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The critical magnetic scattering has been investigated in EuS by means of small-angle scattering with
polarized neutrons using an inclined magnetic field geometry, allowing the determination of three-spin
correlation functions. Two contributions to the critical magnetic scattering I��q�= I↑�q�+ I↓�q� and
�I�q�= I↑�q�− I↓�q� were studied for temperatures near TC=16.52 K. The I↑�q� and I↓�q� are the scattering
intensities for the incident neutron beam polarized along �↑� and opposite �↓� to the magnetic field. The
symmetric contribution, namely I��q�, comes from the pair-spin correlation function. The scattering intensity is
well described by the Ornstein-Zernike expression I��q�=A�q2+�2�−1, where �=�−1 is the inverse correlation
length of the critical fluctuations. The correlation length � obeys the scaling law �=a0�

−�, where
�= �T−TC� /TC is the reduced temperature, a0=0.17 nm, and �=0.68±0.01. The difference contribution �I�q�
is caused by the three-spin chiral dynamical spin fluctuations that represent the asymmetric part of the polar-
ization dependent scattering. The q dependence of �I�q� follows closely 1/q2. �I�q� depends on the tempera-
ture as �−� with �=0.64±0.05. The exponents � as determined by means of the static measurements by � and
the dynamic measurements �using the chirality� are in excellent agreement with each other, demonstrating the
internal consistency of the theory and the experiment. Therefore, our results confirm the principle of the critical
factorization, which is known as Polyakov-Kadanoff-Wilson operator algebra.
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I. INTRODUCTION

The static and dynamic properties of Heisenberg ferro-
magnets above the Curie temperature TC have been investi-
gated in detail both experimentally and theoretically and are
considered to be well understood. The parameters defining
the static properties of the ferromagnets in the critical range
agree well with the theoretical critical exponents, for ex-
ample, � for the specific heat capacity, 	 for the magnetiza-
tion, 
 for the suscuptibility, � for the correlation length of
the pair correlation function, etc. The dynamic properties for
systems with an isotropic exchange interaction are well in-
terpreted in terms of the dynamic scaling hypothesis.1,2 In its
simple form this hypothesis states that all physical variables
are described by homogeneous scaling functions, which de-
pend only on the single parameter q��T� with � as the corre-
lation length of the fluctuating order parameter.

The complication arises when the relativistic interactions,
such as dipolar forces or anisotropic exchange, are consid-
ered. As was shown in Ref. 3, despite their weakness, the
relativistic interactions cannot be taken into account in the
frame of the perturbation theory. It is also shown that they
considerably change the critical dynamics. Thus, dipolar
forces should gain inportance somewhere in a so-called di-
pole critical regime, where �−1=� and q are small compared
to the dipole number qd. For each ferromagnet this quantity
measures the strength of the dipolar interaction relative to the
exchange interactions. The effects of the dipolar forces on
the dynamics of the ferromagnet have been taken fully into
account in Refs. 3–5. An excellent agreement of the theory4,5

with the experiments was obtained for the critical slowing

down of ��q� observed for q→0 and T→TC on the trans-
verse fluctuations in Fe �Ref. 6� and on the transverse and
longitudinal fluctuations in EuS �Ref. 7�. The most clear re-
sult of these studies is the crossover from ��q�qd��q5/2 in
the exchange-dominated regime to ��q
qd��q2 in the di-
polar regime.

It is also well known that the presence of the high-order
correlations is generally strongly enhanced in the critical re-
gion near TC. The even-order correlations, involving four
spins etc., change the critical exponent of the pair correlation
function from the mean-field value ��1/2 to that for critical
scaling ��2/3. The odd-order correlation functions do not
contribute to the static part of the magnetic susceptibility
because this would contradict the energy conservation laws
with respect to the time inversion. Nevertheless the odd cor-
relation functions may contribute to the dynamic part of the
susceptibility. In lowest order, triple-vertex and triple-spin
fluctuations associated with it were introduced by Maleyev8

