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We consider quite generally the transport of energy and momentum in unconventional superconductors and
Fermi superfluids to which both impurity scattering �treated within the t-matrix approximation� and inelastic
scattering contributes. A new interpolation scheme for the temperature dependence of the transport parameters
is presented which preserves all analytical results available for T→0 and T→Tc and allows for a particularly
transparent physical representation of the results. The two scattering processes are combined using Matthies-
sen’s rule coupling. This procedure is applied for the first time to 3He-B in aerogel. Here, at the lowest
temperatures, a universal ratio of the thermal conductivity and the shear viscosity is found in the unitary limit,
which is akin to the Wiedemann-Franz law.
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I. INTRODUCTION

Unconventional pairing correlations occur in a large class
of Fermi systems including the superfluid phases of 3He,
heavy fermion superconductors, hole doped high-Tc cuprate
superconductors, the Ruddlesden-Popper system Sr2RuO4,
some organic superconductors and others. They are defined
through the vanishing Fermi surface �FS� average of the en-
ergy gap ��p�FS�0 and manifest themselves by the sensitiv-
ity of thermodynamic, response and transport properties to
the presence of even small concentrations of nonmagnetic
impurities. For superfluid 3He an elastic scattering mecha-
nism in addition to the inelastic �two-particle� scattering is
provided by porous silica aerogel �for a recent review see
Ref. 1�. Since the discovery of superfluidity of 3He in
aerogel2 the analogy of this so-called dirty Fermi superfluid
with dirty unconventional superconductors has been investi-
gated in the literature.3–12 An important qualitative effect of
nonmagnetic impurities in unconventional superconductors
is the occurrence of bound quasiparticle states in the gap
which broaden into low energy impurity bands at finite con-
centrations of strong elastic scatterers.13 It is this phenom-
enon which may give rise to interesting new consequences
when applied to 3He-B in aerogel. Motivated by the recent
observation of an impurity-limited thermal conductivity14

and viscosity15 in 3He-B we explore in this contribution for
the first time both the impurity-limited transport in these sys-
tems for arbitrary scattering phase shifts �which includes
both weak �Born� to strong �unitary� scattering� and effects
of inelastic scattering processes. The latter are included via
the Matthiessen rule approximation.

The paper is organized as follows: in Sec. II we describe
the general concept of transport theory applicable to metallic
�unconventional� superconductors and superfluid 3He in
aerogel. Elastic scattering processes are treated using the
t-matrix approximation in the limit of s-wave scattering. To
keep things on a simple level, an interpolation procedure for
the temperature dependence of the transport parameters is
proposed which preserves the exact asymptotic behavior near
T→0 and T→Tc. In Sec. III we apply this concept to the

case of superfluid 3He-B in aerogel. Here elastic �Sec. III A�
and inelastic �Sec. III B� scattering is treated separately, the
effects are eventually combined using the Matthiessen rule
approximation. Sections IV and V are finally devoted to our
discussion and conclusion.

II. UNIFIED TRANSPORT THEORY

A general transport parameter Taa can be defined through
the constitutive relation that connects a generalized current ja

with the gradient of its thermodynamically conjugate field
�ub,

j�
a = − T��

ab ���ub,

�T��
aa �e,i = NF�2	

0

�

dEp�pap
2vp�vp��e,i�Ẽp�


FS

,

�p = −
���Ep�

�Ep
, ��Ep� =

1

exp�Ep/kBT� + 1
. �1�

Here �e,i denotes the transport time for elastic �e� and inelas-
tic �i� scattering, which differs, in general, from the quasi-
particle relaxation time due to the existence of vertex correc-
tions. In �1� ap is a general vertex which classifies the
transport process of interest. Thus for the diffusive thermal
conductivity, ja is the entropy current, and its associated ver-
tex ap is the energy dispersion Ep of the Bogoliubov quasi-
particles �bogolons�,

ap = Ep = ��p
2 + �p

2 ,

with �p the energy gap, �p=	p−� the normal state energy
measured from the chemical potential � and �ub represents
the temperature change �T /T. For the shear viscosity, ja is
the momentum current, the vertex reads

ap = p ,

and �ub represents the normal velocity field vn. In Eq. �1� NF
denotes the density of states for both spin projections, �¯�FS
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denotes the Fermi surface �angular� average, and the index
e�i� refers to elastic �inelastic� scattering.

