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The superfluid density is calculated theoretically for incompressible vortex lattices in two dimensions that
have isolated dislocations quenched in by a random arrangement of pinned vortices. The latter are assumed to
be sparse and to be fixed to material defects. It is shown that the pinned vortices act to confine a single
dislocation of the vortex lattice along its glide plane. Plastic creep of the two-dimensional vortex lattice is
thereby impeded, and macroscopic phase coherence results at low temperature in the limit of a dilute concen-
tration of quenched-in dislocations.
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I. INTRODUCTION

Consider either a bismuth-based, a mercury-based, or a
thallium-based high-temperature superconductor in high
enough external magnetic field so that magnetic flux lines
appear, and so that these overlap considerably. Such materi-
als are extreme type-II layered superconductors, with mass-
anisotropy ratios between the layer direction and the perpen-
dicular direction of order 10−3 or less.1 To a first approxi-
mation then, it becomes valid to neglect the coupling of mag-
netic screening currents between layers, as well as the Jo-
sephson effect between them. The description of the initial
physical situation is thereby reduced to a stack of isolated
vortex lattices or vortex liquids within each layer.

High-temperature superconductors similar to those just
mentioned typically also have crystalline defects and inho-
mogeneities that act as pinning centers for vortex lines in the
mixed phase. Within the preceding approximation, theoreti-
cal and numerical studies indicate that any net concentration
of randomly pinned vortices results in a net concentration of
unbound dislocations quenched into the two-dimensional
�2D� vortex lattices of each layer.2–5 Defective vortex matter
is then left as the only possible solid state of the mixed phase
in two dimensions. It is useful to divide the last group into
two classes: �i� configurations of vortices that contain no
unbound disclinations and �ii� configurations of vortices that
contain some concentration of unbound disclinations.6 The
amorphous vortex glass characterized by macroscopic phase
coherence falls into the second class.7 It is believed to exist
only at zero temperature in two dimensions, however. Defec-
tive vortex lattices with no unbound disclinations, but with
isolated dislocations,8 or with dislocations arranged into
grain boundaries,9–11 are then perhaps left as the only solid
states of the mixed phase that are possible in two dimensions
above zero temperature.

In this paper, we demonstrate theoretically that defective
vortex lattices in two dimensions show macroscopic phase
coherence in the extreme type-II limit, in the regime of weak
random pinning. We find, in particular, that the 2D vortex
lattice exhibits a net superfluid density if it is void of discli-
nations, and if only a small number of isolated dislocations
are quenched in in comparison to the total number of pinned
vortices. This result is achieved in three steps. First, we dem-
onstrate in Sec. II that a network of pinned vortices confines

the motion of a single dislocation along its glide plane. This
guarantees that the 2D vortex lattice remains elastic in the
limit of a dilute concentration of such unbound dislocations.
Next, the uniformly frustrated XY model for the 2D vortex
lattice is introduced in Sec. III, through which a useful ex-
pression for the superfluid density is derived in terms of
glide by unbound dislocations.8 Interactions among the dis-
locations are notably ignored here. These results are then
assembled in Sec. IV, where the final formula �Eq. �27�� for
the superfluid density of the defective vortex lattice is ob-
tained as a function of the ratio of the number of unbound
dislocations to the number of pinned vortices.

II. COLLECTIVE PINNING OF ONE DISLOCATION

It is strongly believed that the vortex lattice in two-
dimensions is unstable to the proliferation of dislocations in
the presence of an arbitrarily weak field of random pinning
centers.4,5 Let us assume this to be the case. Let us also
assume that the interaction between dislocations can be ne-
glected due to the screening action by the random pins.12

This requires a dilute concentration of dislocations in com-
parison to the concentration of pinned vortices. Consider
then a single dislocation in the 2D vortex lattice at zero tem-
perature in the extreme type-II limit. The latter implies that
the vortex lattice is incompressible. The dislocation can
therefore slide along its glide plane,13 but it cannot climb
across it. This would require the creation or the destruction
of vortices, which is prohibited by the extreme type-II limit.
Below, we shall demonstrate how randomly pinned vortices
in the 2D vortex lattice act to pin the dislocation itself along
its glide plane.

Consider a single dislocation that can move along its glide
plane in the 2D vortex lattice with randomly located material
defects present. Assume that a small fraction of the vortices
are localized at some subset of the pinning centers. The
former is guaranteed at zero-temperature for a sparse array of
random pinning centers compared to the density of vortices.