and studied in detail by Lazuta.9 As was shown in Ref. 8, and
experimentally confirmed in Ref. 10, the triple vertex
��Sx�Sy�Sz� is a new entity lacking in the static theory of
phase transitions. The triple dynamic spin fluctuations were
detected for the first time by Okorokov et al.10,11 in the scat-
tering of polarized neutrons in iron. In the limit of small
magnetic fields the theory predicts that the temperature de-
pendence of the scattering cross section connected to the
triple vertex is determined by a factor ��a�−1��−2/3. This
theoretical prediction was confirmed by experiment, where
the dependence of �−0.67±0.07 was found. Thus, this investiga-
tion has allowed testing experimentally the confluence rules
of correlations1 that are equivalent to the Polyakov-Kadanov-
Wilson �PKW� algebra.12–14
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The triple-vertex and the three-spin correlation �TSC�
function are objects showing chirality that can be directly
studied by means of polarized neutrons. It was shown
recently15,16 that not only static but also dynamic chirality
can be investigated by means of polarized neutron scattering
using �i� a special inclined geometry of the applied magnetic
field �H is inclined to the wave vector q� or �ii� directly by
means of triple-axis techniques.17 It was shown in18–20 that in
the case of ferromagnets �in the inclined geometry� neutron
scattering from the three-spin fluctuations leads to the ap-
pearance of an asymmetric contribution to the polarization-
dependent cross section. The symmetric part of the magnetic
scattering is connected to the pair-correlation function. Thus,
both correlation functions can be measured in the same ex-
periment.

The present paper aims to study the triple vertex and the
TSC function along with the pair-correlation function in the
localized ferromagnet EuS in the critical region T�TC. Both
functions are measured using small-angle scattering of polar-
ized neutrons in the inclined experimental geometry of the
magnetic field. Both contributions are studied as a function
of the temperature and the magnetic field. Firstly, we will
present the critical scaling behavior of the pair-correlation
function. We find that the temperature dependence of the
correlation length in zero field obeys the scaling law
���−�, where �=0.68±0.02, in agreement with previous
work.21 From experiments in a magnetic field at q�qd and T
close to TC we derive the dynamic index z=2.1±0.1, which
is close to the theoretically predicted value z=2. The results
of our study of the pair-correlation function are in good
agreement with those obtained previously.7,21 On this basis
the scattering intensity attributed to the triple-correlation
function is studied. It is shown that in the limit of the small
fields the scattering increases with increasing field, showing
the scaling temperature behavior proportional to �−� with
�=0.64±0.04. These results are close to those obtained in
the itinerant ferromagnet Fe.10

The importance of studying the high-order correlation
functions should be pointed out because in many cases the
physical properties of a system of particles are defined by
interaction of numerous neighboring particles. As a conse-
quence, not only the pair-correlation functions but also the
many-point �triplet, etc.� correlation functions play funda-
mental roles in descriptions of statistical properties of such
systems and are important for condensed matter research.22

Numerous studies on this subject involved different theoret-
ical considerations and computer simulations.23

The paper is organized in the following way. Section II
gives a theoretical description of the method �SAPNS in the
inclined geometry� and the derivation of the correlation func-
tions that can be measured with SAPNS in the critical region.
Section III describes the sample and the experimental setup.
The results from small-angle scattering of polarized neutrons
�SAPNS� and their interpretation are given in Sec. IV. The
results are summarized in Sec. V.

II. THEORETICAL BACKGROUND

It is well known that the neutron magnetic scattering is
determined by two-spin correlation functions that are directly

related to the imaginary part of the wavelength dependent
susceptibility ��q ,��. In zero magnetic field � is a symmet-
ric second-rank tensor and the neutron scattering intensity
does not depend on the neutron polarization. In a magnetic
field H, the tensor attains antisymmetric parts. If H is along
the z direction we have �SxSy�� �SySx� and the cross section
depends on P0. In small H, the antisymmetric part is propor-
tional to H and, as the Zeeman interaction is a product of H
and the total spin 	SR, the antisymmetric part of the scatter-
ing is determined by the three-spin correlation function
���Sx�Sy�Sz��.9,15,16 This chiral part of the neutron scattering
is static for helimagnets and dynamic for ferromagnets. In-
deed, the transverse components of the spin in ferromagnets
�Sx and Sy�, saturated in the z direction, are always related to
the excitations.

For small-angle scattering the chiral cross section has the
following form:15,16

�ch�q,�� = �2r2P0T/����q̂ · ĥ�2 Im C�q,�� , �1�

where ĥ and q̂ are unit vectors along the magnetic field H
and momentum transfer q, respectively, and � is the energy
transfer. In this expression we have taken into account that
both the dynamical chirality C�q ,�� and the neutron polar-

ization P0 are directed along H, and C= ĥC.
In a small-angle neutron scattering �SANS� experiment,

only elastic components of momentum transfer q, i.e., per-
pendicular to the incident wave vector ki, are visible in the
detector: q�=ki��x+�y�. An inelastic, parallel to ki, part of
the momentum transfer q
 =qz=ki� / �2E� cannot be detected.
Thus, no energy analysis is performed in a conventional
SANS experiment but integration over the energy is auto-
matically performed. Therefore, in theory, Eq. �1� has to be
integrated over all energies of the scattered neutrons. Recall-
ing that Im C�q ,�� is an even function of �,9 the integrated
chiral cross section becomes zero if there is no �-odd term in

the factor �ĥ · q̂�2 of Eq. �1�. Such an �-odd term appears if H
is inclined with respect to the incident beam at an angle �
�Fig. 1�. Then, for the inclined field, we have

