PHYSICAL REVIEW B 72, 214513 (2005)

Theory of thermal and charge transport in diffusive normal metal/superconductor junctions
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Thermal and charge transport in diffusive normal metal (DN)/insulator/s-, d-, and p-wave superconductor
junctions are studied based on the Usadel equation with the Nazarov’s generalized boundary condition. We
derive a general expression of the thermal conductance in unconventional superconducting junctions. Thermal
conductance, electric conductance of junctions and their Lorentz ratio are calculated as a function of resistance
in DN, the Thouless energy, magnetic scattering rate in DN and transparency of the insulating barrier. We also
discuss transport properties for various orientation angles between the normal to the interface and the crystal
axis of superconductors. It is demonstrated that the proximity effect does not influence the thermal conductance
while the midgap Andreev resonant states suppress it. Dependencies of the electrical and thermal conductance
on temperature are sensitive to pairing symmetries and orientation angles. The results imply a possibility to
distinguish one pairing symmetry from another based on the results of experimental observations.
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I. INTRODUCTION

Thermal and electrical conductances are basic properties
of a metal. The abilities to carry heat and charge currents are
related to each other. At low temperatures thermal conduc-
tivity « of a metal is linear in 7, i.e., k=T, while the elec-
trical conductivity o approaches a constant. As a result,
the Lorentz ratio becomes a universal constant, L= «/oT
=m?/3e?. This characteristic feature is called the
Wiedemann-Franz (WF) law! and has been observed in vari-
ous electron systems?>® which may be described by the
Fermi liquid theory. A violation of the WF law implies the
breakdown of the Fermi liquid description of the electronic
states in a metal. For instance, in the normal state of high-7,
cuprates the violation of the WF law suggests the non-Fermi
liquid description.” A validity of the Fermi liquid picture in
cuprates is an open question even now.

The heat and charge currents are also important character-
istics of a superconducting state. Thermal conductivity of a
bulk superconductor was first discussed theoretically by
Bardeen et al.® Large amounts of work were done on thermal
and electric transport in contacts between normal and super-
conducting phases (N/S junctions). In the pioneering work
by Andreev® a new type of quasiparticle scattering at the N/S
interface was discovered, the so-called Andreev reflection
(AR), which crucially influences quasiparticle transport
across the interface at subgap energies. The AR causes the
exponential decay of a thermal conductance across the N/S
interface with decreasing temperature,’ while it facilitates the
transfer of an electric charge.'” As shown by Blonder,
Tinkham, and Klapwijk (BTK),!° the AR leads to the dou-
bling of zero bias conductance across transparent N/S inter-
face at low T. More recently, Bardas and Averin!' and
Devyatov et al.'? calculated heat current by generalizing the
BTK model'? for the electric transport in N/S junctions. The
applicability of these theories is, however, limited to junc-
tions in the clean limit.
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In most practical N/S junctions normal metals are in the
diffusive regime. Therefore the effect of impurity scattering
on the transport properties has received a lot of attention. In
diffusive normal metal/superconductor (DN/S) junctions, the
diffusive motion of quasiparticles at a mesoscopic length
scale around the interface strongly modifies the transport
across a junction interface because of interference effects.'3
For example, the appearance of the zero bias conductance
peak (ZBCP) in DN/S junctions is a direct consequence of
the interference effect of a quasiparticle in DN.'4-2* To study
such interference effects, the quasiclassical Green’s function
theory?~27 has been widely used because of its convenience
and broad applicability. Based on this formalism, theory of
charge transport in DN/S junctions was formulated by
Volkov, Zaitsev, and Klapwijk (VZK).?® By applying the
VZK theory, a number of authors investigated theoretically
charge transport in various proximity structures.’®=3° This
work was based on the boundary conditions for the Keldysh-
Nambu Green’s function at the DN/S interface derived by
Kupriyanov and Lukichev (KL)* from Zaitsev’s boundary
condition*! in the isotropic limit. The KL boundary condi-
tions were recently extended by Nazarov within the circuit
theory*? and applied by Tanaka et al.** to the study of charge
transport in N/S junctions with arbitrary interface transpar-
ency in order to investigate more complex structures. The
Nazarov’s boundary conditions coincide with the KL bound-
ary conditions when transmission coefficients are sufficiently
low, while the BTK theory'? is reproduced in the ballistic
regime. It was shown in Ref. 43 that a zero bias conductance
peak (ZBCP) in low transparent N/S junctions transforms to
a zero bias conductance dip (ZBCD) with increasing the in-
terface transparency.

Heat transport within the quasiclassical approach was
studied by several authors.**~*% In particular, Graf et al.*®
calculated thermal conductivity for various unconventional
superconductors. They showed that thermal conductivity of a
clean two-dimensional d,2_,>-wave superconductor is propor-

©2005 The American Physical Society


http://dx.doi.org/10.1103/PhysRevB.72.214513

YOKOYAMA et al.

DN D-wave DN | D-wave
(a) N (b)
A () A A0 (- 0)
+ '
A=) y

finite proximi \ _

No MARS

Zero proximity
MARS

o=m/4

DN | P-wave DN | P-wave
(c) d
AL ([ A+9) A_() AHD)
TS
zero proximity { | 1 A+{—0) finite proximity A+(—¢)
No MARS v MARS
o=m/2 o=0
FIG. 1. Schematic illustration of trajectories of incoming

and outgoing quasiparticles at a DN/S interface with pair
potential A,(¢). The pair potentials A, are given by A,
=A(T)cos[2(¢pF )] for d-wave superconductors (D-wave) where
a denotes the angle between the normal to the interface and
the crystal axis of d-wave superconductors. For p-wave supercon-
ductors (P-wave) the pair potentials A, are given by A,
=+ A(T)cos[(¢pF a)], where a denotes the angle between the nor-
mal to the interface and the lobe direction of the p-wave pair po-
tential. In the above, ¢ denotes the injection angle of the quasipar-
ticle measured from the x axis and A(7) is the maximum amplitude
of the pair potential at a temperature 7.

tional to 7 in the Born limit over a broad temperature range
and proportional to 7° in the unitary limit above some cross-
over temperature 7" ~ y, where 7 is the bandwidth of quasi-
particle states bound to impurities. These results also suggest
that thermal conductivity is sensitive to a pairing symmetry
of an unconventional superconductor.*’” On the other hand,
heat transport in N/S junctions has not received much atten-
tion so far, partially due to the lack of experimental data.
Recently, sufficient progress was achieved which made it
possible to study heat transport in unconventional
superconductors*° and this stimulated theoretical study of
these phenomena.