A vortex that lies at a point R� in the case of the perfect
triangular vortex lattice will in general be displaced to a po-

sition R� +u��R� � by the action of thermal fluctuations and of
the random pinning centers. We shall now make the approxi-
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mation that the pinned vortices are fixed:

u��R� i� = v� i for i = 1,2, . . . ,Npin, �1�

where R� i is the home site of the vortex pinned down at

R� i+v� i, and where Npin denotes the total number of pinned
vortices. This approximation is valid for physics at large
length scales compared to the effective radius of a pinning
center. It then requires low magnetic fields compared to the
upper critical one if the radius of a pinning center is of order
the coherence length. The energy of the pinned vortex lattice
is then given by

E =
1

2
�0� d2R��� � u��2 +� d2R�� · �u� − v�� �2�

in the continuum limit, where �0 denotes the shear modulus
of the unpinned vortex lattice,1,14 and where �� �R� �
=�i=1

Npin�� i�
�2��R� −R� i� is the field of Lagrange multipliers that is

introduced in order to enforce each of the Npin constraints
�1�. Also, the vortex lattice is incompressible in the extreme
type-II limit, and this requires that the displacement field
satisfy the constraint

�� · u� = 0 �3�

everywhere. By Eq. �2�, the equilibrium configuration u�0 of
the dislocation confined to its glide plane then satisfies the
field equation

�0�� � �� � u�0 + ��0 = 0 �4�

everywhere. It can be used to show that the elastic energy �2�
for a fluctuation about equilibrium u� =u�0+�u� takes the form

E =
1

2
�0� d2R��� � u�0�2 +

1

2
�0� d2R��� � �u��2

+� d2R��� · �u� , �5�

where ��� �R� �=�i=1
Npin��� i�

�2��R� −R� i� is the field of the fluctua-

tion in the Lagrange multipliers ��� i=�� i−�� i
�0�.

To proceed further, it is convenient to decompose the dis-
placement of vortices into pure wave and pure defect com-
ponents: u� =u�wv+u�df. Suppose now that the dislocation is dis-

placed by �R� df along its glide plane with respect to its
equilibrium position. Notice then that the fluctuation in the
defect component corresponds to a pair of dislocations with
equal and opposite Burgers vectors oriented along the glide
plane �see Fig. 1�:

�u�df�R� � = u�df
�0��R� − �R� df� − u�df

�0��R� � , �6�

where u�df
�0��R� � denotes the displacement field of the pure dis-

location at its home site. At this stage it becomes important
to observe that the pure wave and the pure defect compo-
nents do not interact elastically:6 �d2R��� �u��2=�d2R���
�u�wv�2+�d2R��� �u�df�2. Application of this fact to Eq. �5�
then ultimately yields the form

E = Edf + Ewv
�0� +

1

2
�0� d2R��� � �u�wv�2

+� d2R��� · ��u�wv + �u�df� , �7�

for the elastic energy, where Ewv
�0�= ��0 /2��d2R��� �u�wv

�0��2 is
the wave contribution to the elastic energy at equilibrium.

Also, Edf= ��0 /2��d2R��� �u�df�2 is the elastic energy of the
displaced pure dislocation, which is constant.

The energy �7� of the displaced dislocation is therefore
optimized by minimization with respect to the pure wave
component �u�wv along with the constraints

�u�wv�R� i� = − �u�df�R� i� for i = 1,2, . . . ,Npin. �8�

Its solution can be obtained by a straightforward generaliza-
tion of the solution for a pinned elastic string �see the Ap-
pendix�. This yields

�u�wv�R� � = − �
i=1

Npin

�
j=1

Npin

G
↔

��R� − R� i� · G
↔

i,j
−1 · �u�df�R� j� , �9�

where

G
↔

��R� � = �
q�

eiq� ·R��ẑ � q̂��qL�−2�ẑ � q̂� �10�

is the transverse Greens function over an L�L square region

with periodic boundary conditions, and where G
↔

i,j
−1 is the in-

verse of the Npin�Npin matrix G
↔

��R� i−R� j�. Notice that Eq.
�9� manifestly satisfies the constraints �8� and the incom-

pressibility requirement �� ·�u�wv=0. Also, direct substitution
of the solution �9� into Eq. �7� yields a change in the elastic
energy due to the displacement of the dislocation equal to

FIG. 1. Shown is a diagram for glide by a dislocation �upside-
down “T”� in the presence of randomly pinned vortices �“�”�.
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�Epin =
1

2
�0�

i=1

Npin

�
j=1

Npin

�u�df�R� i� · G
↔

i,j
−1 · �u�df�R� j� . �11�

Yet G
↔

i,j
−1 is the inverse of the 2D Greens function, G=−�−2,

projected onto transverse displacements �3� and onto the

sites of the pinned vortices �R� i	. If these sites are exten-
sive and homogeneous, then they resolve unity at long

wavelength �i=1
Npin 
 i��i 
 1. We therefore have that G

↔

i,j
−1

= �i 
 P�
−1�−�2�P� 
 j� at long wavelength, where P� denotes

the projection operator for transverse displacements �3�. Sub-
stitution into Eq. �11� then yields the expression

