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A quantum spherical spin model with an antiferromagnetic coupling J on the AB2 chain is studied, whose
topology is of interest in the context of ferrimagnetic polymers and oxocuprates. A ferrimagnetic long-range
order is found at the only critical point g=T=h=0, where T denotes the temperature, h the magnetic field, and
g the quantum coupling constant in energy units. The approach to the critical point, with diverging correlation
length � and cell susceptibility �cell, is characterized through several paths in the �g ,T ,h� parameter space: for
�T /J�→0 and g=h=0, �cell�1/T2, as also found in several classical and quantum spherical and Heisenberg
models; for �h /J�→0 and g=T=0, �cell�1/h; and for �g /J�→0 and T=h=0, ln �cell�1/�g, thus evidencing
an essential singularity due to quantum fluctuations. In any path chosen the relation �cell��2 is satisfied. For
finite g and T a field-induced short-range ferrimagnetism occurs to some extent in the �g ,T ,h� space, as
confirmed by the analysis of the local spin averages, cell magnetization with a rapid increase for very low
fields, and spin-spin correlation functions. The asymptotic limits of the correlation functions are also provided
with respect to g, T, h, and spin distance. The analysis of the entropy and specific heat reveals that the quantum
fluctuations fix the well-known drawback of classical spherical models concerning the third law of
thermodynamics.
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I. INTRODUCTION

Since Stanley’s pioneering work,1 spherical models have
attracted interest beyond Berlin and Kac’s original proposal:2

the spherical model as an alternative to the Ising model.
Stanley discovered that the spherical condition maps onto the
limit of infinite spin dimensionality of the Heisenberg clas-
sical model. As d-dimensional classical spherical models are
exactly solved, these models have been largely used to ex-
plore the statistical mechanics of several systems, such as
antiferromagnets,3 including competing interactions4 and
Lifshitz points,5 critical phenomena, including systems with
long-range interactions,6,7 topological considerations,8 spin-
charge effects in the context of the Hubbard model,9 and
disordered systems,10 including spin glasses11 and random
field models.12

The original spherical model has a nonphysical behavior
at zero temperature, i.e., its entropy and specific heat do not
go to zero in this limit. This failure is corrected if one intro-
duces a quantum character in this model. As a consequence,
quantum versions of the spherical model have been applied
to study spin glasses,13 thermodynamic properties,14 and
quantum phase transitions in d-dimensional hypercubic
lattices,15 including random field effects16 and ferromagnetic
coupling with transverse field.17

In this work we are particularly interested in the thermo-
dynamic and ground-state properties of the quantum spheri-
cal model on the AB2 chain �see Fig. 1�, whose experimental
motivations18 include inorganic ferrimagnetic polymer com-
pounds, in which sites A�B� may constitute a metal �ligand�
atom �see Silvestre and Hoffman in Ref. 18 for a number of
possible realizations� and oxocuprate compounds, such as
Ca3Cu3�PO4�4, where A�B� sites represent Cu atoms in a
Cooper trimeric chain �see Drillon et al. in Ref. 18�. Despite

all the recent efforts through the study of the AB2 chain in the
context of models such as Hubbard and t-J,20 quantum
Heisenberg,21 classical Heisenberg and Ising,22 the influence
of quantum fluctuations, as compared to thermal and mag-
netic field effects has not yet been fully comprehended in its
thermodynamical and ground-state properties. Here we
choose a first quantization scheme due to Obermair19 to ap-
proach a quantum version of the spherical model in this to-
pology, with a tunable parameter g to control the importance
of quantum fluctuations in the system.

This paper is organized as follows. In Sec. II we introduce
the model Hamiltonian on the AB2 topology and diagonalize
it to obtain the eigenmodes. The spherical condition is then
derived from quantum thermal single- and two-operator av-
erages. Section III is devoted to the calculation and analysis
of several limits of local spin averages and cell magnetiza-
tion and susceptibility, with respect to thermal and quantum
fluctuations and the presence of magnetic field. Several spin-
spin correlation functions are studied in detail in Sec. IV and
the entropy and specific heat are considered in Sec. V. Al-
though it is well known that spherical models embody ingre-
dients not actually present in real materials, we believe that
comparing our exact analytical results on these observables
with experiments will lead to a gain in the understanding of
quantum fluctuations close to the ground state of AB2 spin
systems. Finally, conclusions are presented in Sec. VI.