The formation of the midgap Andreev resonant state
(MARS) drastically affects low energy transport in uncon-
ventional superconducting junctions.’’-%! It is now widely
accepted that MARS is also responsible for ZBCP in N/S
junctions of unconventional superconductors. To discuss in-
terplay between the proximity effect and MARS, a new cir-
cuit theory for unconventional superconductors was pro-
posed in Refs. 62-64. In DN/d-wave superconductor
junctions, MARS interfere destructively with the proximity
effect in DN.®>6 On the other hand, in DN/p-wave super-
conductor junctions, the MARS and the proximity effect
coexist.®* As a result, the conductance spectrum has a giant
ZBCP and the local density of states in DN has a zero energy
peak. We summarize relations between the proximity effect
and the MARS in Fig. 1.

The junctions in Fig. 1 are classified into four groups: (a)
presence of the proximity effect, (b) presence of MARS, (c)
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absence of both MARS and the proximity effect, and (d)
presence of both of them. Thermal and charge transport in
N/S junctions can be described in terms of MARS and the
proximity effect.

The purpose of the present paper is to study the tunneling
conductance, the thermal conductance, and their Lorentz ra-
tio in diffusive normal metal/insulator/s-, d-, and p-wave su-
perconductor junctions as a function of transparencies of in-
sulating barriers at the interface, resistance R; in DN, the
magnetic scattering rate in DN, the Thouless energy Ey, in
DN, and orientation angles between the normal to the inter-
face and the crystal axis of superconductors.

The organization of this paper is as follows. In Sec. II, we
will provide the detailed derivation of the expression for the
normalized thermal conductance. In Sec. III, the results of
calculations are presented for various types of junctions.
They are applied to discriminate various pairing states. In
Sec. IV, the summary of the obtained results is given. In the
present paper, we use the units with kz=h=1.

II. FORMULATION

In this section, we explain the model and the formalism.
We consider a junction consisting of normal and supercon-
ducting reservoirs connected by a quasi-one-dimensional dif-
fusive conductor with a length L much larger than the mean
free path. The interface between the DN and the S has a
resistance R, while the DN/N interface has zero resistance.
The positions of the DN/N interface and the DN/S interface
are denoted as x=0 and x=L, respectively. According to the
circuit theory, the interface between DN and S is subdivided
into two isotropization zones in DN and S, two ballistic
zones, and a scattering zone. The sizes of the ballistic and
scattering zones in the current direction are much shorter
than the coherence length. The scattering zone is modeled as
an infinitely narrow insulating barrier described by the
delta function U(x)=H&(x—L). The transparency of the
interface T, is given by T,=4 cos® ¢/(4 cos® ¢+Z?), where
Z=2H/vp is a dimensionless parameter, ¢ is an injection
angle measured from the interface normal and vy is the
Fermi velocity. The interface resistance R, is given by

2

/2 ’
f d¢T, cos ¢

—7/2

Rb=RO

where Ry is the Sharvin resistance Ry'=e?krS, /472, ky is the
Fermi wavelength, and S. is the constriction area.

We apply the quasiclassical Keldysh formalism in the fol-
lowing calculation of the tunneling and thermal conductance.
The 4 X4 Green’s functions in DN and S are denoted by

G,(x) and G,(x), respectively. The spatial dependence of
G,(x) in DN is determined by the static Usadel equation,53

9G4 (x)
ox

D%(él(x) ) + i[ﬁ]+ iispiva](x)] 0 (1)

with the diffusion constant D in DN, where H is given by
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H=< 0 2 )’
0 H,

with Hy=e?s, Espin=(y/2)%3él(x)%3 is the self-energy for
magnetic impurity scattering with the scattering rate y and €
is the quasiparticle energy. The directions of magnetic mo-
ments of impurities are random. The self-energy is given by
averaging with respect to directions of magnetic moments.

Thus in our calculation é, () is the unit matrix in spin space.

The electric current is expressed using G,(x) as

. v K
- L v G
Iy= _4eRdf0 de Tr[%(Gl(x)_a alx(X)) ] (2

where {él(x)[aél(x)/&x]}K denotes the Keldysh component

of {él(x)[&él(x)/ﬁx]}.
The thermal current is also expressed as

L ( 3G, |
Ith:mfo deeTr|:<él(x)a—lx> :| (3)

It is convenient to use the standard 6-parametrization when
function R, (x) is expressed as

Iél(x) =7, sin O(x)cos ¥+ 7, sin O(x)sin ¥+ 73 cos O(x),
(4)

where cos /=0 for singlet superconductors and sin /=0 for
triplet superconductors (see Ref. 64). The parameter 6(x) is a
measure of the proximity effect in DN.

Functions A;(x) and K,(x) are expressed as A,(x)
K (x)=R(x)f(x)=f1(x)A;(x)  with
the distribution function f,(x) which is given by f,(x)
=f,(x)+ 73f,(x). From the retarded or advanced component of
the Usadel equation, the spatial dependence of 6(x) is deter-
mined by the following equation:

=— ﬁ]ﬁ(x) 73 and

&
Dg 0(x) + 2i{e+ iy cos[ O(x)]}sin[ O(x)] =0, (5)

while from the Keldysh component we obtain
d(d
D—( fi(x)
ox

P cos’ Re[ 0(x)]) =0. (6)

The average over injection angles of quasiparticles at the
interface is defined as

/2

(B(¢)) =

—/2

with T(¢)=T,.

/2

dd¢ cos ¢B(¢)/f dpT(P)cos ¢

—7/2

A. s-wave case

The Keldysh component K,(x) is given by K,(x)
=§2(x) fz(x) - fz(x)Az(x) with the retarded component ﬁz(x),
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the advanced component Az(x), and distribution function
fo(x). Here R,(x)=g#+f% with g=e/\/€-AXT) and
=AM AAT) =€, Ayx)=—%Ri(x)%5  and  fr(x)=fs
=tanh[€/(27)] in thermal equilibrium with temperature T.

The boundary condition for é](x) at the DN/S interface is
given by*?

