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We apply a generalization of the time-dependent density matrix renormalization group �DMRG� to study
finite-temperature properties of several quantum spin chains, including the frustrated J1-J2 model. We discuss
several practical issues with the method, including use of quantum numbers and finite-size effects. We compare
with transfer-matrix DMRG, finding that both methods produce excellent results.
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The density matrix renormalization group �DMRG�
method1 provides extremely accurate information about the
ground state of one-dimensional �1D� systems. To study ther-
modynamic properties, it was subsequently adapted to calcu-
late the transfer matrix of a 1D quantum system. In the
transfer-matrix DMRG �TM-DMRG� method,2,3 the usual
DMRG sweeping takes place in the imaginary time direction,
whereas the thermodynamic limit in one spatial direction is
automatically obtained by targeting the maximum transfer
matrix eigenvalue and eigenvector. TM-DMRG gives excel-
lent results, but is also technically somewhat more difficult
than ordinary DMRG, in part because the transfer matrix is
non-Hermitian. A robust finite-temperature method based on
the original DMRG method would be very useful, if only
because DMRG and TM-DMRG have slightly different
strengths and weaknesses.

In the past year, ideas from the quantum information field
have greatly extended the capabilities of DMRG.4–7 The first
major advance was a different approach to real-time evolu-
tion within a generalized DMRG framework �consisting of
matrix-product states8�, and shortly thereafter within a stan-
dard DMRG framework.9,10 Subsequently, Zwolak and
Vidal, and Verstraete et al., separately, devised methods al-
lowing finite-temperature DMRG. The approach of Zwolak
and Vidal introduced the idea of a matrix-product description
of density operators, rather than of wave functions. Within
the density operator formulation, the infinite temperature
system is trivial to describe, and imaginary time evolution is
used to reach finite temperature. Verstraete et al.11 argued
that a more efficient procedure is to enlarge the Hilbert space
with auxiliary sites �called ancillas�, and to evolve in imagi-
nary time a pure state within the larger space. The auxiliary
states act as a perfect heat bath, and when traced out give
exact thermodynamic averages.

The ancilla approach is especially convenient from the
traditional DMRG point of view. A wave-function descrip-
tion is usually more familiar and comfortable than a density
operator description. The ancillas appear geometrically as
another chain parallel to the first, making the system re-
semble a ladder. More generally, the ancillas form a copy of
the original system, doubling the size of the lattice. As we
discuss below, the ancilla states can be given quantum num-
bers, increasing the efficiency of the calculation. In this pa-
per, we apply the ancilla approach to study the thermody-
namics of several spin chains. We consider practical issues
such as finite-size effects, and compare our results with TM-
DMRG.

The use of auxiliary systems to study thermodynamics in
quantum systems originated as a key idea in thermo field
dynamics.12–14 Let the energy eigenstates of the system in
question be �n�. Introduce an auxiliary set of fictitious states
�ñ� in one-to-one correspondence with �n�. Define the unnor-
malized pure quantum state, in an enlarged Hilbert space,

������ = e−�H/2���0�� = �
n

e−�En/2�nñ� , �1�

where ñ is the matching state to n, � is the inverse tempera-
ture, and ���0��=�n�nñ� is our thermal vacuum. Note that the
Hamiltonian only applies to the real sites; the ancillas evolve
only through their entanglement acting as a thermal bath.
Then the partition function is

Z��� = ����� �2�

and we can obtain the exact thermodynamic average of an
operator A �acting only on the real states�, as

�A� = Z���−1���A��� . �3�

At �=0, the state � is the maximally entangled state be-
tween the real system and the fictitious system. If we change
basis from the energy eigenstates n to some other arbitrary
basis s, � is still maximally entangled,13 ���0��=�s�ss̃�. A
natural basis to use is the site basis, where the state of each
site i takes on a definite value si. One finds

���0�� = 	
i

�
si

�sis̃i� = 	
i

�I0i� �4�

defining the maximally entangled state �I0i� of site i with its
ancilla.

From the DMRG point of view, the maximally entangled
state between the left and right blocks would be the worst
possible state to try to represent; all density matrix eigenval-
ues would be equal. If one split the system between the real
sites on one side and the ancilla on the other, one would have
exactly this worst case at �=0. It is remarkable that, if one
pairs each site with its ancilla, and splits the system in two
respecting this pairing, the infinite temperature state is the
best possible state for DMRG, with only one density matrix
eigenvalue being nonzero. This leads to the natural ordering
of sites for DMRG site 1, ancilla 1, site 2, ancilla 2, etc.
Alternatively, one can group together a site and its ancilla
into a supersite. Although the dimension of the superblock is
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larger with supersites, next-nearest neighbor interactions are
not generated by the ancilla, simplifying the time evolution.
In our simulations we have used supersites.