FIG. 1. Geometric model of the AB2 chain displaying the ferri-
magnetic long-range spin ordering for g=T=h=0. d /2 denotes the
distance between A and B sites.
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II. QUANTUM SPHERICAL SPIN MODEL
AND THERMODYNAMICS

We assume that the spin S=1/2 degrees of freedom �Si��
are restricted to a certain axis �z axis�, as in the classical
spherical model.2 We focus our attention on the effects of the
interplay between quantum and thermal fluctuations on sev-
eral properties of the system under an external magnetic
field, such as local spin averages, cell magnetization and sus-
ceptibility, correlation functions, entropy, and specific heat.

The quantum counterpart of the spherical model implies
in the quantization of the classical continuous spin variables
in the form of spin operators Si�, whose average values may
vary continuously with no upper and lower bounds, and
quantum and thermal fluctuations subject to the mean spheri-
cal constraint

�
i�

�Si�
2 	 =

N

4
, �1�

where latin letters index unit cells and greek letters index
sites A, B1, or B2 �see Fig. 1�; N is the total number of sites
and �¯	 indicates quantum thermal averages �see below�.
We introduce quantum fluctuations by assigning a canonical
conjugate momentum Pi� to each spin degree of freedom, so
that the following commutation relations hold ��=1�:


Si�,Sj�� = 0, 
Pi�,Pj�� = 0, 
Sl�,Pj�� = i�lj���, �2�

where �ab denotes the Kronecker delta. The above features
make the spin fields in quantum spherical models much more
like unit quantum rotors24 than standard quantum-mechanical
spin operators usually considered in Heisenberg models.

We assume a first-neighbor antiferromagnetic �AF� inter-
action J�0 between spins at sites A and sites B1,2.23 In this
way we have the following quantum Hamiltonian:

H =
g

2�
i�

Pi�
2 +

J

2 �
�i�,j�	

Si�Sj� + 	�
i�
�Si�

2 −
1

4

 − h�

i�

Si�,

�3�

where 	 is the chemical potential, h is the magnetic field in
energy units, h�	ef fH, 	ef f is the effective Bohr magneton,
and kB=1 is the Boltzmann constant. In order to get a spin
dynamics, the kinetic square term in Pi� is introduced in Eq.
�3�. This choice is not unique and is in fact determinant of
the underlying spin dynamical behavior; however, it is by far
the most usual one, as can be inferred from Refs. 13–17. In
relation to this term, the tunable quantum parameter g, in
energy units, controls the importance of the quantum fluctua-
tions responsible for such spin dynamics. Further, one might
also identify g with the inverse quantum coupling of the
quantum O�n� nonlinear 
 model in the limit n→�, whose
O�3� realization shares the same effective infrared behavior
as the quantum antiferromagnetic Heisenberg model.

In order to diagonalize the Hamiltonian �3�, we first intro-
duce the set of boson operators �ai�

† ,ai�� through the follow-
ing transformations:

Si� =
1
�2

� g

2	

1/4

�ai� + ai�
† � , �4�

Pi� =
− i
�2

�2	

g

1/4

�ai� − ai�
† � , �5�

which applied to Eq. �3� give rise to

H = �2g	�
i�
�ai�

† ai� +
1

2

 −

h
�2

� g

2	

1/4

�
i�

�ai� + ai�
† � − 	

N

4

+
J

4
� g

2	
�

�i�,j�	
�ai�

† aj� + aj�
† ai� + ai�aj� + ai�

† aj�
† � . �6�

The symmetry between sites B1 and B2 is made evident
through the definitions

aiB
�b� =

1
�2

�aiB1
+ aiB2

�, aiB
�a� =

1
�2

�aiB1
− aiB2

� , �7�

where �b� indicates a bonding state and �a� an antibonding
one. By Fourier transforming,

ai� = �3/N�
k

eikxiak�, k =
2�

N/3

, 
 = 0,…,N/3 − 1,

�8�

along with the intracell translation transformation:

�k =
1
�2

�akA + e−ik/2akB
�b��, �k =

1
�2

�akA − e−ik/2akB
�b�� , �9�

we define field operators associated with the global momen-
tum conservation as follows:

�k+ =
1
�2

��k + �−k�, �k− =
1
�2

��k − �−k�, k � 0;