=R;(B),

__ GG
4+ Til{[él(L—)’éZ(L+)]+ - 2}

()

For the electrical conductance, we obtain the following result
at zero voltage:*

m=L[ &
= 0r), e\ R, Ry(" dx
cosh\ — || —~+— | ——> =
2T\ ) L Jy cosh® 6,,(x)
(8)
with
T2A, +2T,(2 - T,)A,
Iy = ; 3
2|(2-T,) +T,[g cos 6, + fsin 6, ]|
Ay =(1+[cos 6, +]sin 6,2 ([g]* + >+ 1)
+ 4 Imag[fg " |Imag[cos 6, sin 02], 9)

A, =Real[g(cos 6, + cos Gz) + f(sin 6, + sin 62)] (10)

where 6,,(x) and 6, denote the imaginary parts of #(x) and
O(L_), respectively.

Next we calculate the thermal conductance. Since DN is
attached to the normal electrode at x=0, 6(0)=0, and
f(0)=f,0 with fio=tanh{e/[2(T+AT)]} in thermal equilib-
rium at a temperature T+AT.

The retarded part of Eq. (7) is the same as in Ref. 43. The
Keldysh part of Eq. (7) reads

L[d 1 L_)-
—(ﬁ)cosz Real 0], = - L)AL fs]’
R,\ ox - Ry
(11)
with
ToA |+ T,(2=T,)AS
Iy = ' 2
2[(2-T,) +T,(g cos 6, + f sin 6,)|
Aj=(1+|cos g, ~[sin 6,)(|g]” = A1+ 1)
+4 Real(fg")Real(cos 6 sin 6,), (12)
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A} =4 Real(g)Real(cos 6;) — 4 Imag(f)Imag(sin 6;).
(13)

Substituting the results into Eq. (3), we arrive at the final
expression for the thermal current,

1 (” e(fio—fo)de
In=— (floLfs) (14)
eJo R, Ry dx
(I;) L J, cos®Re 6(x)

1 J ” Ede
2¢°T% ), Coshz(_> R, Rd Lo dx '
(Ib1> o cos’ Re 6(x)
(15)

T,
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B. d-wave case

In the following * stands for the direction of motion
along the x axis. We denote Keldysh-Nambu Green’s func-

tion ézi as follows:

. R,, K.,
Gzt=( . 2) (16)
0 A2¢

where the Keldysh component K2+ is given by K2+
=R,.f>(x)—f5(x)A,, with the retarded component R,,, the
advanced component Azi and the distribution function
fox). Here Ry,=g.#s+f.h, with g.=e/\E-AXT), f.
=A(T)/AXT)- €& and A,,=—#R}_ 4;. The function f,(x)
is given in the preceding section. For the electrical conduc-

tance, following Ref. 63, we obtain the conductance, o(T),
at zero voltage by replacing I, into I, in Eq. (8) where

Co

Iy =

2|2 =T,)(1+g,g_+fuf ) + T,[cos O,(g, + g_) +sin 6,(f, + 1))

CO = Tn(l + |COS 0L|2 + |Si1’1 0L|2)(|g+ + g—|2 + |f+ +f—|2 + |1 +f+f— + g+g—|2 + |f+g— - g+f—|2)
+2(2-T,)Real{(1 + gigi +fjfi)[(cos 0, + cos 492)(g+ +g_) + (sin 6, + sin 192)(}‘+ + /1)
+4T, Imag(cos 6, sin 02)1mag[(f+ + f_)(gi +g)].

Let us calculate the thermal conductance. The boundary condition for G 1(xx) at the DN/S interface reads*

L (vaé,

R, \ 7V ax

=R, I). (17)

x=L_

Here in is given in the Appendix. The retarded part of Eq. (17) is the same as that in Ref. 63. The Keldysh part of Eq. (17)

reads (see the Appendix)

Upf(L) = fs]

(afl)cos Real [0(x)]|,of =———————, (18)
R\ a

with

T,

R,

Co

I3=

For isotropic limit, where f,=f_ and g,=g_ are satisfied, we
obtain Ib3:Ibl'

Applying a similar procedure as in the s-wave case, we
obtain the thermal conductance by replacing ;3 into I,; in
Eq. (15).

For the ballistic limit, where 6; =R;=0, we can reproduce
the formula for the thermal conductance for an ideal inter-

2]2=T,)(1+g,8-+f.f) + T,[cos 6,(g, +g) +sin 0,(f, + )]

face (T,=1, i.e., Z=0) found in the previous work:'?

1 “ €2<Ib3>d€
2°T% ),

K=

5

€
R, cosh?> —
2T

where
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>+
Ib3=1_M (19)
2
with
LA LA
er@-AT T erV@-A?
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C. p-wave case

Here, we restrict our attention to p-wave superconductors
with §,=0, where S, denotes the z component of the total
spin of a Cooper pair. In this case the derivation is similar to
that of the d-wave case. In the following, we will use the
same notations as in the d-wave case. We can choose
R;=cos 6(x)73+sin 6(x)7; to satisfy the boundary condition
at the interface. 2 X2 matrix C; (i=1-6) is expressed in
terms of linear combination of f, T, T, and 73, and

BR=bl%1+b2%2+b3%3 with

- Tln[Tln sin eL + i(f+g— _f—g+)]

by = ,
V(4T (14 8,8+ fof ) + 2Ty, [cos O,(g, +g) +isin 0,(f,g_~f.g.)]
b _ _Tln[Tln Sil’l aL(l +g+g—+f+f—)+i(f+g—_f—g+)]
2= R 0
(1+T1)(1+ g,g_+f.f) +2T,[cos 0,(g, +g.) +isin 0,(f,g_—f-g,)]
b = Ty,[T1,cos 6,(1 +g,g_+f,f)+g.+g_]
3

T (U +T3)(1+g,g_+ fuf ) + 2T, [cos 0,(g, +g.) +isin 6,(fg_—f-g)]

(20)

For the electrical conductance, following Ref. 64, we obtain the conductance at zero voltage by replacing 1,4 into I, in Eq.

(8) with

T,

1"
CO

Iy

T 22=T)(1 +g.g_+f.f) + T,[cos

2

O (g, +g-) +isin O,(f,g_—g.f)]

Cg =T,(1+ |COS 0L|2 + |Sin 0L|2)(|g+ + g—|2 + |f+ +f—|2 + |1 +f o+ g+g—|2 + |f+g— - g+f—|2)
202~ T)Real{(1 +g'g" + £ N(cos B, +c0s 6})(g, +g.) +i(sin 6, +sin 6))(f,g - g/ )]}

+4T, Tmag(cos 6, sin 6,)Imag[i(f,g_~ g./-)(g, + g)].