�Epin =
1

2
�0��

d2R��� � �u�df�2 �12�

for the change in the elastic energy due to the displacement
of the dislocation, where the prime notation signals that the
integral has an ultraviolet cutoff �Rpin� of order the average
spacing between pinned vortices �see Eq. �A7� and Ref. 15�.
We conclude that the displacement of the dislocation along
its glide plane generates shear stress on the vortex lattice via
the array of pinned vortices �see Fig. 1�. This then results in
a restoring Peach-Kohler force on the displaced disloca-
tion.13

Let us now compute the effective spring constant of the
Peach-Kohler force experienced by the dislocation at small
displacements from equilibrium due to the array of pinned
vortices

�Epin =
1

2
kpin��Rdf�2 for npin��Rdf�2 � 1, �13�

where npin denotes the density of pinned vortices per layer.
The relative displacement field �6� then corresponds to that
of a pure dislocation pair of extent �Rdf that is oriented along
its glide plane. Without loss of generality, it is sufficient to
consider a pair of dislocations centered at the origin, with the
glide plane located along the x axis. The displacement field is
then given asymptotically by13,16

�u�df�R� �  �b/����Rdf��XY/R4�R� , �14�

where b is one of the equal and opposite Burgers vectors
oriented parallel to the glide vector ��Rdf�x̂. This expression
is valid in the limit of small displacements relative to the
spacing between pinned vortices npin��Rdf�2�1. Substitution
into expression �12� for the change in the elastic energy
yields the result

kpin = �2npin�Rpin
2 �−1��0b2�npin �15�

for the effective spring constant of the Peach-Kohler force
�13�, where Rpin denotes the natural ultraviolet cutoff of the
array of pinned vortices15 npin�Rpin

2 �1. Equations �13� and
�15� represent the final result of this section. It indicates that
the incompressible vortex lattice confined to two dimensions
does not respond plastically to small shear stress13 when a
dilute enough concentration of unbound dislocations are
quenched in. Instead, the response to small shear stress

should remain elastic, like in the pristine case,1,14 due to the
pinning of the quenched-in dislocations.

III. UNIFORMLY FRUSTRATED XY MODEL

The minimal description of the mixed phase in a layered
superconductor is given by a stack of isolated XY models
with uniform frustration over the square lattice.17 Both the
effects of magnetic screening and of Josephson coupling be-
tween layers are neglected in this approximation. The ther-
modynamics of each layer is then determined by the super-
fluid kinetic energy

EXY
�2� = − �

�=x,y
�

r

J�cos���� − A��
r, �16�

which is a functional of the superconducting phase ��r� over
the square lattice. The local phase rigidities within layers Jx
and Jy are assumed to be constant over most of the nearest-
neighbor links, with the exception of those links in the vicin-
ity of a pinning site. The vector potential A�= �0,2�fx /a�
represents the magnetic induction B�=	0f /a2 oriented per-
pendicular to each layer. Here a denotes the square lattice
constant for each layer, which is of order the coherence
length. Also, 	0 denotes the flux quantum, and f denotes the
concentration of planar vortices per site. After taking the
Villain approximation, which is generally valid at low
temperature,18 a series of standard manipulations then lead to
a Coulomb gas ensemble with pinning centers that describes
the vortex degrees of freedom on the dual square lattice.19

The ensemble for each layer is weighted by the Boltzmann
distribution set by the energy functional

Evx = �2��2 �
�R� ,R���

�QJ0G�2��Q� + �
R�

Vpin
Q
2, �17�

written in terms of the integer vorticity field Q�R� � over the

sites R� of the dual lattice in that layer, and of the fluctuation
�Q=Q− f . A logarithmic interaction, G�2�=−�−2, exists be-
tween the vortices, with a strength J0 equal to the Gaussian

phase rigidity. Last, Vpin�R� � is the resulting pinning
potential.19

The 2D Coulomb gas ensemble �17� can be used to test
for the presence or the absence of superconductivity. In par-
ticular, the macroscopic phase rigidity parallel to the layers is
given by one over its dielectric constant20


s
�2D�/J0 = 1 − lim

k→0
�2�/�sw���Qk��Q−k��/k2a2N� . �18�

Here �Qk� =Qk� − �Qk�� is the fluctuation in the Fourier trans-
form of the vorticity: Qk� =�R�Q�R� �eik�·R� . Also, �sw