�10�

�k+ =
1
�2

��k + �−k�, �k− =
1
�2

��k − �−k�, k � 0;

�11�

�0 = �k=0, �0 = �k=0. �12�

In Eq. �9� the phase factor e−ik/2 is due to the distance d /2
between sites A and B1,2, where d�1 is the length of a unit
cell �see Fig. 1�. Moreover, one should notice that Eq. �9�
involves only bonding operators. The reason for that lies in
the fact that the transformation �7� already makes the Hamil-
tonian diagonal in the antibonding fields, such that, to pursue
the diagonalization procedure, one no longer needs to con-
sider these operators in the definition of new auxiliary fields
from Eq. �9� on. We now use Bogoliubov transformations
to diagonalize the resulting Hamiltonian in the
��k+ ,�k− ,�k+ ,�k− ,�0 ,�0� space:
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H = �
k

�
m=0,±1

��k,m��k,m
† �k,m +

1

2

�

−
N

3
�h2�1 + �2/2�2

4�	 + �2J�
+

h2�1 − �2/2�2

4�	 − �2J�

 − 	

N

4
, �13�

where �k�0,1=�k+, �k�0,1=�k−, �k=0,1=�0, �k�0,−1=�k+,
�k�0,−1=�k−, �k=0,−1=�0, and �k,0=akB

�a�, and

�k± =
1

2

1 + Jk/�2	��1/4��1 +

1
�1 + Jk/�2	�


�k±

± �1 −
1

�1 + Jk/�2	�

�k±

† � , �14�

�k± =
1

2

1 − Jk/�2	��1/4��1 +

1
�1 − Jk/�2	�


�k±

± �1 −
1

�1 − Jk/�2	�

�k±

† � , �15�

�0 =
1

2

1 + J0/�2	��1/4��1 +

1
�1 + J0/�2	�


�0

+ �1 −
1

�1 + J0/�2	�

�0

†�
−

h

2�2	
�N/3�2	

g

1/4� 1 + �2/2

�1 + J0/�2	��3/4� , �16�

�0 =
1

2

1 − J0/�2	��1/4��1 +

1
�1 − J0/�2	�


�0

+ �1 −
1

�1 − J0/�2	�

�0

†�
+

h

2�2	
�N/3�2	

g

1/4� 1 − �2/2

�1 − J0/�2	��3/4
 . �17�

The three eigenfrequencies read

�k,m = �2g	 + gJk,m, m = 0, ± 1, �18�

where Jk,m=2�2mJ cos�k /2� and Jk=Jk,m=1 �see Fig. 2�. No-
tice that two eigenfrequencies are dispersive �m= ±1� and
merely represent the Fourier transform of the linear AF

spherical model with effective AF coupling J→�2J and
number of sites given by 2N /3, whereas the flatband
�m=0� arises due to the AB2 chain topology. The k→0 ex-
pansion of the dispersive modes provides �k,±1=A±�B±k2,
with A± and B± positive and the k2 dependence typical of the
magnon spectrum associated with the ground-state long-
range ferrimagnetism present along with a constant term.
Moreover, all modes are gapped for any finite g and nullify
for g=0.

The diagonal Hamiltonian �13� allows us to obtain the
quantum thermal averages in the canonical ensemble using
the density operator

�̂ =
e−�H

Tr�e−�H�
= �

k,m

�1 + e−��k,m�e−��k,m�k,m

†
�k,m� , �19�

where a quantum thermal average is indicated by
�¯	=Tr��̂¯ �, and �=1/T. Single- and two-operator aver-
ages result in

��k,m	 = ��k,m
† 	 = 0 �20�

and

��k,m�p,n	 = 0, ��k,m
† �p,n	 =

�k,p�m,n

e��k,m − 1
. �21�

The Helmholtz free energy F=U−TS, with U= �H	 and
S=−�ln �̂	, is then given by

F = T�
k,m

ln�2 sinh�1

2
��k,m
� −

N

3
�h2�1 + �2/2�2

4�	 + �2J�

+
h2�1 − �2/2�2

4�	 − �2J�

 − 	

N

4
, �22�

which includes a free bosonic term plus additional ones due
to the magnetic energy and the chemical potential.