Next we proceed with the discussion of the thermal conductance. The retarded part of Eq. (17) is the same as that in Ref.
64. We must calculate the Keldysh part of Eq. (17) as in the d-wave case. The following equations are also satisfied:

DTy, ~Ty,R,! + TR R, R,) = Bg, (21)

Bi(1+ R, + T,R\R,R,) = T},R,'R,,. (22)

Applying similar procedure as in the d-wave case, we obtain the following expression for the thermal conductance by

replacing I,5 into I, in Eq. (15) where

T,

"
CO

Iys

B ?|(2 =T,)(1+g.g_+f.f)+T,[co

s O,(g,+g) +isinO,(f.g_—f g

Cgl = Tn(l + |COS 0L|2 - |Sin 0L|2)(|g+ + g—|2 - |f+ +f—|2 + |1 +f+f— + g+g—|2 - lf+g— - g+f—|2)
+4(2 - T,)(Real[(1 + g.¢" + f1f")(g, + g_)JReal(cos 6;) — Imag(sin 6;)Imag{(1 + g.¢" + f1/)i(f.g_— f-g.)]})

+4T, Real(cos 6; sin ﬂz)Real[i(ﬂrg_ —fg (g, +g)].
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Taking into account all the above results, we can find
simpler expressions for (I,;) (i=2-5) for any triplet super-
conductors (TS) and unconventional singlet superconductors
(USS),

<1b,->=<% Do 2> (3)
|(2=T,) + T,(cos O.g5+ sin 6,f)]
with
Dy =T,(1 + cos 6;* + [sin ;) (|gs* + [fs]* + 1+ [fs])
+4(2 - T,)[Real(gs)Real(cos 6;)
+ Real(fs)Real(sin ;)]
+4T,[Imag(cos 6, sin 6;)Imag(fsgg)] (24)
for i=2,4, or
Dy =T,(1 + [cos 6;” = |sin 6,])(|gs* = fs]* + 1 = [£s)
+4(2 - T,)[Real(gs)Real(cos 6;)

— Imag(f)Imag(sin 6;)]
+4T,[Real(cos 6; sin 6;)Real(fsgy)] (25)

for i=3,5 where

_ {(g++g—)/(1 +g+g—+f+f—) TS,
¢=

(g++g (1 +g,g_+f.f) USS, (26)
_ )il —fog /(I + g8+ fif2) TS,
fs_{ (oS bggtfuf)  USS, )
z (fr+fII + gog_+fif) TS, (28)
5 i(frg-—guf (1 +g,g_+f.f) USS.

A negative sign appears in Eq. (25), in contrast to Eq. (24),
since Cooper pairs cannot carry heat.

In the following section, we will discuss the normalized
conductance o(T)=0(T)/ oy, the normalized thermal con-
ductance «(T)=«(T)/ky(T) and the normalized Lorentz
ratio Ly=rk/{T)/oT) where oy and ky refer to the
normal state and are given by oy=1/(R;+R;) and «y(T)
=m°T/[3(R,+R,)e?], respectively.

III. RESULTS
A. s-wave case

First, we study the dependence of electrical conductance
at the zero voltage, o7, on temperature as shown in Fig. 2,
where we choose the relatively strong barrier Z=3, R;/R,
=1 in Figs. 2(a) and 2(c), and R;/R,=0.1 in Figs. 2(b) and
2(d). The Thouless energy is Eq,/A(0)=0.1 in Figs. 2(a) and
2(b), and E1,/A(0)=0.01 in Figs. 2(c) and 2(d). The tunnel-
ing conductance has a peak at 7/T-=0 and minimum at
T/T-~0.3 as shown in Figs. 2(a)-2(d). The coherent AR
due to the proximity effect in DN is responsible for the peak
around zero temperature. The enhancement of the conduc-
tance is more pronounced for R;/R,=1 in Figs. 2(a) and 2(c)
than that for R;/R,=0.1 in Figs. 2(b) and 2(d) because the
proximity effect is more prominent for R;/R,=1 than
R;/R,=0.1. The width of the peak is of the order of
Ep,/A(0). The magnetic impurity scattering suppresses the
proximity effect. Thus the height of peak decreases with the
increase of y/A(0) as shown in Fig. 2. For low transparent
interfaces the proximity effect enhances the conductance
around zero temperature. For large 7/T., o7 increases mono-
tonically with increasing 7/7.

The corresponding plots for Z=0 are shown in Figs.
3(a)-3(d) where o has a dip at T/T-=0 and a maximum at
T/T-~0.5. It is known that similar diplike structures appear
also in the conductance as a function of a bias voltage.** The
dip becomes broader for larger magnitudes of Eq,/A(0). For
high transparent interfaces, the proximity effect suppresses
the conductance around zero temperature. As a result, mag-
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netic impurity scattering leads to enhancement of o, as il-
lustrated by our numerical calculations. The nonmonotonic
temperature dependence of o is a unique feature of diffusive
junctions. The structures in Fig. 3 are essentially different
from those by the VZK theory,”® which stems from the high
transparency at the interface.

Next we study the thermal conductance, 7, as a function
of temperature, where k7 is normalized by its value in the
normal state, and we fix E,/A(0)=0.1 and y/A(0)=0. We
will show that «; is almost independent of Eq,/A(0) and
v/A(0), which implies that the coherent transmission due to
the proximity effect does not affect the thermal conductance.
Both a quasiparticle just on the Fermi energy and that with
finite excitation energy (€) can carry the electric current. The
results in Figs. 2 and 3 show the sensitivity of electrical
conductance around the zero temperature to Ep,/A(0) and
v/ A(0) because the contribution of a quasiparticle just on the
Fermi erengy is governed by the proximity effect. In the case
of thermal conductance, on the other hand, only quasiparti-
cles with finite energy can carry heat. At low temperatures,
quasiparticles with e~ T<<T, can contribute to 7. Such qua-
siparticles, however, are not allowed in the presence of the
gap in superconductors. As a result, k; becomes almost zero
around the zero temperature. In high temperatures such as
T~ T, only a quasiparticle with e~ T, contributes to 7. In
such energy range, the quasiparticle spectrum in DN is al-
most independent of Eqy, and y. Therefore 7 is insensitive to
Er, and vy. To substantiate it, we show some numerical ex-
amples in Fig. 4 where the independence is confirmed. As
shown in Fig. 5, k7 increases with increasing 7/T for both
Z=3 and Z=0. Contrary to the case of o, the magnitude of
rr is reduced (enhanced) with the increase of R,/R, for
Z=3 (Z=0).