A. Impurity-limited transport

The impurity-limited transport time �e�Ẽp� is defined by17

�e�Ẽp� =



Im �Ẽp
2 − �p

2

1

2�1 +

Ẽp

2
 − �p
2


Ẽp
2 − �p

2

� . �2�

Here Ẽp is the bogolon energy renormalized by the impurity
self-energy �computed within the t-matrix approximation in
the limit of s-wave scattering17�,

Ẽp = Ep + �e�Ẽp� ,

�e�Ẽp� = i�N
e D�Ẽp��1 + c2�

c2 + D2�Ẽp�
,

D�Ẽp� =� Ẽp

�Ẽp
2 − �p

2

FS

. �3�

In Eq. �3�

�N
e =

1

�N
e =

2ni


NF

1

�1 + c2�

represents the normal state scattering rate, with ni the impu-
rity concentration. The parameter c=cot �0 is related to the
s-wave scattering phase shift �0. It is worth emphasizing that
the use of the impurity t-matrix approximation has been cru-
cial for the understanding of the temperature dependence of
the transport parameters in heavy Fermion superconductors,
which strongly disagreed with calculations performed in the
Born scattering limit.18 Note that the superconducting den-

sity of states is related to D�Ẽp� by

Ns�Ẽp�
N0

= Re D�Ẽp� .

The impurity self-energy has the following low energy
behavior:

�e�Ẽp� = �e��Ẽp� + i�e��Ẽp� ,

�e��Ẽp� =
Ep→0

0,

�e��Ẽp� =
Ep→0

�e��0� . �4�

�e�Ẽp� can be evaluated analytically in the limits Ep��0 and
Ep��0 �with �0 the gap maximum�:

�e�Ẽp� =�

�e�

2�0�
��p

2 + �e�
2�0��3/2 , Ẽp � �0,

�N
e Ep

�Ep
2 − �p

2

1 + c2�D�Ep��−2

�1 + c2�D�Ep�
��Ep − �p� ,

Ẽp � �0, 
�N
e � �0.

�
�5�

In �5� � denotes the Heaviside step function. Note that due
to the assumption of s-wave scattering, vertex corrections to
the elastic part of the transport coefficients do not occur.
Equation �5� can be used to calculate both the zero tempera-
ture limit and the temperature dependence of T��

aa . In the zero
temperature limit we may define a dimensionless quantity
C��

aa through

C��
aa =


�N
e

�a2�p̂�p̂�p̂��FS
��e�

2�0�a2�p̂�p̂�p̂�

��e�
2�0� + �p

2�3/2 

FS

. �6�

Here a�p̂� denotes the p̂-dependent part of the vertex ap. The
tensor C��

aa describes a normal-like low T contribution to the
quasiparticle transport induced by resonant pair-breaking as
a consequence of strong impurity scattering in the unitary
limit. The pair breaking parameter C��

aa drops rapidly with
decreasing �0 and vanishes for a critical value �0c which
depends on the gap symmetry. Note that in the unitary limit
C��

aa /�N
e turns out to be independent of the parameter �N

e

under certain conditions. This phenomenon is known as uni-
versal transport in unconventional �nodal� superconductors.
It was first proposed by Lee19 and has been observed in
various experiments.