We can also express the spherical restriction, Eq. �1�, as
an equation for the chemical potential from the condition
�F /�	=0:

h2�1 + �2/2�2

4�	 + �2J�2
+

h2�1 − �2/2�2

4�	 − �2J�2
+

3

N
�
k,m

g

2�k,m
coth�1

2
��k,m


=
3

4
. �23�

In the Appendix we detail the continuous N�1 calculation
of Eq. �23�.

III. LOCAL SPIN AVERAGES, CELL MAGNETIZATION,
AND SUSCEPTIBILITY

The spin variables Eq. �4� can be expressed, after the
Bogoliubov transformations Eqs. �14�–�18� and auxiliary
definitions Eqs. �7�–�12�, as follows:

FIG. 2. Quantum eigenfrequencies �k,m as function of momen-
tum k �in units of 1 /d� for g=0.05J, T=0.05J, and h=0.05J.
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SiA =
�2

2
� g

2	

1/4

�3/N�
k�0

�fk
aAk

�1� + fk
bBk

�1� + H.c.�

+
1

2
� g

2	

1/4

�3/N�f0
�a��0 + f0

�b��0 + H.c.�

+
�2

2
�h�1 + �2/2�

2�	 + �2J�
−

h�1 − �2/2�
2�	 − �2J�


 , �24�

SiB
 =



2
�3/N� g

2	

1/4

�
k

�eikxiakB
�a� + H.c.�

+
1

2
� g

2	

1/4

�3/N�
k�0

�fk
�a�Ak

�2� − fk
�b�Bk

�2� + H.c.�

+
�2

4
� g

2	

1/4

�3/N�f0
�a��0 − f0

�b��0 + H.c.�

+
1

2�h�1 + �2/2�
2�	 + �2J�

+
h�1 − �2/2�
2�	 − �2J�

� , �25�

where 
= +1�−1� for B1 �B2� sites,

Ak
�1� = cos�kxi��k+ + i sin�kxi��k−,

Ak
�2� = cos
k�xi + 1

2���k+ + i sin
k�xi + 1
2���k−,

Bk
�1� = cos�kxi��k+ + i sin�kxi��k−,

Bk
�2� = cos
k�xi + 1

2���k+ + i sin
k�xi + 1
2���k−,

fk
�a� = 
1 + Jk/�2	��−1/4,

fk
�b� = 
1 − Jk/�2	��−1/4,

f0
�a� = fk=0

a ,

and

f0
�b� = fk=0

b .

By taking quantum thermal averages, Eqs. �20� and �21�, we
obtain

�SA	 =
�2

2
�h�1 + �2/2�

2�	 + �2J�
−

h�1 − �2/2�
2�	 − �2J�


 , �26�

�SB	 =
1

2
�h�1 + �2/2�

2�	 + �2J�
+

h�1 − �2/2�
2�	 − �2J�


 , �27�

Mcell = �h�1 + �2/2�2

2�	 + �2J�
+

h�1 − �2/2�2

2�	 − �2J�

 , �28�

where �SA	��SiA	, �SB	��SiB1,2
	, and Mcell= �SA	+2�SB	.

First we notice that, although the field-induced magneti-
zation per cell Mcell displays a quantum paramagnetic behav-
ior for any finite g and T 
see Fig. 3�a��, the spins at sites A
and B could have different orientations as the values of g, T,

h change and modify the value of 	 through the spherical
restriction, Eq. �A7�, as seen in Fig. 3�b�. Indeed, for special
regions of the parameter space �g ,T ,h�, with finite h, spins at
sites A point antiparallel with respect to those at sites B1,2,
thus giving rise to a field-induced short-range ferrimagnetism

Fig. 3�b�� and to a rapid increase of Mcell for very low fields

inset of Fig. 3�a��. This short-range order, due to the AF
interactions and the AB2 topology, is destroyed for large val-
ues of g, T, or h, giving rise to standard paramagnetic behav-
ior. Indeed, as the field increases, �SA	 is reversed after its
minimum is reached, as shown in Fig. 3�b�. It is interesting
to notice that the value in which the spins at sites A reverse
its signal �h�2.11J for g=0.05J and T=0.05J� is compatible
in magnitude with the values where the signal of spins at
sites A is reversed in the AB2 Ising and quantum Heisenberg
models.20,22 The surface that separates the regions �SA	�0
and �SA	�0 ��SB	�0 and h�0 in both cases� is obtained
from Eqs. �A7� and �26� by requiring that �SA	=0, i.e.,
	=2J:

2A0�4J

T
,
2�2J

T
,

g

4T

 + B0�4J

T
,

g

4T

 +

h2

4J2

�1 + �2/2�2

�2 + �2�2

+
h2

4J2

�1 − �2/2�2

�2 − �2�2
=

3

4
. �29�

On the other hand, after a maximum in �SB	 is achieved,
�SA	= �SB	→1/2 and Mcell→3/2 in the asymptotic
h� �J ,g ,T� saturation limit, as expected �see Fig. 3�. One
should also notice that �SB	�1/2 in the maximum, a result
not incompatible with the spherical model, since the spheri-
cal restriction Eq. �1� applies to the sum of all expectation
values �Si�

2 	 and, as already mentioned, the expected values

FIG. 3. �a� Cell magnetization and �b� spin averages at sites A
�-�-� and B �-�-� as functions of h /J for g=0.05J and T=0.05J.
Inset of �a�: very-low-field regime.
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of the spin operators Si� may vary continuously, with no
upper and lower bounds, differently from the usual quantum-
mechanical spins. Therefore, it is actually possible to find
solutions with �SB

2	�1/4, provided that �SA
2	�1/4 so to sat-

isfy Eq. �1�.
The phase diagrams displayed in Fig. 4 show that the

behavior of the phase boundary near h=0 is essentially de-
termined by the existence or not of the zero of �SA	 at finite
h, shown in Fig. 3�b�. For sufficiently intense thermal �quan-
tum� disorder, Fig. 4�a� 
Fig. 4�b��, the field-induced short-
range ferrimagnetism, with �SA	�0 and �SB	�0, does not
stabilize and the system presents a disordered quantum para-
magnetic state, with both �SA	�0 and �SB	�0 in a field, in
which case the finite-h zero of �SA	 no longer exists.

Another remarkable point is that Eqs. �26�–�28� have
poles only at 	=−�2J and �2J; the former is unphysical and
the latter occurs only for the case g=T=h=0. Nontrivial so-
lutions of Eq. �A7� exist only for 	��2J. This indicates that
the only critical point g=T=h=0 of the quantum AB2 spheri-
cal model excludes the possibility of a zero-field thermal
�T�0� or quantum �g�0� spontaneous symmetry breaking
from a paramagnetic to a ferrimagnetic long-range ordered
state at finite T or g, respectively. Further, for g=T=h=0 the
average spins and the cell magnetization assume the follow-
ing finite values, consistent with the spherical constraint, Eq.
�1�:

�SA	 = −�3

8
, �SB	 =� 3

16
, Mcell = ��2 − 1��3

8
,

�30�

so that the average spin of a unit cell is less than 1/2. In
contrast, it is interesting to notice that the AB2 Hubbard
model, as well as its strong-coupling half-filled limit, the
quantum AF AB2 Heisenberg model, present zero-field ferri-
magnetic ground state with Mcell=1 /2, due to a theorem by
Lieb.20,21,25

From Eq. �28�, the magnetic susceptibility per cell,
�cell=�Mcell /�h, is given by

�cell =
1

J

�2

4
�� �1 + �2/2�2

	/��2J� + 1
+

�1 − �2/2�2

	/��2J� − 1



−
h

4J
� �1 + �2/2�2


	/��2J� + 1�2
+

�1 − �2/2�2


	/��2J� − 1�2
 �	

�h
� ,

�31�

which is finite for all values of �g ,T ,h�, except for the sin-
gular point g=T=h=0, where the pole 	=�2J is achieved.
By solving the spherical restriction Eq. �A7� near this pole,
with the use of either Eq. �A12� or Eq. �A13�, we obtain
three distinct behaviors of �cell depending on the path cho-
sen:

�cell �
3��2 − 1�

512J
exp�3�

2
��2J

g

, T = h = 0, �g/J� → 0,

�32�

�cell �
�2 − �2��16 − �18 − 12�2��9 + 6�2

12h
,

g = T = 0, �h/J� → 0, �33�

and

�cell �
�27�2 − 36�

32

J

T2 , g = h = 0, �T/J� → 0. �34�

Notice in Eq. �32� the nonanalytical divergence associated
with the essential singularity in �cell due to quantum fluctua-
tions as �g /J�→0, with T=h=0 
see Fig. 5�a��. In this case,
the introduction of thermal flucutuations and/or magnetic
field causes �cell to achieve a finite maximum at g=0 
see
inset of Fig. 5�a��. A similar finite maximum in �cell is in-

FIG. 4. Phase diagrams of the surface �SA	=0 that delimits the
change of signal of spins at sites A for 	=2J: �a� T /J as a function
of h /J for g=0.05J and �b� g /J as a function of h /J for T=0.05J.