We plot the Lorentz ratio, Ly, in Fig. 6 for several R;/R,,
where Ep,/A(0)=0.1 and y/A(0)=0. We confirmed that the
Lorentz ratio is almost independent of Er,/A(0) and y/A(0).
The Lorentz ratio is zero for small 7/T and is linear in 7/T
in the intermediate region. For Z=3 and R;/R,=0.1, Ly has a
peak at 7/T-~0.7, whereas it is a monotonic increasing

function of T/T, for Z=3 and R,/R,=1 [Fig. 6(a)]. For
Z=0 and R,/R,=1, Ly is linear in T/T. for T/T-=0.3,
while for Z=0 and R;/R,=0.1, L is linear in 7/T. in the
intermediate region [Fig. 6(b)].

Figure 7 shows R,/R,; dependence of tunneling conduc-
tance and thermal conductance normalized by their normal
values at T/T-=0.8, where Ey,/A(0)=0.1 and y/A(0)=0. In
low transparent interface (i.e., Z=3), the probability of AR
increases with increasing R,/R,.°® Thus the magnitude of o
increases with increasing R,;/R,. On the other hand, ; is a
decreasing function of R;/R,. In high transparent interface
(i.e., Z=0), the proximity effect suppresses the electrical
conductance because the DN plays a role of the insulating
barrier. In this case the probability of AR decreases with

Z=3 R,/R =1
L yra(0)=0
08 I —ETh;A(g)=o.01
----- E =5
e 06T ™/ A(0) .
~ 04 .
02 (a) )
0 + i + T T t }
1 E,/A(0)=0.1
08 I _yfA(O):O
----- =0.1
& 0.6 F v/A{0r .
X
0.4 | -
02 (b) B
O " 1

T/Te

FIG. 4. (Color online) Normalized thermal conductance for
s-wave superconductor with Z=3 and R;/R,=1. (a) y/A(0)=0 and
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0.8

04

02

FIG. 5. Normalized thermal conductance for s-wave supercon-
ductor with Eq,/A(0)=0.1 and y/A(0)=0. (a) Z=3 and (b) Z=0.

increasing R,/ R,,. Thus o7 is a decreasing function of R;/R,,.
The results also show that «7 is an increasing function of
R,/ R;,. In both Figs. 7(a) and 7(b), o and «; are close to
constants independent of Z for sufficiently large R;/R,.

B. d-wave case

In this section, we fix Eg,/A(0)=0.1 and y=0 because xy
and Ly are insensitive to these parameters. The pair poten-
tials A, (7T) are given by A_(T)=A(T)cos[2(¢ F a)], where «
denotes an angle between the normal to the interface and the
crystal axis of d-wave superconductors, and ¢ denotes an

1.5 [ T T T T ]
r _Rd/Rb:I /"” --~~*~- b
o RgR=0.1 ]
1 _ al
e ]
— ]
0.5 —
0 L ]
08
0.6 -
“ L
— 04
02 (b) —Ry/Rp=1
r A T Rd/Rb=0-1 T
0 L L
0 0.2 0.4 0.6 0.8

T/T.

FIG. 6. Normalized Lorentz ratio for s-wave superconductor
with E1,/A(0)=0.1 and y/A(0)=0. (a) Z=3 and (b) Z=0.
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T/T,=08 E,/A(0)=0.1 7/A(0)=0
1.8 . - x -

L6,
o4t

b

127
1 -
0.8

R,/R,

FIG. 7. Normalized tunneling conductance (a) and thermal
conductance (b) for s-wave superconductor with T/T-=0.8,
Er,/A(0)=0.1, and y/A(0)=0.

injection angle of a quasiparticle measured from the x axis.
The amplitude of pair potentials, A(T), is the same as that of
s-wave superconductors. We choose Osasm/4. It is
known that quasiparticles with 7m/4-a<¢dp<m/4+a can
contribute to the MARS at the interface and are responsible
for ZBCP in low transparent junctions. It was shown that the
proximity effect and MARS do not coexist in the d-wave
symmetry. In fact, at =0, the MARS does not exist while
the proximity effect is possible. On the other hand, at
a/m=0.25, the proximity effect is not possible, whereas the
MARS appears (see Fig. 1 and Ref. 63). Thus we can expect
similar results to the s-wave symmetry in the case of a=0.

In Fig. 8, we plot the tunneling conductance as a function
of temperatures for several choices of «, where R,;/R;,=0.1.
At Z=3 in Fig. 8(a), o for a/m=0.25 and 0.125 increase
drastically with decreasing temperatures because of the reso-
nant transmission through the MARS. Thus such behavior is
not found in o7 with a=0. In high temperatures, o; for
a/m=0, 0.125, and 0.25 get close together. At Z=0, o is a
monotonic decreasing function of 7/T for all a. The results
show that o slightly increases with « as shown in Fig. 8(b).
The dependence on « of o7 at Z=0 is very small in compari-
son with that at Z=3.

In Fig. 9, we show thermal conductance as a function of
temperatures for several a with R;/R,=0.1. In both Z=3 and
0, k7 are monotonic increasing function of 7/T. and are
proportional to 7/ T, for small T/T. This linear dependence
of kr for low temperatures is not seen in the s-wave symme-
try (Fig. 5) and reflects the line nodes of the pair potential.
The results also show that k; depends on a for Z=3 in Fig.
9(a), whereas it is almost independent of « for Z=0 in Fig.
9(b).

In Fig. 10, the Lorentz ratio is shown for several «, where
R;/R;,=0.1. The Lorentz ratio has a peak at 7/T-~ 0.4 for
Z=3 and a=0 as shown in Fig. 10(a). This peak gradually
disappears with increasing a. For Z=0, Ly is proportional to
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FIG. 8. Normalized tunneling conductance for d-wave super-
conductor with R;/R,=0.1, Ep,/A(0)=0.1, and y/A(0)=0. (a)
Z=3 and (b) Z=0.