FIG. 1. Schematic outline of the SAPNS experiment in the in-
clined geometry: P denotes the polarizer, F the spin flipper, S the
sample, D the two-dimensional position-sensitive detector. The
magnetic field H is inclined at an angle �=45° with respect to the
incident beam k�i in the �xz� plane.
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�q̂ · ĥ�2 =
�2E��2 cos2 � + �2 sin2 � + 2E�� sin 2�

�2E��2 + �2 . �2�

Obviously, only the third term is � odd. Hence, the
�-integrated chiral cross section is given by

�ch��� =
2

�
r2P0T sin 2��

−�

� d�2E� Im C�q,��
�2E��2 + �2 . �3�

This integral can be evaluated in the critical paramagnetic
region T�TC. According to scaling theory all physical pa-
rameters have a scaling dimensionality determining the gen-
eral form of the corresponding correlation function. For ex-
ample, the two-spin correlation function has the form

G�q� =
1

��a�2−�F� q

�

 �

1

a2�q2 + �2�
, �4�

where � is the inverse correlation length of the critical fluc-
tuations defined as �=�� /a. Here, �= �T−TC� /TC is a reduced
temperature, ��2/3 is the critical exponent of the correla-
tion length and a is a length scale of order of the lattice
spacing. The Ornstein-Zernicke expression on the right-hand
side of Eq. �4� is valid for �
1. This is the case for three-
dimensional �3D� spin systems. Therefore, we will neglect �
below.

In a magnetic field, we have to compare the energy of the
magnetic field g�BH with the energy of the critical fluctua-
tions kBTC��a�5/2 in order to determine the condition for the
weak-field f
1 and strong-field regime f�1, respectively,
where f =g�BH /kBTC��a�5/2 is a dimensionless number.

In a weak field the chiral scattering is proportional to H.
Therefore, its scaling dimensionality is determined by the
product fG�q� and we obtain

Im C�q,�� =
g�BH

kBTc��a�9/2F� q

�
,
�

��q�� , �5�

where ��q�=kBTC�qa�5/2 is the characteristic energy of the
critical fluctuations with momentum q. Equation �5� is valid
for ferromagnets in the exchange approximation.3

The dynamical chirality is a three-spin correlation func-
tion and it may be considered as a result of the scattering of
critical fluctuations on the uniform magnetic field.16 From
this point of view it is clear that C�q� is a function of two
momenta, namely the momentum of the fluctuation, q, and
the momentum of the field, qH=0. The principle of critical
factorization was formulated by Polyakov12–14 and is known
as Polyakov-Kadanoff-Wilson operator algebra. It states that
in any multispin correlation function, the dependence on the
largest momentum q�q��� appears as a factor
�q /��−5+1/���� /��q��. In our case, putting ��2/3 we ob-
tain

Im C�q,�� =
g�BH

Tc�qa�7/2��a�
�� �

��q�� . �6�

In this expression we have q=ki��2+ �� /2E�2�1/2. The de-
pendence of q on � may be neglected in the quasielastic
approximation, if the residence time of the neutron in a re-
gion of the size of the order of 1 /q is much smaller than the

characteristic lifetime of the fluctuation of the same size
� /��q�. The corresponding condition can be expressed as

q 
 qin = a−1�2E/kBTcka�2/3. �7�

Hence we can replace q by ki� and neglect � in the denomi-
nator of Eq. �3�. Therefore, the chiral cross section becomes

�ch��� =
2

�
r2P0 sin 2�

g�BH

2E�ka��2

1

�a
sgn��� . �8�

Often, it is convenient to normalize Eq. �8� by the symmetric
cross section ����= �2/3�r2G�q� and one obtains

�̂ =
�ch���
����

= AP0 sin 2�
g�BH

E

k

�
sgn��� . �9�

Here, A is a constant of the order unity. We will use Eq. �9�
for analyzing our experimental results in the next paragraph.