B. Interpolation procedure for „Taa
…e

The temperature dependence of T��
aa can be estimated by

observing that the self-consistent solution of Eq. �3� is rel-
evant only for low energies. At high energies one may use

the asymptotic form of �e�Ẽp� for Ep��0. This gives rise to
the definition of T-dependent generalized Yosida functions,

Y��
aa�n��T� =

�2	
�p

� dEpEp

�Ep
2 − �p

2
�p

ap
2p̂�p̂�


D�Ep�
n

FS

�	
−�

�

d�p�p
Nap

2p̂�p̂�

FS

. �7�

Here

�p
N = lim

�→0
�p.

From �6� and �7� one may construct the following interpola-
tion procedure for the transport coefficient T��

aa �T�:

�T��
aa �e

�T��
aa �N

e = C��
aa + �1 − C��

aa �
Y��

aa�1� + c2Y��
aa�3�

1 + c2 . �8�

Equation �8� is one central result of this paper. It describes
the temperature dependence of the generalized transport pa-
rameter �T��

aa �e as related to its normal state counterpart for
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arbitrary scattering phase shifts c=cot �0. Only for a certain
range of s-wave scattering phase shifts �0, not too far below
the unitary limit value 
 /2, the offsets C��

aa are finite and lead
to a contribution from normal quasiparticles which originate
from resonant pair breaking by the impurities. The tempera-
ture dependence of T��

aa is then described by the system of
generalized Yosida functions Y��

aa�n��T�. The interpolation �8�
has the following virtues. �i� It is exact in the limit T→0 �for
arbitrary values of the impurity scattering phase shifts �0�
and just below the transition temperature �if 
�N

e ���. �ii� It
is, though approximate, a physically transparent representa-
tion of the behavior of T��

aa at intermediate temperatures
in terms of the generalized Yosida functions Yab

���n��T�. The
latter can even be evaluated analytically.23 �iii� The treatment
is valid for a general vertex ap and hence unifies the descrip-
tion of the shear viscosity and the �diffusive� thermal
conductivity.

C. Inelastic scattering

Finally, inelastic scattering is accounted for by invoking
the Matthiessen rule approximation,

1

T��
aa = � 1

T��
aa �

e

+ � 1

T��
aa �

i

. �9�

The inelastic contributions to Taa
��, which may originate, for

example, from phonon or spin fluctuation scattering, must be
discussed for every system separately.

III. APPLICATION TO 3He-B IN AEROGEL

In what follows, we wish to apply the theory to 3He-B
with silica aerogel acting as an impurity system. The latter is
treated as a homogeneous isotropic scattering medium
�HISM�.8 Such an assumption is valid when the average
spacing between the aerogel strands is smaller than the su-
perfluid coherence length, and is fulfilled at low pressure and
not too low aerogel concentrations. It is well established that
the 3He-aerogel system can be described by a spin triplet
p-wave order parameter of the form �BW state�

�p
2 = dp · dp

* = �2

with the vector dp characterizing the three triplet compo-
nents.

A. Elastic scattering

We begin by estimating the elastic quasiparticle mean free
path �a by the geometric mean free path �g in correlated
aerogel,1,9

�a � �g =
0.279 � 10−4

ca
1.1 cm,

where ca represents the aerogel concentration in %. The elas-
tic scattering rate is obtained as �N

e =vF /�a, with vF the
Fermi velocity. For elastic scattering

D�Ẽp� =
Ẽp

�Ẽp
2 − �2

with � the energy gap in the presence of impurities. The zero
energy limit of the impurity self-energy can be evaluated
analytically for arbitrary impurity scattering phase shifts,

�0��0� = ���N
e2�2

1 + c2 +
�N

e4

4
�1/2

+
�N

e2

2
−

�2c2

1 + c2�1/2

, �10�

�0��0� is seen to decrease with increasing c=cot �0 and to
vanish for c= ��N

e / ��−�N
e ��1/2= �2ni /
NF��1/2. Due to the

isotropy of �, the transport tensors simplify according to

�����e = �e���,

��ij
���e = �e����ij .