T/T, almost independent of « as shown in Fig. 10(b).
Figures 11 and 12 show R,/R, dependence of tunneling
conductance and thermal conductance which are normalized
by their normal values at 7/7-=0.8. For Z=3, o is an in-
creasing function of R;/R,, for /=0 as shown in Fig. 11(a)
because the probability of the AR increases with increasing
R,/R, as in the s-wave symmetry. The peaks at R;/R,=0 in
a/m=0.25 and 0.125 is a consequence of the MARS. The
impurity scatterings in DN simply suppress the magnitude of
orat a/ w=0.25 because the proximity effect is absent in this
case. As a result, o7 becomes a decreasing function of R;/R,,
at a/m=0.25 as shown in Fig. 11(a). For sufficiently large

T T T T T ¥ T
1l -—a/x=0

FIG. 9. Normalized thermal conductance for d-wave supercon-
ductor with R;/R,=0.1, Ey,/A(0)=0.1, and y/A(0)=0. (a) Z=3
and (b) Z=0.
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06 - 1
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— ,1’-:"1‘ —al/n=0
020 A e ol n=0.125
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FIG. 10. Normalized Lorenz ratio for d-wave superconductor
with R;/R,=0.1, Eq,/A(0)=0.1, and y/A(0)=0. (a) Z=3 and (b)
Z=0.

R,/ Ry, o7 is close to a constant. For a/ m=0 «y is a decreas-
ing function of R,/R, while it is an increasing function of
R, /R, for a/m=0.125 and «a/m7=0.25 as shown in Fig.
11(b). For sufficiently large R,/R,, k7 is close to a constant
for all a. In Fig. 11(b), we find that the formation of the
MARS suppresses «7. This can be interpreted as follows.
When the MARS is formed at the interface, the quasiparticle
density of states becomes large around the zero energy. Such
states around the zero energy, however, cannot carry the heat.
The zero energy peak in the density of states means suppres-
sion of the density of states in higher energies which can
carry the heat. Thus the formation of the MARS suppresses
the thermal conductance. At Z=0 in Fig. 12, the probability
of the AR decreases as increasing R;/R,, for all . The line

TIT,=08 Z=3 E,/A(0)=0.1

1.3 T T T :
(a) al/m=0
) B al/n=0.1257
=y a/m=0.25
B g .
1 - ! -
1.1 t t t + =
. (b)
S N 1
JRETE —alw=
L a/7=0.1257
- . . a/n=025

FIG. 11. Normalized tunneling conductance (a) and thermal
conductance (b) for d-wave superconductor with 7/T-=0.8, Z=3,
Eq,/A(0)=0.1, and y/A(0)=0.
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TIT.=08 Z=0

Ep, /A(0)=0.1
1.6 . .

T

T

E 14 1
b ——alx=0
rN T o/ m=0.1251

a/T=uU.

0.94

=
X o9
0.9
0.88F

R,/R,

FIG. 12. Normalized tunneling conductance (a) and thermal
conductance (b) for d-wave superconductor with 7/T-=0.8, Z=0,
E1,/A(0)=0.1, and y/A(0)=0.

shapes of o7 and k7 are understood in the same way as those
in the s-wave case with Z=0 in Fig. 7.

C. p-wave case

Here we also fix Eq,/A(0)=0.1 and y=0 because «; and
Ly are insensitive to these parameters. We choose the pair
potentials A, as A,=+A(T)cos[(¢F a)] where a denotes an
angle between the normal to the interface and the lobe direc-
tion of the p-wave pair potential and A(7) is the maximum
amplitude of the pair potential. In the following, we choose
O0<a=/2. It is known that quasiparticles with injection
angle ¢ with —7/2+a<¢<m/2-a can contribute to the
formation of the MARS at the interface. In particular at
a=0, the MARS and the proximity effect perfectly coexist,
which causes the penetration of the resonant states into the
DN.% On the other hand, for a/m7=0.5, neither the MARS
nor the proximity effect exist (see Fig. 1 and Ref. 64).

In Fig. 13, we show the calculated results of tunneling
conductance for several «, where R;/R;,=0.1. At Z=3, o for
a/m=0 and 0.25 increases drastically with the decrease of
temperatures because of the resonant transmission via the
MARS, while the result for @/7=0.5 monotonically in-
creases with 7. In the case of Z=0, o increases with de-
creasing T irrespective of a.

The thermal conductance in Fig. 14 is a monotonic in-
creasing function of 7/T., where R,/R,=0.1. Except for
a=0, Ky is proportional to T for small 7/T. This behavior is
also found in the d-wave symmetry in Fig. 9 and stems from
the line nodes in the pair potentials. At =0, 7 is expected
to be an exponential function of 7/T.. Thus «; increases
with increasing a as shown in both Z=3 and 0. Although line
node of the pair potential exists in this case, «; has an expo-
nential dependence on 7T as in the s-wave case because the
direction of the line node is perpendicular to that of the ther-
mal current.

The Lorentz ratio has a peak at 7/T-~0.3 for =0 and
Z=3, as shown in Fig. 15(a). This peak tends to disappear for
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FIG. 13. Normalized tunneling conductance for p-wave super-
conductor with R;/R,=0.1, E,/A(0)=0.1, and y/A(0)=0. (a)
Z=3 and (b) Z=0.

larger a. At Z=0 Ly linearly increases with the increase of
temperatures in intermediate temperature regime as shown in
Fig. 15(b).

Figures 16 and 17 display R,/R, dependence of tunneling
conductance and thermal conductance at 7/7T-=0.8. The re-
sults are normalized by their normal values at 7/T-=0.8. At
Z=3, o7 has a reentrant behavior in R;/R; for small « as
shown in Fig. 16(a). It is noted that the finite energy states
and the zero energy states contribute to the conductance in
qualitatively different ways. In finite energies, o decreases
with increasing R,/ R,;, because the probability of the AR de-
creases with increasing R,;/R;. On the other hand, at the zero
energy, oy increase with the increase of R;/R, due to the
formation of the resonant states.®* For small (large) R,/R,,

T T T T T T T

I~
X
B~
< 04
N (®)
02+ .-
Lo Z=0
0 s 1 1 1 1
0 0.2 0.4 0.6 0.8
T/T.

