more clearly illustrate the exponential decay of
the relative noise for r�2��50.

V. LOW-FREQUENCY EQUILIBRIUM VIBRATION
MODES

We turn now to the determination of low-frequency vibra-
tion modes. These were determined from a direct diagonal-
ization of the dynamical matrix, using a modified version of
the PARPACK package.29 For a periodic cubic system de-
scribed by classical elasticity, the structure of the low-
frequency end of the spectrum is well known. Each mode is
characterized by a wave vector k� = �2� /L��l ,m ,n�. Trans-
verse �longitudinal� have frequencies �=cTk �resp. �=cLk�,
where the sound velocity is given by cT=�� /��4.2 �resp.
cL=��
+2�� /��8.9�. As a result, the modes should have
well defined degeneracies. For example, the lowest lying
mode �±1,0 ,0� should have 12-fold degeneracy, correspond-
ing to the two transverse polarizations for the six wave vec-
tors of length 2� /L. The second frequency has degeneracy
24, and so on. In our previous analysis of 2D systems,1 we
found that this degeneracy of the low-frequency modes was
lifted for small systems sizes.

Our results for the low-frequency modes of 3D systems
are shown in Fig. 8. The plot of the rescaled and averaged
frequencies 	y
= 	��L /2�cT�2
 as a function of mode num-
ber p �Fig. 8�a�� clearly demonstrates that only large systems,
containing at least 32 000 particles �L=32�, show the ex-
pected degeneracies and the associated steplike behavior.30

For the largest systems �lateral size 64�, however, the dis-

creteness of the low-frequency spectrum is well apparent,
typically up to the fourth eigenfrequencies. In view of the
large value of cL compared to cT �cL�2.1cT in our system�,
we have concentrated on the analysis of transverse modes.
Longitudinal modes enter only at higher frequencies and are
mixed with shorter wavelength transverse modes, making
their contribution more difficult to identify. If we take as a
criterion the existence of a gap separating the first 12 eigen-
frequencies from the rest of the spectrum, it appears that the
minimum size for applying continuum elasticity is comprised
between L=16 and L=32.

This analysis can be refined using a scaling plot of the
mode frequencies as a function of the “theoretical” wave-
length or, more precisely, the wavelength of the elastic wave
that would appear in the spectrum with this mode number
according to elastic theory. Figure 8�b� is constructed by av-
eraging, for each size, the frequencies that correspond to the
first elastic mode in elastic theory �e.g., the first 12 frequen-
cies are averaged to obtain the lowest frequency point, the
next 24 for the second point, and so on�. The resulting fre-
quency, divided by the value expected from elastic theory, is
plotted as a function of wavelength. Note that all data points
collapse on the same master curve irrespective of the box
size L. Clearly, when the wavelength is lower than the self-
averaging length, deviations from elastic theory become sig-
nificant, whatever the size of the system. This estimate for
the size of elastic inhomogeneity is therefore in fair agree-
ment with those obtained in Secs. III and IV from the analy-
sis of the linear response to an external load.

VI. DENSITY OF VIBRATIONAL STATES

The �normalized� density of vibrational states �DOS� of a
3D solid may be defined by g���= �1/3N��p=1

3N ���−�p� with
�p being the harmonic eigenfrequency corresponding to the
mode number p. Hence, for small systems �of order of 103

beads� one can compute the complete DOS from the eigen-
frequencies extracted by exact diagonalization of the dy-
namical matrix, just as we have done in Sec. V. Obviously,
for systems containing about 105 particles, the number of
modes one may compute is rather limited. From the 100
modes we have presented in Fig. 8, one estimates roughly
�p

2 � p� with ��1. Hence, the DOS increases approximately
linearly, g�����2/�−1��, for small �.

Following standard procedures,22 we have instead ob-
tained g��� by Fourier transformation of the velocity auto-
correlation 	v� �t�v� �0�
. In contrast to the previous sections,
we consider here configurations at finite, yet very low tem-
peratures T. For the data presented in Fig. 9 we have used
T=10−4, which is three orders of magnitudes below the glass
transition.25 We start with quenched configurations at T=0,
which we subject to a Maxwell velocity distribution. Follow-
ing a thermalization phase of �t=103�, the velocity correla-
tion function is sampled over �t=100�. Different tempera-
tures have been checked, and we have verified that the DOS
becomes temperature independent at low T �not shown�. As
can be seen from Fig. 9, our results become rapidly system-
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size independent for large frequencies ��cT,L2� /L. �Only
� values corresponding to wave vectors k� compatible with
the box size are physically acceptable in the continuum limit.
The corresponding finite size effects at low frequencies can
be seen on the left-hand side of Fig. 9.�

In linear coordinates, g��� is roughly symmetric around
its maximum at ��14.3 and may be very crudely described
as linear for small � in agreement with the estimate from
Fig. 8 described above and the dashed-dotted line indicated
in the main panel of Fig. 9. Note that the maximum is
slightly smaller than the Debye frequency �D

= �18��2 / �1/cL
3 +2/cT

3��1/3�18.3 for our systems. �The De-
bye frequency is, in turn, smaller than the frequency
cT2� /��26.4 associated with a wavelength of monomer
size.� The log-log plot presented in the main figure shows

various frequency regimes. For very small frequencies, our
data are in agreement with Debye’s prediction gD���
=3�2 /�D

