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A noncritical scaling model is reported to describe the behavior of low-dimensional magnetic systems.
Unlike the classical phase transition approach, nonsingular solutions are deduced that are worthwhile when
correlations exist, but which are not large enough to trigger a long range order at T�0. The notion of
“universality class” is extended to these systems that stand at or below a lower critical dimensionality, and
illustrated for the quantum Heisenberg ferromagnetic chain. In this system, the T dependence of �T exhibits a
power law with a negative critical exponent, −1.25S, and a negative critical temperature.
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I. INTRODUCTION

Since the 1960s a lot of work has been devoted to phase
transitions and critical phenomena that reveal the existence
of striking similarities in the behavior of very different
physical systems.1 Most of the experiments show that, super-
conductors apart,2 the behavior of the order parameter is very
different from that predicted by the Landau theory,3,4 point-
ing out the key role played by fluctuations.

Magnetic phase transitions have been extensively investi-
gated because of the large variety of materials showing dif-
ferent spins �Ising, XY, or Heisenberg� and lattice
dimensionalities.5–7 An important feature is that in the vicin-
ity of the ordering temperature, TC, magnetic moments be-
come strongly correlated within domains whose mean size �
diverges as a power law of 1/ �T−TC�. Accordingly, the
variation of the thermodynamic functions reflects that diver-
gence, being also described by power laws with a critical
exponent �, which depends on a few relevant parameters,
namely the dimension of the system �d�, the order parameter
�n�, and the range of the interaction.8,9 This induces two key
ideas into the critical phenomena theory, namely the concept
of scaling invariance and the concept of universality.

We have previously reported a model of “hierarchical su-
perparamagnetism,” that generalizes the ideas of scaling, by
allowing for nonsingular solutions, together with the singular
ones, in the classical “critical scaling” approach.10–12 Nons-
ingular solutions, that are usually ruled out, are shown to be
worthwhile when correlations exist, but which are not large
enough to trigger a long-range magnetic order at a finite TC,
because we sit at, or below, a lower critical dimensionality,
as evidenced in the Heisenberg spin-1 Haldane chain or the
two-dimensional �2D� Heisenberg systems.13–15

In the present paper, a noncritical scaling model is applied
to the ferromagnetic quantum chain of isotropic spins S,
which can only be solved numerically for finite units, and we
show that the magnetic susceptibility is very well described
by a universal power law.

II. NONCRITICAL SCALING: THE OTHER SOLUTIONS
OF THE SCALING MODEL

We consider in what follows a ferromagnetic system
made of N individual units of size �0, and magnetic moment

�= �S�S+1��1/2 �normalized to g2�B
2 /k�. Due to the interac-

tion between nearest neighbors, these moments align when
the temperature is low enough, and the correlation length,
��T�, defines the size of new objects. Their volume is �d in
space dimension d, and their number N=N0�� /�0�−d. Accord-
ingly, the magnetic moment, which increases like the volume
of the objects �only true for a ferromagnet�, may be written
as

�T � ��T�d �1�

The “static scaling hypothesis” then assumes that � increases
when T decreases, and eventually diverges like a power of
�J /TC−J /T�. This requires that

�/�0 = �1 − TC/T�−� = �1 − TC/T�−�/Tc �2�

with �=�TC�0, which may be written as

ln��/�0� = �/T + �TC/2T2 + �TC
2 /3T3 + ¯ . �3�

In the corresponding Arrhenius plot of � /�0, all solutions are
monotonous functions of 1 /T which increase when T de-
creases, with an initial slope which is precisely �.

For ��0, the sign of TC fixes the curvature in such a way
that the Arrhenius representation of � /�0=exp�� /T�, corre-
sponding to the TC=0 limit, separates solutions of positive
curvature, � /�0= �1−TC /T�−�/TC, from those whose curvature
is negative, � /�0= �1+TK /T��/TK where TC=−TK. Neither of
these solutions is forbidden by the thermodynamics.

The “static scaling assumption” has measurable conse-
quences. In particular, using Eq. �1� and permitting TC to be
positive null or negative, we obtain

�T = C 	 �1 − TC/T�−d� = C 	 �1 − TC/T�−� for TC � 0,

�4a�

�T = C 	 exp�d�/T� = C 	 exp�W/T� for TC = 0,

�4b�

�T = C 	 �1 + TK/T�d�/TK

= C 	 �1 + TK/T�−� for TC = − TK 
 0. �4c�

Solution �4a� looks like the familiar power law generally
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used to describe the phase transitions.7 Unlike the classical
expression, it is appropriate to depict the magnetic behavior
over the whole temperature range. The dependence of � on
the spin and lattice dimensionalities is given in Table I,
which describes a finite number of interesting cases, includ-
ing two exact solutions, the Ising chain model �n=1,d=1�
and the Onsager’s solution for the 2D Ising model �n=1,d
=2�. It can be pointed out that the long-range order is de-
stroyed if the space dimension is decreased below a lower
critical dimensionality, dc�n�, characterized by a divergence
of �.