FIG. 14. Normalized thermal conductance for p-wave supercon-
ductor with R;/R,=0.1, E,/A(0)=0.1, and y/A(0)=0. (a) Z=3
and (b) Z=0.
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FIG. 15. Normalized Lorenz ratio for p-wave superconductor
with R;/R,=0.1, Er,/A(0)=0.1, and y/A(0)=0. (a) Z=3 and (b)
Z=0.

the contribution of the finite energies states (the zero energy
states) dominates o. This explains the reentrant behavior in
7. In contrast to @=0, o for a=0.57 is almost constant as
shown in Fig. 16(a) because there are neither the proximity
effect nor the MARS. The characteristics of the thermal con-
ductance can be understood in a similar way. We note that
the zero energy states never contribute to the thermal trans-
port. At =0, k7 increases with increasing of R;/R;, in con-
trast to the d-wave case with @=0. This difference stems
from the existence of the MARS. At a/7=0.5, ky is almost
constant as shown in Fig. 16(b). The line shapes of o and
for =0 and 0.257 at Z=0 in Fig. 17 are qualitatively simi-
lar to those for Z=3. For a/7w=0.5, o7 decreases with R;/R,,

TIT,=08 Z

T T

=3 E,/A(0)=0.1

T

FIG. 16. Normalized tunneling conductance (a) and thermal
conductance (b) for p-wave superconductor with 7/T-=0.8, Z=3,
Eq,/A(0)=0.1, and y/A(0)=0.
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T/T.=08 Z=0 E,/A(0)=0.1
1.6 x . ; .

0.85 |

FIG. 17. Normalized tunneling conductance (a) and thermal
conductance (b) for p-wave superconductor with 7/T-=0.8, Z=0,
Et,/A(0)=0.1, and y/A(0)=0.

and «y7 increases with R;/R;,. These behaviors can be ex-
plained by the fact that the probability of the AR decreases as
increasing R,;/R,,. From Fig. 16(b) for small R;/R,, we can
also find that the MARS suppresses k7.

On the basis of calculated results of electrical and thermal
conductance, we propose a way to classify the pairing
symmetries with several orientation angles into six groups
as shown in Fig. 18. We have studied seven junctions,
s-wave superconductor (s), d-wave superconductor with
a=0 [d(a=0)], d-wave superconductor with a/m=0.125
[d(a/7=0.125)], d-wave superconductor with «a/7=0.25
[d(a/7m=0.25)], p-wave superconductor with «@=0
[p(a=0)], p-wave superconductor with a/7=0.25
[p(a/7=0.25)], and p-wave superconductor with a/7=0.5
[p(a/7=0.5)]. We focus on the results with Z=3 because
symmetries of pair potentials are better characterized by
transport properties in lower transparent junctions. Checking
the line shapes of o and k7, we can separate these junctions

s, d(@=0), d( @/ 7 =0.125), &( @/ 7 =0.25), p{ @ =0), p( @/ T =0.25), p{@/ X =0.5)

Line shapes of 0 j %

s

d{(a/n=0.125) d(a=0)
d(a/x=0.25), p(a=0) p(a/T=0.5)
p(@/7=0.25)

Line shapes of « ty % ﬂ

p(@=0) d(a/m=0.125) d(a=0)
d(a/m=0.25) p(@/m=0.5)
p(a/m=0.25)

Applying magnetic field [f @ @ %
d(0o/7=0.125) slarm=02s) 420 pa/r=03)
d(@/7=0.25)

FIG. 18. Chart for distinguishing s-, d-, and p-wave
superconductors.
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TABLE 1. Low temperature dependences of o7 and k7.

Pairing symmetry or Ky

s Reentrant Exponential

d(a=0) Linear Linear

d(a/7=0.125) Inverse Linear

d(al/m=0.25) Inverse Linear
p(a=0) Inverse Exponential

pla/m=0.25) Inverse Linear

plal/m=0.5) Linear Linear

into four groups as shown in the first and the second pro-
cesses of Fig. 18 (see Figs. 2, 5, 8,9, 13, and 14 and Table I).
Next applying a weak magnetic field H parallel to the junc-
tion plane, o for d(a=0) and p(a/m=0.25) junctions de-
creases as increasing magnetic field as shown in Fig. 19
since the proximity effect is suppressed by the applied mag-
netic field.®” On the other hand, o, for d(a/m=0.125),
d(a/7=0.25), or p(a/w=0.5) junctions is robust against ap-
plied magnetic field since there is almost no proximity effect
(third process in Fig. 18). We note that the pair-breaking rate
v is given by e*w?DH?/6, where w is the transverse size
of the DN.% Assuming w=10"m, D=107 m?/s,
A(0)=1073 eV, and H=1072T, we can estimate the pair-
breaking rate y/A(0) ~ 1. Distinguishing p(a/m7=0.25) from
d(a/m=0.125) is a delicate problem since both of them have
the proximity effect and the MARS. The two junctions, how-
ever, have qualitative difference in the density of states
(DOS) in DN. In p(a/m=0.25) junctions, the DOS has a
zero energy peak due to the formation of the resonant states
whereas the DOS in the d(a/7=0.125) junctions does not

d-wave

p-wave T/T,

FIG. 19. Magnetic field dependence of normalized tunneling
conductance with Z=3 and Eq,/A(0)=0.1 for (a) d-wave supercon-
ductor with «/7=0 and (b) p-wave superconductor with
a/m=0.25.
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1.2

Z=3 R,/R,=0. E,/A(0)=0.1

FIG. 20. The conductance measurable by STS at x=3L/4 with
Z=3, Ry/R,=0.1, E1,/A(0)=0.1, and y/A(0)=0 for d-wave super-
conductor with «/7=0.125 and for p-wave superconductor with
a/m=0.25.

show such zero energy peak.®* As a result, the conductance
measurable by scanning tunneling spectroscopy (STS), oy,
reflects these features. Here oy is defined as

1 fm Re cos Ode

217 cosh2<i)
2T

and Recos 6 is the DOS normalized by its normal states
value. We plot it at x=3L/4 as a function of 7/T in Fig. 20.
In p(a/7=0.25) junctions, a peak appears at zero tempera-
ture in contrast to the case of the d(a/m=0.125) junctions.

Thus we can easily distinguish these superconductors by
STS.

IV. CONCLUSIONS

In the present paper, we have derived a general expression
of the thermal conductance in normal metal/superconductor
junctions based on the Usadel equation under the generalized
boundary condition. We have studied the electrical and ther-
mal transport in diffusive normal metal/s-, d-, and p-wave
superconductor junctions in the presence of magnetic impu-
rities in normal metals. The main conclusions are summa-
rized as follows.