=kBT /2�J0 is the spin-wave component of the phase-
correlation exponent, and N� denotes the number of points in
the square-lattice grid. Now suppose that a given vortex is
displaced by �u� with respect to its equilibrium location at
zero temperature u�0. Conservation of vorticity dictates that
the fluctuation in the vortex number is given by �Q

=−�� ·�u� . Substitution into Eq. �18� then yields the result8
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s
�2D�/J0 = 1 − ��vx� /�sw� �19�

for the phase rigidity in terms of the vortex component of the
phase-correlation exponent

�vx� = ����
R�

��u��2��Nvxavx
2 . �20�

The latter monitors fluctuations of the center-of-mass of the
vortex lattice.16 Above, Nvx denotes the number of vortices,
while avx=a / f1/2 is equal to the square root of the area per
vortex. Also, the prime notation above signals that the sum-
mation is restricted to the vortex lattice. To proceed further,
we again express the displacement field as a superposition of
pure wave and of pure defect components of the triangular
vortex lattice:16 �u� =�u�wv+�u�df. Observe now that �

R�
��u�wv

=0 under periodic boundary conditions if rigid translations
of the 2D vortex lattice are not possible. The latter is
achieved by the array of pinned vortices �1� through the elas-
tic forces �2�. By Eq. �20�, we therefore have the result

�vx� = ����
R�

��u�df�2��Nvxavx
2 �21�

for the fluctuation in the center of mass of the 2D vortex
lattice. The degree of phase coherence in the pinned vortex
lattice is therefore insensitive to its pure wave contribution.

Consider now the hexatic vortex glass,21,22 with a collec-
tion of Ndf randomly located unbound dislocations that are
quenched in by the random array of pinned vortices.4,5 Sup-
pose also that the temperature is low enough so that the
thermal excitation of pairs of dislocations in the vortex lat-
tice can be neglected. Within the elastic medium description
�2�, the pure defect component of the net displacement field
is just a simple sum of the displacements due to each indi-
vidual dislocation. And by analogy with the hexatic liquid
phase of the pure 2D vortex lattice,6 we shall assume that
interactions in between the unbound dislocations can be ne-
glected, be they direct or be they transmitted through the
field of pinned vortices. Expression �21� for the fluctuation
of the center-of-mass of the 2D vortex lattice then reduces to

�vx�  ����
R�

��u�df
�1��2�ndf, �22�

where �u�df
�1��R� � denotes the fluctuation field of a given dislo-

cation displaced along its glide plane �6�, where ndf
=Ndf /Nvxavx

2 is the density of unbound dislocations per layer,
and where the overbar notation denotes a bulk average. A
lone dislocation roams along its glide plane to an extent that
is vanishingly small, however, in the zero-temperature limit:
�R� df→0 as T→0. Without loss of generality, we can then
use the asymptotic expression �14� for the corresponding
fluctuation in the displacement field, �u�df

�1�. The fluctuation in
the center-of-mass of the 2D vortex lattice �22� is dominated
by the “diagonal” on-site contribution ��

R�
� 
�u�df

�1�
2�, which
yields the estimate8

�vx�  ndf�
�Rdf
2��b/2avx�2ln R0/adf. �23�

Here adf is the core diameter of a dislocation, while R0 is an
infrared cutoff. The above logarithmic divergence associated
with the latter scale justifies the neglect of the contribution to
the fluctuation in the center-of-mass �22� by the autocorrela-
tor ��u�df

�1� ·�u�df
�1�

�� at different points. This is due to the fact �i�
that −��u�df

�1��a� ·�u�df
�1��b�� must decay faster than ��
�u�df

�1�
2� /
2� ln�R0 /adf���avx/Rab�2 by Eq. �22� because �vx� �0 and to
the fact �ii� that the former autocorrelator is short range as a
result of disordering by the quenched-in dislocations. Last,
given that expression �23� was obtained by neglecting inter-
actions in between isolated dislocations, it is natural to as-
sume that the infrared scale R0 that appears there is set by
their density ndf.