Let us now focus upon the solutions of �4b� or �4c� that
have, in general, been left aside. They have thermodynami-
cally the same legitimacy as solution �4a�, and therefore are
candidates to describe systems where spin correlations exist,
but no long-range order takes place at any finite temperature.
For TC=0, the finding coincides with the exact solution for
the ferromagnetic Ising chain with nearest neighbor
interactions.16 We assume, more generally, that an exponen-
tial solution fits all situations, like the Ising chain, which
corresponds to a lower critical dimensionality dc. Con-
versely, we will show hereafter that the TC
0 solution de-
scribes systems setting below a lower critical dimensionality,
like the one-dimensional �1D� Heisenberg ferromagnets, and
we suspect that it could be appropriate in all cases where
d�1.

Note that because we are using J /T, which cancels when
T diverges, rather than T /J to construct the scaling variable
�J /TC−J /T� all Eqs. �4� have a sensible high temperature
expansion. Thus, the Curie-Weiss law �=C / �T−W� is recov-
ered, with C=S�S+1� being the Curie constant �in Ng2�B

2 /3k
unit�, and W=d	� the Weiss temperature.

In order to decide which expression is more appropriate to
describe experiments, we have proposed to differentiate Eqs.
�4� to deduce the equivalent expression

� log�T�/� log��T� = �T − TC�/�TC. �5�

The plot of � log10�T� /� log10��T� vs T gives a straight line,
in the range where the model is valid, which intersects the
temperature axis at a positive, null, or negative TC value, and
the T=0 axis at �−1. In the TC=0 limit, where �T is de-
scribed by Eq. �4b�, the straight line intersects the axes at
their origin. We show hereafter that such an approach fur-

nishes the right framework to describe the ferromagnetic
Heisenberg chains of quantum spins S, and to deduce an
analytical expression of the magnetic susceptibility.

III. DESCRIPTION OF FERROMAGNETIC
HEISENBERG CHAINS

In what follows, we describe the magnetic behavior of
finite ferromagnetic rings of N Heisenberg spins �S= 1

2 , 1, 3
2 ,

etc.� by using scaling arguments developed in Sect. I. We
have been guided by our confidence that: �i� superparamag-
netic scaling should describe the infinite 1D-Heisenberg fer-
romagnetic chain, and �ii� the use of finite rings is allowed if
the correlation length is much smaller than the size of the
rings. It follows that superparamagnetic hierarchical scaling
should be obeyed down to the lowest temperatures for very
large rings. Thermodynamical data of the ferromagnetic
rings, made of N quantum spins S, were calculated by exact
diagonalization of the spin Hamiltonian H=−J�SiSi+1, ac-
cording to the procedure initiated by Bonner and Fisher for
the S= 1

2 AF chain,17 and subsequently extended to arbitrary
spin quantum numbers.18–20 This well-documented numerical
approach was used to get data with a good accuracy.

Figure 1 shows the temperature dependence of �T as
� log10�T� /� log10��T� plots for finite ferromagnetic rings of
N isotropic spins S. For a given S, � log10�T� /� log10��T� is a
linear function of T, which is aiming a negative TC=−TK,
down to a threshold value TS�N�, the value of which de-
creases as N increases. TS�N� corresponds to the maximum
of � log10�T� /� log10��T�. We observe that this linear part
intercepts the axes at TC and �−1 �both negative� that stay
much the same for different N values. Only the linearity is
better for larger N, so that Eq. �4c� better fits the data for
larger N, suggesting the following expression of the suscep-
tibility for the infinite chain:

�T = C 	 �1 + �JS�S + 1�/T�−� with � � 0 �6�

which holds for T�TS�
�.

TABLE I. Critical exponent of the �T= f�T� dependence, ac-
cording to the spin space �n� and lattice �d� dimensionalities. The
mean field value �=1 is observed for all n at d�4. � diverges for
each n, at a lower critical dimensionality, dc�n�, which is a frontier
between the solutions of Eqs. �4a� and �4c�.

n=1 �Ising� n=2 �XY� n=3 �Hbg� n=
 �sph.�

d=1 
 −1.25S

d=2 1.75 KT 


d=3 1.25 1.32 1.387 2

d=4 1 1 1 1

Mean field 1 1 1 1

FIG. 1. Plot of the � log10�T� /� log10��T� function as deter-
mined by differentiating, numerically, the results of exact calcula-
tions of the susceptibility for ferromagnetic rings of N Heisenberg
spins S= 1

2 and 3
2 and for the classical limit S=
.
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Table II gives the best values of C, �, and � for S
= 1

2 ,1 , 3
2 , obtained by fitting the susceptibility data for the

largest rings, i.e., for N=14 �S= 1
2

�, N=10 �S=1� and N=8
�S= 3

2
�, in the temperature range T�TS�N�. In all cases, we

observe that the Curie constant well agrees with the theoret-
ical value S�S+1�, while −�� is constant ��0.75� within
1%. The data display a negative curvature which signals a
hierarchical scaling of the type of Eq. �4c�, and that our
model associates with systems below a lower critical dimen-
sionality.