(1) The proximity effect does not influence the thermal
conductance. This statement is illustrated with some numeri-
cally calculated examples.

(2) The midgap Andreev resonant states in d- or p-wave
superconductor junctions suppress the thermal conductance.
The formation of MARS drastically gathers the density of
states at the Fermi energy near the DN/S interface. Such
quasiparticles, however, do not carry heat because excitation
energies of them are almost zero.

(3) The thermal conductance of the junctions reflects the
existence of the line nodes of the pair potential except for the
case that the direction of the line node is perpendicular to
that of the thermal current.

Electric conductance, thermal conductance, and their Lor-
entz ratio calculated as a function of temperature depend
strongly on a pairing symmetry of a superconductor. This
fact indicates a possibility of distinguishing one pairing sym-
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metry from another by careful comparison of the present
calculations and experimental results.

In this paper, we have focused on N/S junctions of uncon-
ventional superconductors. So far an extension of the circuit
theory to long diffusive S/N/S junctions has been performed
by Bezuglyi et al.%® in s-wave symmetry. In S/N/S junctions,
the multiple AR produces subharmonic gap structures in
I-V curves.~7¢ In S/N/S junctions of unconventional super-
conductors, it is known that MARS leads to the anomalous
current-phase relation and temperature dependence of the Jo-
sephson current.”” Effects of unconventional superconductiv-
ity of such I-V curves are an important future issue. The
research in this direction is now in progress and the results
will be reported elsewhere.
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APPENDIX

Here we calculate the matrix current for the calculation of
the thermal conductance of d-wave junctions. We denote H,,
H_, B, I as follows:

I:I+=<Rp Ap)’ I:I_=(Rm Am)’
0 A4, 0 A,
“loog)t Vo,

with I:Ii=((v}2+inz_)/ 2. In singlet superconductors, we can

>
>

(A1)

choose R,=cos 6(x)%+sin 6(x)%, to satisfy the boundary
condition at the interface.

The matrix current is given by I=Tr[l,] with
1,=2[G,.B,] and

én = (_ Tln[Gv]’I:r_l] + IrF_II:I_‘_ - T%néll‘r_llrl_‘_él)_l

X[Ty,(1 - HZ") + T5,G,HZ'H,], (A2)
where

T,

n

Ty, = ———.
"o a2 1T,

Next, we focus on the Keldysh component. We define 7,
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1 A
I,= 52 Tr{Ix]. (A3)

After straightforward calculations, [, is given by
1 A A s A A A A
ly= 3 2 Tl (R = A DBy + fi(L)(Ry = A)(By — Bp)).

It is necessary to obtain éK which is given by
éK=l§IE1NK—b§IbKl§EINA, (A4)
with

v

D=- Tln[él,ér_l] + I:F_II:I+ - T%néll-r—lI:I+le )

. Dy D
D=( r )
0 b,
where NK and IVA is the Keldysh and advanced part of N
given by
. . c e o [Ny N
N=T,,-T,,H'+T,G,H'H,, N=( K A’().
0 n,

We can express ICJK and ﬁK as linear combination of distri-
bution functions fs, f;(L_), and f,(L_) as follows:

Ng=Cifs+ Cof (L) + Cof (L),

Dy =Cufs+ Csf(L) + Cef (L),

by 2 X2 matrix C; (i=1-6). Taking account of the fact that
13,}16‘1, DAI_QICA’Z, DA;]C'4DA/}1]<]A, and DA,}lCA’Sﬁ;lNA can be ex-
pressed by the linear combination of 7, and 73, while DA,_QICA}
and ﬁ,}léﬁDA;lN ', are proportional to the linear combination
of 1 and 71, we can express I, as follows:

1 A A At Aia alin
Iy = S 2 Tilfs(Ry = AD(DR'C, - DR CD;'N,)
+ (LR, = A (DR C,— D' CsD3'N,y)
+ (1%1 _Al)(éA —E)R)]
with
é‘1 = Tln{A_1 - R\;zl + Tln[iéliéi;l(iép _AAp)

m

~Ry(A;' - R DAL,
éz = T%n(iél - A])A;HIAP,

Cy=T[R(A) =R = (A, - RDAT+R,R, - A, A,

+T1,[- RR, (R, - A)A, +R,\(4,' -R,)A A
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TLRI R -AY)

C/\‘5 = Tln{_ (I/él - Al)Am ;11
- Tln[klk;lﬁp(kl —A)+ (R, —Al)AmA;lAJ}
(AS)

We use the following equations:

PHYSICAL REVIEW B 72, 214513 (2005)
A1 p—1 2 b p-lp\_p
DR (Tln - Tlan + TlanRm Rp) - BR»

éR(l + R:nl + T]nélkpé;l) = T]nié_ljé

m=ip>

(A6)

where By is given as Br=b7,+b,7,+b;73 with

=iTy,(frg-—f-8+)

b,

T+ T3)(1+ 8,8+ fuf ) + 2T, [cos O,(g, +g) +sin O,(F, +£)]

- T]n[Tln sin 0L(1 +8+8- +f+f—) +f+ +f—]

by

= Ty,[T1,cos 6,(1 +g,g_+f.f)+g.+g_]

T+ T)(1+g,g +fof )+ 2T, [cos O,(g, +g) +sin 6,(F, + )]

by

T+ T3)(1+g,g_+fof ) + 2T, [cos O,(g, +g) +sin 6,(F, + )]

(A7)

Finally we reach the expression of [, given by the following equation:

I _2 T, C(;[fs_fl(L—)]
b +T,[cos 0,(g, +g_) +sin 6,(f, +f)]

=~ 2 |2 - T,)(1+g.8_+f.f)

2

C(’) =T,(1+ |COS 0L|2 - |Sin 0L|2)(|g+ + g—|2 - |f+ +f—|2 + |1 +ffo+ g+g—|2 - |f+g— - g+f—|2)
+4(2 - T,){Real[(1+g,g" + f,f-)(g, + g_)Real(cos 6;) — Imag(sin 6,)Tmag[(1 +g.&" + /) (f, + )]}
+4T, Real(cos 6, sin 6))Reall(f, + f_) (g, + g)]. (A8)

This is a general expression applicable to any singlet superconductors without broken time reversal symmetry state.
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