FIG. 5. �a� Cell susceptibility times J as function of �a� g /J for
T=h=0 �inset: T=0.05J and h=0.05J� and �b� h /J for g=0.05J and
T=0.05J �inset: as function of T /J for g=0.05J and h=0.05J�.
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duced by quantum and/or thermal fluctuations �quantum
fluctuations and/or magnetic field� in the regime described
by Eq. �33� 
Eq. �34��, as shown in Fig. 5�b�. This analysis
confirms that the presence of magnetic field or quantum or
thermal fluctuations destroys the ferrimagnetic long-range
order, giving rise to a field-induced short-range order with
large but finite �cell and a rapid increase of Mcell at very low
fields, as shown in the inset of Fig. 3�a�. We also remark that
the power-law 1/T2 susceptibility decay as �T /J�→0, for
g=h=0, Eq. �34�, is also shared by the classical2,26 and
quantum15 linear spherical models, classical27 and quantum
ferromagnetic28 Heisenberg chains, as well as by the
quantum21 and classical22 AB2 AF Heisenberg models.

Further, the standard paramagnetic behavior of �cell is ap-
proached for distinct parameter limits as follows:

�cell �
25J2

3h3 , h � �J,g,T� , �35�

�cell �
3

4g
, g � �J,T,h� , �36�

and

�cell �
3

4T
, T � �J,g,h� , �37�

where the expected Curie-like behavior is observed due to
either thermal or quantum fluctuations.

IV. CORRELATION FUNCTIONS

Using Eqs. �20�, �21�, and �24�, the correlation between
spins at sites A of cells i and j yields

�SiASjA	 − �SiA	�SjA	 =
1

2�
k
� g

2�k,+
coth�1

2
��k,+


+
g

2�k−
coth�1

2
��k,−
�cos
2k�j − i�� ,

�38�

which, with the use of Eq. �A1�, can be written as

�SiASjA	 − �SiA	�SjA	

= �
−�

� d�

2�
cos
2�j − i���

g

2����
coth�1

2
�����
 . �39�

In addition, from Eqs. �A5� and �A6� we can write

�SiASjA	 − �SiA	�SjA	 =
1 + �ij

2
A2�j−i��2	

T
,
2�2J

T
,

g

4T

 .

�40�

Following similar arguments, we obtain the correlation be-
tween spins at sites B of same type, i.e., sites B1 of cells i and
j, or sites B2 of cells i and j:

�SiB1,2
SjB1,2

	 − �SiB1,2
	�SjB1,2

	

=
1

2
�

−�

� d�

2�
cos
2�j − i���

g

2����
coth�1

2
�����


+
�ij

2

g

2�0
coth�1

2
��0


=
1 + �ij

4
A2�j−i��2	

T
,
2�2J

T
,

g

4T

 +

�ij

2
B0�2	

T
,

g

4T

 ,

�41�

the correlation between spins at sites B1 of cell i and spins at
sites B2 of cell j,

�SiB1
SjB2

	 − �SiB1
	�SjB2

	

=
1

2
�

−�

� d�

2�
cos
2�j − i���

g

2����
coth�1

2
�����


−
�ij

2

g

2�0
coth�1

2
��0


=
1 + �ij

4
A2�j−i��2	

T
,
2�2J

T
,

g

4T

 −

�ij

2
B0�2	

T
,

g

4T

 ,

�42�

FIG. 6. Correlation functions between spins B1 and B2 at the
same cell �-�-� and between spins of first-neighbor cells 
sites A
�-�-�, B1,2 �-�-�, and A and B1,2 �-�-��: �a� as function of g /J for
T=0.05J and h=0.05J; �b� as function of h /J for g=0.05J and T
=0.05J. The insets show the convergence to the asymptotic limits,
respectively multiplied by �a�: �g /J�2 �first three correlation func-
tions� and �g /J�3�last one�; and �b�: �h /J�5/2 �first three correlation
functions� and �h /J�7/2 �last one�.
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and the correlation between spins at sites A and B1,2 of cells
i and j, respectively,