III. EXPERIMENTAL

The isotopically enriched sample 153EuS was assembled
from approximately 100 small EuS crystals on a machined
aluminum substrate. The anisotropy axes of all crystals were
aligned in one direction to within a precision of 0.75°.24 The
average size of a single crystal is 1–2 mm2. The SAPNS
experiment was performed at the SANS-2 scattering facility
of the FRG-1 research reactor in Geesthacht �Germany�. The
schematic outline of the experiment is given in Fig. 1. A
polarized beam of neutrons with an initial polarization
P0=0.95, a wavelength  =0.58 nm �� / =0.1�, and a di-
vergence 10 mrad were used. The scattered neutrons were
detected in a q range 0.30 to 2.5 nm−1 with a position sensi-
tive detector composed of 256�256 pixels. The scattering
was measured in a temperature range 14 K�T�50K, i.e.,
from below to far above TC=16.55 K. The external magnetic
field 1 mT�H�200 mT was applied at an angle of
!=45° with respect to the incident beam ki �the inclined
geometry�. The adiabatic condition for the transmission of
polarized neutrons was sufficiently satisfied to obey the rela-
tion P0
H. Two scattering intensities I↑�q� and I↓�q� were
measured for the incident neutron beam polarized along �↑�
and opposite �↓� to the magnetic field.

The method of the inclined geometry allows distinguish-
ing the two contributions to the magnetic scattering: the sym-
metric polarization-independent �SPI� and asymmetric
polarization-dependent �APD� scattering. First, we separated
the magnetic critical scattering from the T-independent, non-
magnetic contribution. Following the standard procedure we
determined the pure magnetic scattering by subtracting from
the measured intensity the nonmagnetic background as mea-
sured at T�TC, i.e.,

Im�q�,T� = I�q�,T� − I�q�,50 K� . �10�

As noted above, q� is a projection of q onto the detector
plane. In the folowing text we will omit the subscript “�.”
To separate the SPI term from the APD one, we take the sum
of the measured intensities I��q�= Im�P0 ,q�+ Im�−P0 ,q� and
average it over 2� for each �q�=�qx

2+qy
2. As a consequence,
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the asymmetric part is averaged out and only the SPI
part survives. It is related to the pair-correlation function.
The polarization dependent part of the scattering
�I�q�= I�P0 ,q�− I�−P0 ,q� is asymmetric. The asymmetry is
directly related to the direction of H. In the particular case of
H being in the �xz� plane �Fig. 1�, the asymmetry is most
pronounced along the x component of the momentum trans-
fer qx due to the selection rules. Thus the asymmetric contri-
bution was extracted by taking the difference of the mea-
sured intensities I�±P0 , ±qx�,

�I�q� =
1

4
�I�P0,qx� − I�− P0,qx��

+
1

4
�I�− P0,− qx� − I�P0,− qx�� . �11�

For the analysis of the data, the SPI and the APD contribu-
tions were attributed to the pair-correlation function and the
triple-correlation function, respectively.

IV. RESULTS

A. Pair-correlation function

Figure 2 shows the temperature dependence of the mag-
netic intensity Im for two different momentum transfers. It is
clearly seen that the intensity has a pronounced maximum at
T�TC. It is more pronounced for small q than for large q.
This behavior demonstrates the appearance of critical fluc-
tuations and an increase of the correlation length as T ap-
proaches TC from low and high temperature. The q depen-
dence of the intensity Im is treated in a standard way using
the Ornstein-Zernike expression

Im�q� =
Zm

q2 + �2 , �12�

where �=�−1 is the inverse correlation length. The param-
eters Zm and � have been obtained from a least-squares fit to
the data using Eq. �12�. The temperature dependence of Zm
and � are shown in Figs. 3�a� and 3�b� for small

�H=1.4 mT� and large �H=50 mT� fields, respectively. The
parameter Zm exhibits a smooth growth when T approaches
TC from the high-temperature side. In principle, Zm=��0��2

should increase like �TC /T�4/3 �see, for example, Ref. 25�.
Then Zm becomes almost constant in the critical regime at
TC�T�TC�1+�� with ��0.1. Zm decreases sharply as soon
as the temperature crosses the critical temperature
TC=16.52 K, which implies enhancement of the ferromag-
netic domain structure. Zm does not depend on the magnetic
field in the whole temperature range except close to TC. The
correlation length � shows a sharp maximum as the tempera-
ture approaches TC �Fig. 3�b��. Below TC, � decreases first as
the contribution of the longitudinal fluctuations decreases24

with decreasing T and increases again due to domain forma-
tion. When the magnetic field is applied, the maximum at TC
vanishes and the transition is smeared out. The � dependence
of the inverse correlation length � is shown in Fig. 4 on a
log-log scale. The parameter � obeys the scaling law
�= �a�−1���� in a range of 0.005���0.2, with
a=0.17±0.01 nm and �=0.67±0.02. The obtained param-
eters are close to those obtained in Ref. 21, where they were
found to be a=0.19 nm and �=0.70±0.02. There is a clear
crossover at �=0.2�T�20 K� to the noncritical regime.