IV. LOW-TEMPERATURE PHASE COHERENCE

We shall now assemble the results of the previous two
sections and compute the macroscopic phase rigidity of a
defective vortex lattice in two dimensions. Recall that the
energy cost for a small displacement of the dislocation along
its glide plane takes the form �Edf= �1/2�kpin 
�Rdf
2, where
kpin is the effective spring constant �15� due to the randomly
pinned vortices. This approximation for the elastic energy of
the dislocation along its glide plane is valid in the zero-
temperature limit T→0, where it amounts to a saddle-point
approximation for the Boltzmann weight in the thermal av-
erage �
�Rdf
2�. The periodic Peierls-Nabarro potential energy
along the glide plane of the dislocation shall be neglected for
the moment.13 Application of the equipartition theorem to
expression �23� for the fluctuation of the center of mass of
the 2D vortex lattice then yields the result

�vx�  �kBT��ndf/kpin��b/2avx�2ln R0/adf, �24�

which notably vanishes linearly with temperature. Substitu-
tion into expression �19� in turn yields the result


s
�2D�/J0  1 − �2�J0��ndf/kpin��b/2avx�2ln R0/adf �25�

for the 2D phase rigidity in the zero-temperature limit. Sub-
stitution of the result �15� for the effective spring constant
above yields the final formula for the macroscopic 2D phase
rigidity near zero temperature


s
�2D�

J0
 1 − �npin · �Rpin

2 �
�J0

�0avx
2

Ndf

Npin
ln� R0

adf
� , �26�

in terms of the number of unbound dislocations Ndf, the num-
ber of vortices Nvx, and of the number of pinned vortices Npin
in an isolated 2D vortex lattice. Recall now the estimate for
the shear modulus of the unpinned vortex lattice in the ex-
treme type-II limit,1,14 �0avx

2 = �� /4�J0. Substitution into ex-
pression �26� for the superfluid density then yields the yet
simpler result
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s
�2D�

J0
 1 − �2npin · �Rpin

2 �
Ndf

Npin
ln� R0

adf
�2

near T = 0.

�27�

The effect of the Peierls-Nabarro potential energy with pe-

riod b� that any dislocation experiences along its glide plane
has been neglected above.13 It becomes useful in this in-
stance to define the temperature scale

kBT0 = kpinb
2 � ��0b2��npinb

2� , �28�

at which point thermally induced excursions of the disloca-
tion about its home site are typically of the size of a Burger’s
vector b. Notice first that kBT0 is an extremely small fraction
of the elastic energy scale �0b2 if the concentration of pinned
vortices is dilute. Typical excursions of the dislocation will
be large compared to the Burgers vector at temperatures
above this extremely low scale: on average 
�Rdf 
 �b at
T�T0. In such case, the periodic Peierls-Nabarro potential
can be neglected because the thermal motion of the disloca-
tion becomes insensitive to its relatively short period b. The
periodic potential will take effect at extremely low tempera-
ture T�T0, on the other hand, in which case it will tend to
localize the dislocation even further about its home site.

Let us finally close the chain of calculations by estimating
the ratio of the number of unbound dislocations that are
quenched into the vortex lattice to the number of pinned
vortices. Notice that it determines the phase rigidity �27� of
the defective vortex lattice at T�T0. A variational calcula-
tion by Mullock and Evetts finds that this ratio is given by

Ndf

Npin
= � �

ln�ndfadf�
2�−1�2� fpin

�0b
�2

, �29�

where fpin denotes the maximum pinning force, and where
adf� is of order the core diameter of a dislocation in the vortex
lattice.2 This result is valid only in the collective-pinning
regime at NdfNpin. Equation �29� therefore implies a small
ratio of topological defects to pinned vortices Ndf�Npin for
weak pinning forces compared to the elastic forces fpin
��0b. Substitution of the estimate for the shear modulus
quoted earlier1,14 yields the field dependence Ndf /Npin
=Bcp/B for this ratio �29�, where Bcp= ��3/2��� /
ln�ndfadf�

2�−1�2�4fp /�J0�2	0 is the threshold magnetic field

above which collective pinning holds. Last, the effect of sub-
strate pinning by the XY model grid �16�, which tends to
suppress the number of unbound dislocations even further, is
neglected here. This is valid in the regime of dilute vortex
lattices compared to the model grid17 f �1/36.

Three important conclusions can be reached from the es-
timate for the degree of macroscopic phase coherence en-
coded by Eqs. �27� and �29� above. First, observe that Nvx,
Npin, and Ndf are all extensive thermodynamic variables that
scale with the area of each layer L2. The macroscopic phase
rigidity �27� hence attains its maximum value J0 near zero
temperature when the total number of unbound dislocations
is subthermodynamic: e.g., if Ndf�L, or if Ndf remains finite
as L→�. This state is then a Bragg glass.4,23 The variational
result �29� for the number of unbound dislocations obtained
by Mullock and Evetts2 indicates that it exists only in the
absence of bulk point pins. Other types of pinning, such as
surface barriers or planar defects, must therefore be present
in order to impede flux flow by the 2D Bragg glass.16 Sec-
ond, recall that npin ·�Rpin

2 �1. Expression �27� therefore im-
plies that weaker macroscopic phase coherence exists near
zero temperature at dilute concentrations of unbound dislo-
cations: 
s