In order to utilize conserved quantum numbers, it is useful
to think of each ancilla as being the antisite of its site. A state
of the ancilla is given opposite quantum numbers to the cor-
responding state of the real site. In this way, the state of
interest has both total charge and total z component of spin
equal to zero. In the case of the spin-1 /2 chain, for instance,
the antisite is just another spin-1 /2 site. We choose a local
representation for the supersite “spin+ancilla” with the states
�I0�= ��↑ , ↓ �+ �↓ , ↑ �� /
2, �I1�= ��↑ , ↓ �− �↓ , ↑ �� /
2, �I2�
= �↑ , ↑ �, and �I3�= �↓ , ↓ �, where the first arrow in each term
designates the real site. The initial state ���0�� is then con-
structed by using Eq. �4� with the triplet �I0� on every posi-
tion along the chain. As a result, we obtain an equivalent
one-dimensional chain with four states per site. The other
states �I1�, �I2�, and �I3� appear during the time evolution from
the exchange terms in H. This idea can be generalized to
arbitrary spin, or to fermions by means of a particle-hole
transformation.

The essence of the ancilla finite-temperature method is to
start in this local �=0 state, and evolve in imaginary time
through a succession of temperatures �. To evolve in time,
we utilize one of the recently developed time evolution
methods, which perform equally well in imaginary time. The
most efficient of these utilizes a Suzuki-Trotter breakup of
the Hamiltonian, and each DMRG step consists of evolving
the state using the link evolution operator exp�−�Hi,i+1 /2�
between the two central sites.9,10 This method requires-
nearest neighbor interactions, at least in its simplest form.
Alternatively, one can evolve in a basis optimized for a
single time step by solving explicitly the corresponding dif-
ferential equation,15 which does not require local interactions
but is less efficient. Notice again that H does not act on the
ancillas and that the ancillas in the system block are not
traced out in the construction of the density matrix. When the
environment block is traced out, its ancilla states, which are
mixed in with its real states, are automatically traced out.
The measurement of thermodynamic averages using Eq. �3�
automatically traces out all ancillas, since the measurement
operators do not refer to them.

The infinite temperature starting state has a correlation
length of 0 and requires only one state per block. As the
system evolves in imaginary time, longer range entangle-
ment is produced and the correlation length grows. The num-
ber of states needed for a given accuracy grows as the tem-
perature decreases. It is most natural to slowly increase the
size of the basis, in order to keep a roughly constant trunca-
tion error. One may wish to set a minimum basis set size to
make the early evolution essentially exact with little compu-
tational cost. In the test calculations below we kept the trun-
cation error below 10−10, which in the systems considered
corresponded typically to a maximum of m=500 DMRG
states. It turns out that most of these states have Sz=0, and
therefore the total size of the basis is of the order of 106

states for the spin-1
2 Heisenberg chain. In more difficult sys-

tems one would use a less stringent error criterion. In order
to determine convergence, we have compared the specific

heat at T=0.1, which is a measure of the fluctuations in the
energy, for different truncation errors. Although the errors in
the energy appear small, they are amplified in the calculation
of the specific heat. In most of the simulations we have used
a time step of �=0.1, but we have also used smaller values to
check the effects of the Suzuki-Trotter error, as we discuss
below. We have also used variable time steps in the time-
targeting method, from �=0.01 for high temperatures up to
�=0.2 for low T.

To illustrate the method, we begin by looking at the spin
S=1 Heisenberg chain, using the Trotter time evolution
method. We compare with the TM-DMRG results of
Xiang.16 The TM-DMRG results have a small, well-
controlled Trotter error owing to the formation of the transfer
matrix; similarly, our time evolution has a different small,
well-controlled Trotter error. The TM-DMRG results are in
the thermodynamic limit, whereas our results here were on a
L=64 site system with open boundary conditions.

We calculated the specific heat CV by taking the numerical
derivative of the energy with respect to the temperature, us-
ing energy differences between adjacent time steps. In order
to avoid edge effects we calculated the local energy in the

FIG. 1. Specific heat and magnetic susceptibility of the S=1
spin chain of length L=64 obtained with the Suzuki-Trotter time-
evolution algorithm. We compare with results from TM-DMRG in
the thermodynamic limit.