The result for the shear viscosity reads

�e�T� = �N
e t�

e �T� ,

t�
e �T� = C� + �1 − C��

Y1
��T� + c2Y3

��T�
1 + c2 ,

C� =

�N�0�

2�0�
��0�

2�0� + �2�3/2 ,

Yn
� = 	

−�

�

d�p�p� �p

Ep
�n

. �11�

Here

�N
e = 1

5npFvF�N
e

is the impurity-limited shear viscosity of the normal state. In
�11� the variable �p=	p−� measures the energy 	p from the
chemical potential �. The result for the thermal conductivity
reads

�e�T� = �N
e t�

e�T� ,

t�
e�T� = C� + �1 − C��

Y1
��T� + c2Y3

��T�
1 + c2 ,

C� � C�,

Yn
� = 	

−�

�

d�p�p� �p

Ep
�n� Ep

2kBT
�2

. �12�

Here

T�N
e =

1

3

n

m* �
kBT�2�N
e

is the impurity-limited thermal conductivity of the normal
state. We note that our result �12� is in accord with a previous
calculation of Sharma and Sauls.10 In Fig. 1 we show the
reduction of the pair-breaking parameter C� as the s-wave
scattering phase shift �0 decreases from its unitary limit
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value 
 /2. We emphasize that in contrast to nodal supercon-
ductors like hole-doped cuprates, the quantities C� /�N

e and
C� /�N

e are nonuniversal, i.e., they depend on the parameters
�N

e and �0. It is interesting to study the ratio of the two
transport parameters in the unitary limit c→0,

�e�T�
�e�T�T

=
5

3
�
kB

pF
�2 t�

e�T�
t�
e �T�

=
T→05

3
�
kB

pF
�2

. �13�

This means that although C� /�N
e and C� /�N

e are nonuniver-
sal, the ratio of the impurity-limited diffusive thermal con-
ductivity �e and the shear viscosity �e of superfluid 3He-B
tends to a universal value independent of �N

e in the unitary
limit c=0 at T=0. This is somehow similar to the
Wiedemann-Franz law that connects the thermal and elec-
tronic conductivities in nodal unconventional superconduct-
ors at T=0 in the unitary limit.20

B. Inelastic scattering

The relaxation rate for inelastic scattering can be written
in the form21

1

�i�Ep�
= �

1

�N
i �T�

�1 + � �p


kBT
�2� , T � Tc,

Ep

�Ep
2 − �2

1

�B�Ep�
, T � Tc.� �14�

Here

�N
i �T� = �N

i �Tc��Tc

T
�2

is the inelastic relaxation time of the normal Fermi liquid.
The relaxation time �B�Ep� has been discussed in Ref. 21. At
low temperatures it has the asymptotic form

lim
T→0

1

�B�Ep�
=

1

�B
0 =

3w0e−�/kBT

�2
�N
i � �

kBT
�3/2

�15�

with w0�1. For our purposes it is sufficient to work with the
thermal average,

1

�̄B�T�
=

�p�
�p/�B�Ep�

�p�
�p

= �
1

�̄N
i �T�

�
4

3

1

�N
i �T�

, T � Tc,

1

�B
0�T�

, T � Tc.�
One may now interpolate the full temperature-dependent
thermally averaged bogolon relaxation rate along the lines of
the procedure proposed in Ref. 23 to get

1

�̄B�T�
=

Y0
��T�

�̄N
i �T�

�9w0��0�
8
kBT

�1 − t�� + t�−1� �16�

with t=T /Tc. The exponent � must be chosen such that the
slope of the interpolated bogolon relaxation rate coincides
with that of an exact numerical evaluation.21

In Table I we list two pressure-dependent parameters for
the Fermi liquid 3He, that enter into the calculation of inelas-
tic scattering effects.