�2D��0+ ��0 for Ndf�Npin. Such a state is then a
hexatic vortex glass.21,22 The variational result �29� for the
number of unbound dislocations indicates that this state ex-
ists at weak pinning fpin��0b, which occurs at large mag-
netic fields B�Bcp. Third, expression �27� also implies that a
pinned vortex liquid that shows no macroscopic phase
coherence is possible in the zero-temperature limit at
sufficiently high concentrations of unbound dislocations:

s

�2D��0+ �=0 if Ndf�Npin. This phase is then a �pinned�
hexatic vortex liquid.6,16 The variational result �29� for the
number of dislocations indicates that such a phase-incoherent
state can occur in the regime of strong pinning forces, at low
fields compared to the collective pinning threshold Bcp. We
remind the reader that expression �27� was derived by ne-
glecting the interactions in between dislocations. This ap-
proximation, and Eq. �27� as a result, may not necessarily be
valid in the regime of relatively dense dislocations last dis-
cussed.

V. DISCUSSION

The results of the previous sections are summarized by
Table I. Here the low-temperature phases are listed by in-
creasing order of the random pinning force fpin. Below, we
confront Table I with previous theoretical work on 2D vortex
matter.

Order parameters. It is natural to ask what order param-
eters characterize the phases listed in Table I. Let us begin by
defining the autocorrelation function

GBrG�r�� =�exp i���r��� − ��r� + r��� + �
r��

r�+r��
dl� · A� /a��

�30�

for the Bragg-glass order parameter, where the overbar de-
notes a bulk average over r��. Drawing the analogy with the

TABLE I. Listed are physical properties that characterize the
low-temperature phases of vortex matter in two dimensions at the
extreme type-II limit. The list is indexed by increasing levels of
disorder.

Disorder
index Phase 
s

�2D��0+ � /J0

Unbound
dislocations?

Unbound
disclinations?

1 Bragg glass unity no no

2 hexatic
vortex glass

fraction yes no

3 hexatic
vortex liquid

zero yes no

4 vortex liquid zero yes yes
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thermal degradation of phase coherence in the pristine 2D
vortex lattice16 implies that GBrG�r�� is not short range in the
zero-temperature limit if no unbound dislocations are
quenched in. The latter is consistent with with the properties
of the Bragg glass listed in Table I �see Ref. 23�. We con-
clude that the Bragg-glass phase studied here displays con-
ventional phase coherence at long range. Again in analogy
with the case of thermal disordering of the pristine vortex
lattice,16 the unbound dislocations that are quenched inside
of the hexatic vortex glass, on the other hand, will result in
short-range order in GBrG�r�� over a scale set by the density of
such defects ndf. The absence of Bragg-glass order in the
hexatic vortex glass, as defined above by Eq. �30�, is then
consistent with the presence of unbound dislocations in the
vortex lattice.23

Following Fisher, Fisher, and Huse,7 we can next define
the vortex glass autocorrelation function

GVG�r�� = 
�exp i���r��� − ��r� + r�����
2. �31�

In the zero-temperature limit, this function is notably identi-
cal to unity if the ground-state configuration ei�0 is unique.
Recall now that the present treatment of the hexatic vortex
glass has been restricted to the limit of vanishing dislocation
density, in which case a unique ground state is to be ex-
pected. The autocorrelation function GVG�r�� then is not short
range for the case of the hexatic vortex glass in the limit of
weak disorder pinning. The zero-temperature configuration
may not be unique, on the other hand, for the case of the
�pinned� hexatic vortex liquid. The number of unbound dis-
locations is comparable to the number of pinned vortices in
such case. Interactions in between dislocations may become
important, and these may frustrate the confining action on
the dislocations by the pinned vortices. The end result could
be multiple ground states that lead to a vortex glass auto-
correlation function GVG�r�� that shows only short-range
order.

Consider again the �pinned� hexatic vortex liquid state
that is possible at relatively dense concentrations of unbound
dislocations Ndf�Npin, by expression �27� for the superfluid
density. Some fraction of the pairs of fivefold and sevenfold
coordinated disclinations that make up the unbound disloca-
tions present in this state will unbind in the strong pinning
limit fpin��0b. This is confirmed by direct Monte Carlo
simulations24 of the Coulomb gas ensemble �17�. Such a
state then shows only short-range translational and orienta-
tional order. It also cannot have a net superfluid density

s

�2D��0, since it is yet more disordered than the hexatic
vortex liquid from whence it originates. For the same reason,
it can neither show long-range Bragg glass nor vortex glass
order in the respective autocorrelation functions �30� and
�31�. This strongly pinned state is then a “conventional” vor-
tex liquid �see Table I�.