As seen in Fig. 3, the magnetic field affects the correlation
length � in the close vicinity of TC. Figure 5 shows the mag-

FIG. 2. Temperature dependence of magnetic scattering cross
section Im at a residual magnetic field H=1.4 mT at q=0.5 and
1.5 nm−1.

FIG. 3. Temperature dependence of the parameter Zm �a� and the
correlation length � �b� for two values of the magnetic field:
H=1.4 and 50.6 mT.
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netic field dependence of the correlation length � at
T=16.55 ��→0�, 17 ���0.1�, 18 ���0.1�, and 19 K. The
value of � depends strongly on the field for �→0, while it
has a weak dependence at ��0.1, and almost no dependence
at ��0.1. As was noted above, the parameter Zm has little or
no change with H. The effect of the magnetic field on the
correlation length of the critical fluctuations can be under-
stood in terms of the balance between the energy of the mag-
netic field g�H and that of the critical fluctuations
kBTC��a0�z with �=�−1. Here the dynamic index is z=2 in
the dipolar dominated regime for q�qd and z=5/2 in the
exchange-dominated regime for q�qd.4,5 The dipolar wave
number for EuS was found qd=2.2�5� nm−1 in Ref. 26. For
g�H�kBTC���H=0�a0�z, the correlation length is renormal-
ized as a function of the magnetic field: ��H�a0

= �g�H /TC�1/z. The observed behavior of � at T�TC is a
result of the crossover to the strong field regime. The fit
gives a value for the parameter 1 /z=0.48±0.02, which is
close to the theoretical value in the dipolar regime where
1/z=0.5.

The observed renormalization of �c�H� indicates that for
q"�c�H� the energy of the critical fluctuations
�=kBTC��Ha0�z is determined by the field H. For q���H�
the energy is equal to �c=kBTC�qa0�z and the magnetic field
can be considered to be a weak perturbation.

B. Three-spin correlation function

Figure 6 shows typical examples of the asymmetric scat-
tering �I�q� at the magnetic field H=50 and 150 mT and
T=16.55 K. The analytical expression for �I�q� given by
Eq. �8� is known in a rough approximation and is valid
within the range ��ki��qin, where the inelastic character-
istic momentum qin �Eq. �7�� is of the order of 10 nm−1 for
EuS. The remarkable features of this APD scattering contri-
bution are the following: �1� It appears only when the incli-
nation angle � between the magnetic field H and the incident
beam direction ki is not equal to 0 or � /2. Its appearance in
this inclined geometry implies the dynamical nature of the
scattering. �2� �I�q� changes sign when the scattering angle
� changes sign. �3� The scattering depends on the scattering
angle as �−n. �4� It increases with the applied magnetic field
H. �5� It vanishes for non-polarized neutrons �P0=0�. All
these features clearly identify this scattering to arise from the
triple vertex correlations.

It is sometimes convenient to normalize the asymmetric
scattering by the magnetic scattering �̂=�I�q� / I��q� �Eq.
�9��. �̂ is presented in Fig. 7 as a function of q. The figure
demonstrates that it is constant at small q and in low fields
and has a tendency to increase at large q. Therefore, the q
dependences of �I�q� and I��q� are equivalent at small q,
while they are different at large q. The last feature may be
connected with the dipolar interactions of the spin system at
q=qd�2.2 nm−1. The restricted q range of measurements
does not allow us, however, to make more definite conclu-
sions on the q dependence of the asymmetric scattering. Still,
in a small q range, �I�q� is proportional to q−2 as predicted
by the theory in Eq. �8�.

In order to quantify the temperature and magnetic field
dependence of �I we have averaged �I�q� over q ranges

FIG. 4. Inverse correlation length � as a function of the reduced
temperature �= �T−TC� /TC on a log-log scale at H=1.4 mT.

FIG. 5. Inverse correlation length �=�−1 as a function of the
magnetic field as measured at temperatures T=16.55, 17, 18, and
19 K.