Finally the inelastic contribution to the transport param-
eters �i and �i, which include the appropriate vertex correc-
tions, can be approximated as

�i = �N
i t�

i ,

�i = �N
i t�

i ,

t�,�
i = Y2

�,� �̄B

�̄N
i

1 − ��,�

1 − ��,�
Y2

�,�

Y0
�,�

, �17�

where Yn
�,� is defined through Eqs. �12� and �13� and ��,� are

pressure-dependent scattering parameters that account for the
vertex corrections in the collision integral.21 It should be
emphasized that experimental results on the shear viscosity
of clean superfluid 3He-B could be quantitatively explained
by Eq. �17� after invoking corrections due to the proximity of
the Knudsen transition.22 Note that in the absence of mean
free path corrections, the inelastic transport parameters �iT
and �i are seen to have finite low-T values, as seen from Eq.
�17�,

lim
T→0

�iT =
n

m*�2�s,

lim
T→0

�i = 1
5npFvF�s, �18�

in which

FIG. 1. �Color online� Pair-breaking parameter C� for 3He-B for
various �N /� vs scattering phase shift c=cot �0.

TABLE I. Relevant Fermi liquid parameters for 3He.

P�bar�
vF�cm/s�
�Ref. 24�

�̄N
i �Tc��10−8 s�

�Ref. 25�

0 5890 37.50

10 4650 9.00

20 3810 4.05

30 3360 3.00
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�s =
8
�̄N

i

9w0
� kBT

�
�2

with a ratio

lim
T→0

�iT

�i
= 5

�2

pF
2 .

As a consequence of �9�, the total shear viscosity can be
written in the unitary limit �c=0� at T→0 as

lim
T→0

��T� =
1

5

npFvF�N
e C�

1 +
�N

e

�s
C�

. �19�

Clearly, the Matthiessen rule leads to a superposition of two
constant low-T limits of the shear viscosities �e and �i. In
contrast, the total diffusive thermal conductivity has a non-
trivial temperature dependence in the unitary limit near
T→0,

lim
T→0

��T� =
n

m*


2kB
2T�N

e C�

3 +
�N

e C�

�s
�
kBT

�
�2

�20�

and therefore behaves very differently depending on whether
impurity scattering dominates, in which case ��T� varies �T
to varying �T−1 if inelastic scattering dominates.

IV. DISCUSSION

The numerical analysis of the expressions for the total
shear viscosity � and thermal conductivity � can be charac-

terized by two parameters that depend on aerogel concentra-
tion and pressure. The first

ac =
�̄N

i �Tc�
�N

e

describes the relative importance of elastic and/or inelastic
scattering and one has ac→0 in the clean limit. The second

�N = lim
c→0


�N
e

�

parametrizes the strength of the T=0 offset in � and � /T
caused by resonant pair breaking caused by the impurity sys-
tem in the unitary limit illustrated in Figs. 2 and 3.

In Table II we list values of the elastic mean free path �a
as well as the parameters ac and �N evaluated in the range of
experimentally relevant aerogel concentration, ca at a pres-
sure of 10 bar.

It should be noted that the pressure dependence of the
results for the total shear viscosity � and thermal conductiv-
ity � enters mainly through the parameters ac and �N.

In Figs. 2 and 4 we show numerical evaluations of the
total reduced viscosity according to �9� for unitary and Born
scattering, respectively, at a pressure of 10 bar. In the unitary
case, for not too large values of the parameter ac
=�N

i �Tc� /�N
e , the viscosity is seen to almost vanish in the zero

temperature limit. If, on the other hand, ac=10 �correspond-

TABLE II. �a, ca, and �N at a pressure of 10 bar for various
aerogel concentrations ca.

ca�%� �a�nm� ac �N

0.1 3511 1.19 0.032

0.2 1638 2.55 0.069

1.0 279 15.00 0.408

2.0 130 32.15 0.874

FIG. 2. �Color online� Total reduced shear viscosity at a pres-
sure of 10 bar in the unitary limit vs reduced temperature for vari-
ous values of the parameter ac= �̄N

i �Tc� /�N
e . Note that ac=0 corre-

sponds to the clean limit.