Vortex Glass in 2D? Fisher, Fisher, and Huse argue in
Ref. 7 that the vortex-glass state is not possible in two di-
mensions above zero temperature. This statement conflicts at
first sight with the phase-coherent vortex lattice state with a
dilute concentration of quenched-in dislocations that we have
discovered in the uniformly frustrated XY model �16� in the

limit of weak random pinning. This state also shows vortex-
glass order �31�. Study of Ref. 7 reveals that the authors
presume the strong-pinning limit, however. The vortex glass
is necessarily amorphous under such conditions, where it
possesses a net concentration of unbound disclinations. It
hence lies in the same topological class as the “conventional”
vortex liquid state discussed above and listed in Table I. No
conflict then truly exists between Ref. 7 and the present re-
sults concerning the impossibility of observing an amor-
phous vortex glass in two dimensions. The latter is topologi-
cally distinct from the hexatic vortex glass discovered here.

The hexatic vortex glass will also have some concentra-
tion of bound pairs of dislocations quenched into the vortex
lattice in the zero-temperature limit. Vinokur and co-workers
have argued that the absence of infinite potential barriers
along the corresponding glide planes will result in thermally
activated plastic creep of magnetic flux due to the diffusion
of such pairs of dislocations, and in thermally activated elec-
trical resistance as a result.25,1 Hence, although a stack of
uncoupled sheets of hexatic vortex glass shows magnetic
screening in direct proportion to the superfluid density 
s

�2D�,
this system may not in fact be a perfect conductor. Flux
creep immediately becomes neutralized, however, once mac-
roscopically big layers �compared to the Josephson penetra-
tion depth� are coupled through the Josephson effect. This is
due to the binding of pairs of dislocations into “quartets” that
carry no net magnetic flux.12,1 The possibility just raised of
three-dimensional vortex matter that is ohmic, but that nev-
ertheless shows macroscopic phase coherence, therefore re-
mains unrealistic.

VI. CONCLUSIONS

We have demonstrated that incompressible vortex lattices
that are confined to two dimensions and that are void of
unbound disclinations show macroscopic phase coherence
near zero temperature in the limit of weak random pinning.
The latter ensures that the total number of unbound disloca-
tions quenched into the vortex lattice by the randomly pinned
vortices is small in comparison to the total number of such
pins. This in turn results in a net superfluid density. The
hexatic vortex glass predicted here is consistent with the ob-
servation of isolated dislocations that are quenched into the
vortex lattice of extremely layered high-temperature super-
conductors at low temperature,21 and with the observation of
superconductivity in 2D Josephson junction arrays in exter-
nal magnetic field.26 How exactly such a superconducting
vortex lattice transits into a vortex liquid with increasing
temperature remains unclear. Equations �19� and �21� indi-
cate that the superfluid density vanishes either once the
quenched-in dislocations delocalize and begin to cross the
length of the vortex lattice, or once thermally activated pairs
of dislocations unbind and begin to cross the length of the
vortex lattice.16 Both mechanisms cause plastic creep of the
2D vortex lattice,13 which destroys macroscopic phase coher-
ence. Continuity implies that the melting temperature Tg

�2D�

of the defective vortex lattice lies near that of the pristine
vortex lattice17 kBTm

�2D�J0 /20, in the limit of weak random
pinning.
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APPENDIX: PINNED ELASTIC STRING

Consider a tense elastic string of length L that lies along
the x axis under periodic boundary conditions, and suppose
that only transverse displacements u�x� along the y axis are
allowed. Suppose further that the string is pinned down at
Npin sites:

u�xi� = vi for i = 1,2, . . . ,Npin. �A1�

The shape of the string with the lowest energy can then be
determined by minimizing the elastic energy along with ap-
propriate terms that enforce the constraints

E =
1

2
�0�

0

L

dx�du

dx
�2

+ �
0

L

dx � · �u − v� . �A2�

Here �0 denotes the shear modulus, while the field ��x�
=�i=1

Npin�i��x−xi� is weighted by the Lagrange multipliers �i

that correspond to each of the constraints �A1�. The configu-
ration that minimizes the elastic energy �A2� satisfies the
field equation

− �0
d2u

dx2 + � = 0 �A3�

everywhere. Equation �A2� can be easily minimized in the
wave representation

u�x� = �
q

uqeiqx and ��x� = �
q

�qeiqx, �A4�

expressed as a sum over allowed wave numbers q that are
multiples of ±2� /L. One then obtains the solution

u�x� = �
i=1

Npin

�
j=1

Npin

G�x − xi�Gi,j
−1v j , �A5�

where G�x�=�qeiqx /Lq2 is the Greens functions in one di-
mension, and where Gi,j