3 �dashed line�. The DOS increases more rapidly
than with frequency up to �T=cT2� /��1.1—corresponding
to a wave vector given by the self-averaging length—where
g��� has power-law slope of exponent 2 �bold line�. This can
be more clearly seen in the inset featuring the enigmatic
Boson peak. Apparently, the width of this peak is well de-
scribed by �T and the frequency �L�2.3 for the correspond-
ing longitudinal wave. Hence, the Boson peak is fixed by the
self-averaging length and marks the crossover between the
continuum elastic behavior �dashed line� and the nonaffine
displacement field regime, where g����� �dashed-dotted
line�, at larger � and smaller wave length 
. Since con-
tinuum theory overestimates the frequencies for 
�� �see

FIG. 8. �Color online� Res-
caled and averaged equilibrium
vibration modes 	y�p�
 in the low-
frequency limit: �a� The first 100
modes are given as a function of
the mode number p. The horizon-
tal lines correspond to the results
expected from macroscopic elas-
ticity. Besides the obvious Gold-
stone modes �p=1,2 ,3�, all fre-
quencies are finite. Frequencies of
small systems are systematically
too low. �b� Plotting the same fre-
quencies rescaled by the corre-
sponding continuum theory pre-
diction ytheo as a function of the
expected wavelength 
�p�
=2� / �k�� yields a perfect data col-
lapse for all L. The crossover to
continuum behavior �horizontal
line� takes place, as expected, at
the self-averaging length 
��.
The frequencies decrease system-
atically with smaller 
.
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also Fig. 8�, this implies an excess of modes at smaller fre-
quencies. Apparently, these modes are shifted to the edge of
the nonaffine regime.

VII. CONCLUSION

We have investigated the approach of the continuum limit
for elastic properties of 3D amorphous systems and com-
pared our computational results to our previous work on
similar 2D systems. The results are extremely similar in both
cases and can be summarized as follows.

The elastic constants estimated using the Born formulas
are not accurate even at zero temperature, therefore revealing
the importance of the nonaffine component of the deforma-
tion field. This nonaffine deformation field, which mostly
affects the shear response �as compared to compressibility�,
is correlated over intermediate distances of the order of 23
interatomic distances in our case. This correlation length is
significantly smaller than in two dimensions, in agreement
with the findings of Rossi et al.,20 but implies that rather
large samples should be used to discuss elastic or vibrational
properties of 3D systems as well. By considering the Fourier
transformation of solenoidal and longitudinal part of the non-
affine field, we have demonstrated �Fig. 6� that the 3D non-
affine field is mostly rotational in nature, in agreement with
the visual impression of snapshots. The response to a �-force
perturbation allowed us to measure the self-averaging of the
noisy response within a configuration. The stress fluctuations
decay exponentially with distance from the source with a
self-averaging length � similar to the correlation length of the
nonaffine field. The nice agreement of all estimations of � is
the first central result of this study.

Vibrational modes are obviously strongly affected by the
existence of elastic heterogeneities and cannot be predicted

using elastic theory if their wavelength is too small. From
our scaling analysis �Fig. 8�b��, it appears that the frequen-
cies are smaller than expected from continuum theory, there-
fore implying an excess of modes in the low-frequency re-
gion compared to the Debye prediction. This excess has been
analyzed in Fig. 9 showing the density of vibrational states.
It demonstrates that the Boson peak is located at the edge of
the nonaffine displacement field and is thus merely a conse-
quence of the inapplicability of the continuum theory at 

��. That both position and width of the peak are given by
the self-averaging length � is our second central result.

The focus of this work has been primarily on the linear
elastic behavior of amorphous solids. Our preliminary study
of larger �uniaxial� deformations that go beyond the elastic
limit indicates that plastic events are rather localized indi-
vidual events characterized by a very low participation ratio.
In the recent work,18 de Pablo and co-workers pointed out
the possibility of regions of negative shear modulus in
quenched amorphous systems—such regions being stabilized
by the “normal” material in which they are embedded. The
typical size of these regions is much smaller than the size for
elastic inhomogeneities discussed in this work, implying
they are more likely to be linked to elementary rearrange-
ments taking place at the onset of plastic deformation, which
usually imply small numbers of particles,9–12,28 or even lo-
calization along a shear band.13,14 Such a difference in elastic
and plastic deformations was also observed for 2D systems
in Ref. 9.

The general picture that emerges is, therefore, that of a
hierarchy of length scales. Disorder at the level of a few
atomic distances can be interpreted as implying the existence
of regions with negative moduli, which will give rise to plas-
tic yield. On a larger scale, this disorder gives rise to strong
nonaffine displacement fields in elementary deformations.
Finally, convergence to standard continuum properties is

FIG. 9. �Color online� Density
of states g��� for 3D amorphous
systems of different system sizes
L. The lines indicate three power-
law slopes, the dashed one being
the Debye prediction gD��� calcu-
lated from the known sound ve-
locities. The dashed-dotted linear
relation corresponds to the non-
affine displacement field regime
�
���. Also given are the charac-
teristic frequencies �L,T

=cL,T2� /� associated with the
self-averaging length � and the
Debye frequency �D�18.3.
Larger frequencies correspond, in
fact, to vibrations on very small
scales, 
��. Inset: g��� /�2 vs �
for L=56. Note that �T and �L

correctly describe the position and
width of the boson peak.
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obtained over length scales larger than the self-averaging
length. In our analysis, carried out for a typical liquid state
density and at zero temperature, � is found to be large, but
finite. In analogy with what is found in two dimensions, we
expect it to decrease with increasing density and possibly to
diverge as the density is lowered and the system loses me-
chanical stability, as suggested in Ref. 19.
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