FIG. 3. �Color online� Total reduced thermal conductivity, di-
vided by T /Tc, at a pressure of 10 bar in the unitary limit vs re-
duced temperature for various values of the parameter ac

= �̄N
i �Tc� /�N

e . Again, ac=0 corresponds to the clean limit.

FIG. 4. �Color online� Total reduced shear viscosity in the Born
limit vs reduced temperature for various values of the parameter
ac= �̄N

i �Tc� /�N
e .
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ing to approximately 99.3% open aerogel� the viscosity has a
finite low-T limit. For Born scattering �Fig. 4� the viscosity
falls off much more rapidly ��Y3

�� at low T. It is interesting
to note that crossing points like those observable in Fig. 4
�Born limit� for the shear viscosity vs reduced temperature,
which generally occur in context with a superposition law,16

arise here as a consequence of the Matthiessen rule approxi-
mation.

According to �20� the thermal conductivity behaves dif-
ferently ��T��T��T−1� if impurity �inelastic� scattering
dominates, respectively. The reduced total thermal conduc-
tivity �Eq. �9��, is shown for a pressure of 10 bar in Fig. 3
�here divided by �T /Tc�� and Fig. 5 for unitary and Born
scattering, respectively. For ac=10 �corresponding to ap-
proximately 99.3% open aerogel� the offset in � /T can
clearly be seen and corresponds to a linear dependence of
��T� on T, predicted for unitary scattering. The latter behav-
ior is in qualitative agreement with the experimental results
at Lancaster.14 For Born scattering �Fig. 5� the thermal con-
ductivity falls off much more rapidly ��Y3

�� at low T. The
ratio of the transport parameters � /T and � in the unitary
limit at T→0 is seen to be universal only in the impurity-
limited unitary case �N

i ��N
e . The latter condition is fulfilled

for superfluid He in aerogel for a large range of aerogel
concentrations.

V. SUMMARY AND CONCLUSION

In summary, we provide a comprehensive picture of the
transport of momentum and energy in unconventional super-

conductors, here with particular emphasis on superfluid 3He
-B in aerogel. Strong elastic scattering is treated quite gen-
erally �using the impurity t-matrix� for both superconductors
and dirty Fermi superfluids. A new interpolation scheme for
the temperature dependence of the transport parameters is
presented, which on the one hand preserves all analytical
results available for T→0 and T→Tc and allows for a par-
ticularly transparent physical representation of the transport
parameters which would otherwise be quite complex in
structure, given the diversity of effects that enter the general
description of transport. New physics is seen to arise in the
unitary limit �e.g, scattering phase shift �0=
 /2� and the
phenomenon of universal transport occurs for superconduct-
ors with gap nodes. For the 3He-B/aerogel system both the
impurity-limited values of � /T ,� are proportional to the
same nonuniversal constant C�, and interestingly give rise to
a universal relation in a manner akin to the Wiedemann-
Franz law. We show that inelastic scattering can be ac-
counted for quite accurately in the case of superfluid 3He-B
and leads to the well-known low-T asymptotic behavior of
�T ,�→const in the clean limit. In this contribution, we
have, for the first time, combined both effects to yield a
comprehensive picture of the transport properties of the
3He-B/aerogel system. These are seen to be impurity limited
for a wide range of experimentally accessible aerogel con-
centrations. A comparison of theory with future experiments
may discriminate whether the impurity-limited transport is
characterized by scattering in the Born or the unitary limit
and to determine the nature of change in �0 with the addition
of 3He.15 The dominance of the unitary limit is supported, for
example, by Refs. 14 and 15. The theoretical concept pre-
sented in this contribution clearly demonstrates strong paral-
lels in the transport properties of strikingly different systems:
dirty unconventional metallic superconductors and the super-
fluid phases of 3He in aerogel.
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