FIG. 2. Specific heat and magnetic susceptibility of a S=1/2
spin chain of length L=64, compared to exact L=� results using
the Bethe ansatz.
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center of the chain. We also calculated the magnetic suscep-
tibility, using the formula

��T� =
1

T
�

i

�S0
zSi

z� ,

where the correlations were calculated at equidistant points
from the center of the open chain, following the procedure
described in Ref. 17. We have used half integer spins at both
ends, as in Ref. 18. Results for these thermodynamic quan-
tities are plotted in Fig. 1. The agreement between the our
results and Xiang’s TM-DMRG is very good for both quan-
tities, for temperatures down to T�0.05. At high T we see
slight deviations; we have checked our results at high T us-
ing smaller time steps and have found no difference, so we
believe the differences are due to Trotter error in the TM-
DMRG.

As a second test example, we choose the spin-1
2 Heisen-

berg chain with nearest- and next-nearest-neighbor interac-
tions, with the Hamiltonian

H = �
i

J1Si · Si+1 + J2Si · Si+2. �5�

Since it is not trivial to use the Suzuki-Trotter break up for
the frustrated case, we used the time-step targeted method.15

In Fig. 2 we compare our results for CV and � for the
unfrustrated chain �J2=0� with results from the Bethe ansatz
calculations of Ref. 19 in the thermodynamic limit. The
agreement is excellent for the entire range of temperatures
studied. Finite-size effects were not apparent down to
T�0.1.

When frustration is introduced, it is well known that this
model is gapless for J2�J2c�0.2411J1. At this value the
chain breaks the translational symmetry by dimerizing, and
an exponentially small gap opens.20 At the point J2=0.5J1
the exact ground states become two dimer coverings, and the
correlations extend only to one lattice spacing. The frustra-
tion present in this model makes reliable quantum Monte
Carlo simulations very difficult, due to the appearance of the
minus sign problem, and the most accurate results for ther-
modynamics quantities have been obtained using transfer-
matrix DMRG.3,21

In Fig. 3 we show our results for the specific heat and
susceptibility for different values of frustration J2, below and
above the critical point J2c. Notice that due to dimerization,
we have to symmetrize two correlations for each distance,
�Si

zSj
z� and �Si+1

z Sj+1
z �. For small values of frustration,

J2�J2c, the chain behaves as in the unfrustrated case, and

FIG. 3. Specific heat and magnetic susceptibility of a frustrated
S=1/2 spin chain of length L=64 obtained using time-step target-
ing, compared to results from transfer-matrix DMRG �Refs. 3 and
21�. Inset: results for J=0.5 for different chain lengths and smooth
boundary conditions.

FIG. 4. Correlation length as a function of the temperature for
the S=1 Heisenberg chain �left panel�, and the frustrated Heisen-
berg chain �right panel�, for different values of J2 /J1. Our calcula-
tions are on finite chains of length L=64. We add for comparison
results from TM-DMRG in the thermodynamic limit. For S=1 we
show results using different truncation errors, and at T=0 from
ground state DMRG.
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the agreement is excellent, even for values of frustration up
to J2=0.5J1. At this point we see more evident finite-size
effects reflected in the curves by a hump that appears in the
specific heat at small temperatures. A detailed study of this
hump shows that this is indeed a finite-size effect, since it
moves to lower temperatures as we increase the size of the
chain as shown in the inset in Fig. 3. At this value of the
frustration, the ground state is degenerate in the thermody-
namic limit, or in chain with periodic boundary conditions.
This degeneracy is lifted in finite chains with open boundary
conditions. Similar characteristics can be observed in Ising
chains, where the two Neel configurations are ground states,
when a small off-diagonal coupling is introduced.22 By im-
posing a version of smooth boundary conditions,23 where we
turn on J2 slowly and smoothly from 0.0 at the edges to 0.5J1
in the central region, we are able to eliminate the hump.

With our technique detailed spatial correlations functions
are as easily obtained as with ground state DMRG. We have
calculated the spin-spin correlations and fit them to an ex-
pression of the form

C�r� � A exp�− r/�� . �6�

Figure 4 shows the results for �−1 vs T for S=1 and S=1/2.
The agreement with the results from TM-DMRG is excel-
lent. For S=1 we notice the same minimum observed in the
TM-DMRG simulation by Xiang.16 We studied the system
using time targeting and also reducing the time step, and we
found that the source of that minimum can be attributed to
the DMRG truncation error, as can be seen in the figure.

To summarize, we have described a DMRG algorithm to
study strongly correlated quantum systems at finite tempera-
tures by using an enlarged Hilbert space with ancillary de-
grees of freedom. We have illustrated its application by cal-
culating thermodynamic quantities of gapless and gapped
systems, including frustration. The ideas presented here are
simple to implement as an extension to standard DMRG
codes, and are not restricted to nearest-neighbor interactions
or to single chains.
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