−1 is the inverse of the Npin�Npin ma-
trix G�xi−xj�. Notice that the above solution satisfies the
constraints �A1�. It also satisfies the field equation �A3�, with
Lagrange multipliers �i=−�0� j=1

NpinGi,j
−1v j that weight the field

��x� at each of the pins located at xi. Direct substitution of
the solution �A5� into the elastic energy �A2� then yields the
result

E = ��0/2��
i=1

Npin

�
j=1

Npin

viGi,j
−1v j . �A6�

It reduces to the expression

E1,2 = ��0/2��v1 − v2�2/
x1 − x2
 �A7�

for the elastic energy in the special case of two pins at the
thermodynamic limit L→�. Here we used the result G�x�
=G�0�− �
x 
 /2� for the Greens function in one dimension,
with a limiting value G�0�→� for the constant.

1 G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin,
and V. M. Vinokur, Rev. Mod. Phys. 66, 1125 �1994�.

2 S. J. Mullock and J. E. Evetts, J. Appl. Phys. 57, 2588 �1985�.
3 A. C. Shi and A. J. Berlinsky, Phys. Rev. Lett. 67, 1926 �1991�.
4 T. Nattermann and S. Scheidl, Adv. Phys. 49, 607 �2000�.
5 C. Zeng, P. L. Leath, and D. S. Fisher, Phys. Rev. Lett. 82, 1935

�1999�.
6 D. R. Nelson and B. I. Halperin, Phys. Rev. B 19, 2457 �1979�.
7 D. S. Fisher, M. P. A. Fisher, and D. A. Huse, Phys. Rev. B 43,

130 �1991�.
8 J. P. Rodriguez, Phys. Rev. B 69, 100503�R� �2004�.
9 C. Dasgupta and O. T. Valls, Phys. Rev. Lett. 91, 127002 �2003�;

M. Chandran, R. T. Scalettar, and G. T. Zimanyi, Phys. Rev. B
69, 024526 �2004�.

10 M. Menghini, Y. Fasano, F. de la Cruz, S. S. Banerjee, Y. Mya-
soedov, E. Zeldov, C. J. van der Beek, M. Konczykowski, and T.
Tamegai, Phys. Rev. Lett. 90, 147001 �2003�.

11 P. Moretti, M. Carmen Miguel, M. Zaiser, and S. Zapperi, Phys.
Rev. Lett. 92, 257004 �2004�.

12 M. Feigel’man, V. B. Geshkenbein, and A. I. Larkin, Physica C
167, 177 �1990�.

13 D. Hull and D. J. Bacon, Introduction to Dislocations, 3rd ed.
�Pergamon, Oxford, 1984�.

14 E. H. Brandt, J. Low Temp. Phys. 26, 735 �1977�.

15 Arrangements of pinned vortices that show clusters and voids do
not possess a well defined ultraviolet scale Rpin. They can occur
near the lower-critical magnetic field, in soft vortex lattices with
a purely random arrangement of columnar pinning centers, at
relatively low matching fields �see Ref. 10�.

16 J. P. Rodriguez, Phys. Rev. Lett. 87, 207001 �2001�.
17 Søren A. Hattel and J. M. Wheatley, Phys. Rev. B 51, 11 951

�1995�.
18 J. V. José, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson, Phys.

Rev. B 16, 1217 �1977�.
19 C. E. Creffield and J. P. Rodriguez, Phys. Rev. B 67, 144510

�2003�.
20 P. Minnhagen and G. G. Warren, Phys. Rev. B 24, 2526 �1981�.
21 C. A. Murray, P. L. Gammel, D. J. Bishop, D. B. Mitzi, and A.

Kapitulnik, Phys. Rev. Lett. 64, 2312 �1990�; P. Kim, Z. Yao,
and C. M. Lieber, Phys. Rev. Lett. 77, 5118 �1996�.

22 E. M. Chudnovsky, Phys. Rev. B 43, 7831 �1991�.
23 T. Giamarchi and P. Le Doussal, Phys. Rev. B 52, 1242 �1995�.
24 J. P. Rodriguez and C. E. Creffield �unpublished�.
25 V. M. Vinokur, P. H. Kes, and A. E. Koshelev, Physica C 168, 29

�1990�.
26 Y.-J. Yun, I.-C. Baek, and M.-Y. Choi, Phys. Rev. Lett. 89,

037004 �2002�.

MACROSCOPIC PHASE COHERENCE OF DEFECTIVE… PHYSICAL REVIEW B 72, 214503 �2005�

214503-7