FIG. 6. q dependence of the asymmetric part of the SAPNS
difference intensity �I for magnetic fields H=50 and 150 mT at
T=16.55 K.
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within the limits �i� 0.50�q�1 nm−1; �ii� 1�q�1.5 nm−1;
and �iii� 1.5�q�2.3 nm−1. Figure 8 shows the averaged
values versus H for T=16.55 K. For all q values, ��I� in-
creases with increasing field and saturates above
H�150 mT. The increase of ��I� is clearly related to the
range of H where q��H �i.e., to the weak field regime� and
it saturates as soon as �H�q. This observation demonstrates
the validity of the weak field approximation for the concept
described above.

The values ��I� are shown in Fig. 9 versus T for
H=50 mT. The theory predicts that the value ��I� depends
on T as �−�. The parameters obtained from the fit of the
experimental data are: �=0.62�0.05� for q=1.85 nm−1;
�=0.65�0.03� for q=1.25 nm−1, and �=0.64�0.04� for
q=0.75 nm−1. The points at T=TC do not follow the scaling
law �−�. This may be related to the crossover to the strong
field regime and/or to demagnetization effects. According to

Eq. �8�, the observed increase of the intensity �I is propor-
tional to �−�=� at q��. It is interesting to note that
the intensity attributed to the pair-correlation function
I��1/ �a��2=�−2�=�2 for q
�. The factor of 2 difference
between the exponents for the symmetric and antisymmetric
scattering clearly proves the completely different origin of
the observed scattering contributions. On the other hand, the
exponents � as determined by means of the static measure-
ments by � and the dynamic measurements �using the chiral-
ity� are in excellent agreement with each other, demonstrat-
ing the internal consistency of the theory and the experiment.

V. CONCLUSION

The ferromagnetic to paramagnetic phase transition in
EuS has been investigated by means of small-angle scatter-
ing of polarized neutrons using the inclined geometry of the
applied field H with respect to the neutron wave vector ki.
This geometry of the experiment allows separating two con-
tributions to the critical scattering: �i� the symmetric
polarization-independent part attributed to the pair-
correlation function and �ii� the asymmetric polarization-
dependent part attributed to the triple vertex �Sx�Sy�Sz and
its related triple-correlation function.

The behavior of both parts of the scattering has been stud-
ied as a function of temperature and magnetic field: �1� The
pair-spin correlation function was deduced with its amplitude
and the correlation length ��T ,H�. At zero field the correla-
tion length obeys the scaling law �=a0�

−� with
a0=0.17±0.01 and �=0.68±0.02. The magnetic field
strongly influences the critical fluctuations near TC, so that
the correlation length is suppressed by the field as
��H�=a0�g�BH /TC�1/z with the dynamic index z=2.1±0.1,
which is close to the theoretically predicted value z=2 for
the dipolar regime ��qd. �2� The asymmetric polarization-
dependent part of the scattering was unambiguously identi-
fied as arising from the three-spin correlation function. The
specific features of the scattering may be summarized as fol-
lows: �i� it is � antisymmetric and P0 dependent; �ii� it ap-
pears only in the inclined geometry and implies the dynami-

FIG. 7. Normalized value of �I / I� in magnetic fields H=50 and
150 mT at T=16.55 K.

FIG. 8. Magnetic field dependence of ��I� for three different q
values q=0.75 nm−1, q=1.25 nm−1, and q=1.85 nm−1 at
T=16.55 K.

FIG. 9. Temperature dependence of ��I� for three different q
values q=0.75 nm−1, q=1.25 nm−1, and q=1.85 nm−1 in a field
H=50 mT.
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cal and chiral nature of the fluctuations. The analytical
expression for this scattering is known within the weak-field
approximation and for the limited q range ��q�qin. The
theory predicts that the scaling behavior of the scattering
cross section is proportional to �−� with ��2/3. The experi-
ment confirms the theoretical predictions, yielding values
�=0.62±0.05, �=0.65±0.03, and �=0.64�±0.04� for differ-
ent q values within the above-mentioned range. A similar
experiment has been performed on pure iron.10 Our data and
their analysis support the conclusions of the work.10 �3� The
obtained results together with those reported in Ref. 10 pro-
vide the experimental proof for the confluence rules govern-
ing the correlations,12 which is equivalent to the Polyakov-

Kadanov-Wilson operator algebra. Moreover, to the best of
our knowledge, there is no other way to test this theory ex-
cept to study the dynamical chirality of spin systems. In all
other cases only the pair-correlation functions are studied.
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