Finally we find, although with less accuracy �within 5%�,
that �=−1.25S. These results enable us to propose the fol-
lowing general expression of �T by using reduced tempera-
ture TR=T /S�S+1�

�TR = �1 + 0.6J/STR�1.25S for TR � TR,S �7�

which is clearly more tractable than the polynomial expres-
sion reported for a given S in the literature.21,22 From this
approach, we can deduce the very low temperature behavior
of ferromagnetic chains, which is illustrated in Fig. 2 for S
= 1

2 . Note that this result is directly comparable with the re-
sult of Baker et al. for S= 1

2 , obtained from Padé approximant

technique.22 If the series expansion is restricted to the first
order in 1/T, they obtain �T��1+0.75J /T�2/3, which is very
similar to Eq. �7�.

In the limit of classical spins �S→
�, expression �7� may
be written

�TR = exp�0.75J/TR� for TR � TR,S=
 �8�

which indeed agrees with the theoretical expression of the
susceptibility for T larger than JS�S+1�.23 According to our
definition, therefore, d=1 may be viewed as a lower critical
dimensionality for classical Heisenberg spins but not for
quantum Heisenberg ones. The latter would belong to the
space dimension below dC �Table I�, since their magnetic
susceptibility exhibits at low temperature a finite power law
divergence, �T�T −1.25S.

A. Application to the ferromagnetic S= 1
2 chain

The above model has been used for describing the behav-
ior of the chain compound CuCl2�TMSO�, �TMSO is tetram-
ethylsulfoxide� which is the archetype of the S= 1

2 . Heisen-
berg ferromagnetic chain.24 The structure �Fig. 3� consists of
the stacking of Cu�II� chains running along the b axis, in
which copper�II� spin carriers interact through two chloro
pathways and one oxo bridge. The chains are well separated
in the space, the shortest Cu-Cu distance between neighbor-
ing chains being 7.2 Å.

The magnetic behavior of CuCl2�TMSO�,25 shown in Fig.
3, exhibits a striking divergence of �T�T� upon cooling down
to 8 K, which is characteristic of a ferromagnetic chain be-
havior. The drop of �T at lower temperature is ascribed to
small AF interchain interactions, which may be of dipolar
origin.26 In order to describe the whole behavior, we used the
expression of the susceptibility deduced from the scaling ap-
proach, namely, �T= �g2 /8�S�S+1��1+0.6J�S+1� /T�1.25S

with S= 1
2 . The effect of small interchain interactions �zj� has

been introduced as a second order perturbation.27

Figure 3 shows that the magnetic susceptibility is
perfectly fitted over the whole temperature range for J
= +93.55 K, zj=1.737 K, and g=2.12, which agree with the

TABLE II. Best values of C / �S�S+1��, ��, and �S for the
1D-Heisenberg ferromagnetic chains of spins S= 1

2 , 1, 3
2 . C, �, and

� �negative� are the parameters characterizing the scaling equation
adapted to systems in a space dimension below a lower critical
dimensionality, �T=C�1+�JS�S+1� /T�−�.

S 1
2 1 3

2

C /S�S+1� 0.991 0.989 0.989

−�� 0.742 0.735 0.731

−�S 1.222 1.232 1.164

FIG. 2. Plot in Arrhenius coordinates of �T�T�, for finite ferro-
magnetic rings of N Heisenberg spins S= 1

2 , and a prediction for the
infinite Heisenberg chain.

FIG. 3. View of the chain structure of CuCl2�TMSO� and �T
= f�T� variation. The full line represents the best fit of the experi-
mental data by using the power law expression �7� for S= 1

2 , cor-
rected from small interchain interactions �see Ref. 27�.
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values reported by Swank et al.24 �J= +74 K, zj=1.7 K, and
g=2.09� from the high temperature series expansion model.
Notice that the latter is only valid for T�J, unlike the pro-
posed expression which enables an accurate description of
the properties at least down to T /J=0.10.

IV. CONCLUSION

We have illustrated in this paper the pertinence of a strat-
egy that extends to the description of correlated systems, the

powerful ideas of scaling previously reserved to the sole
phase transitions. On the basis of the sign and magnitude of
the parameters characterizing the scaling, it is possible to
extend the notion of universality class to these systems that
stand at or below a lower critical dimensionality. This has
been illustrated for the Heisenberg ferromagnetic chain, the
�T product of which is well described by a power law with a
negative critical exponent, −1.25S, and a negative critical
temperature.
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