�SiASjB1,2
	 − �SiA	�SjB1,2

	

=
�2

2
�

−�

� d�

2�
cos�
2�j − i� + 1���

g

2����
coth�1

2
�����


=
�2

4
A2�j−i�+1�2	

T
,
2�2J

T
,

g

4T

 . �43�

Notice that the spin-spin correlation functions behave in a
way that confirms the ferrimagnetic short-range order in-

duced by the magnetic field and also manifested in the pre-
vious analysis of magnetization and susceptibility. As seen in
Fig. 6 for spins at first-neighbor cells, sites A and B1,2 have a
negative correlation function which tends to zero for g
� �T ,h� 
Fig. 6�a�� and h� �g ,T� 
Fig. 6�b��. In the latter, for
h� �g ,T� the spins tend to their saturation values as, e.g.,
�SiASjA	→ �SiA	�SjA	= �1/2�2, and similar results for the other
correlation functions, thus leading to a null spin-spin corre-
lation at the high-h paramagnetic limit.

These limiting results can also be analytically probed by
considering the asymptotic behavior of Eqs. �A10� and �A11�
in Eqs. �40�–�43�. For g� �J ,T ,h� or T� �J ,g ,h� we obtain

An ���− 1�n
�2 − �n,0�/4���2J/4g�n
�2n − 1� ! ! /�2n� ! ! � , g � �J,T,h� ,

�− 1�n
�2 − �n,0�/4���2J/4T�n, T � �J,g,h� ,
�

B0 � A0 − A2, g � �J,T,h� or T � �J,g,h� , �44�

thus revealing the asymptotic power-law decay of the correlation functions with spin distance �index n� and large g or T. In
particular, as shown in Fig. 6�a�, by applying Eq. �44� in Eqs. �40�–�43�, the g� �J ,T ,h� asymptotic limit of the correlation
between spins B1 and B2 at the same cell reads �SiB1

SiB2
	− �SiB1

	�SiB2
	= �A0−B0� /2��3J2� / �256g2�, whereas spin-spin corre-

lations in first-neighbor cells are �SiAS�i+1�A	− �SiA	�S�i+1�A	=A2 /2��3J2 /256g2�, �SiB1,2
S�i+1�B1,2

	− �SiB1,2
	�S�i+1�B1,2

	
= �A2 /4���3J2� / �512g2�, and �SiAS�i+1�B1,2

	− �SiA	�S�i+1�B1,2
	= ��2/4�A3��−5J3� / �2048g3�. These asymptotic results are con-

firmed by the convergence analysis indicated in the inset of Fig. 6�a�.
On the other hand, for h� �J ,T ,h�,

An ���− 1�n
�2 − �n,0�/2��T/h���2J/2h�n, g = 0, h � �J,g,T� ,

�− 1�n
�2 − �n,0�/4���2gh/h���2J/2h�n
�2n − 1� ! ! /�2n� ! ! � , g � 0, h � �J,g,T� ,
�

B0 � A0 − A2, h � �J,g,T� , �45�

which leads to �SiB1
SiB2

	− �SiB1
	�SiB2

	= �A0−B0� /2
��3�2ghJ2� / �64h3�, �SiAS�i+1�A	− �SiA	�S�i+1�A	=A2 /2
��3�2ghJ2 /64h3�, �SiB1

S�i+1�B2
	− �SiB1,2

	�S�i+1�B1,2
	= �A2 /4�

��3�2ghJ2� / �128h3�, and �SiAS�i+1�B1,2
	− �SiA	�S�i+1�B1,2

	
= ��2/4�A3��−5�2ghJ3� / �256h4�, as shown in Fig. 6�b�.
These asymptotic results are also confirmed by the rather
slow convergence in low fields, as displayed in the inset of
Fig. 6�b�.

For the analysis of the critical point g=T=h=0 we use the
special limits of Eq. �A10�. For g=0,

An = 2�− 1�nA0� 	

�2J
−� 	2

2J2 − 1
n

; �46�

for T→0, following the same arguments that led to Eq.
�A13�, we obtain

An = 2�− 1�n
�g

�

��
0

�

dx
��2	 + x2�/�2�2J� − �
�2	 + x2�/�8J2��2 − 1�n

��2	 + x2�2 − 8J2
.

�47�

The point g=T=h=0 can therefore be accessed by using
either Eq. �46� or Eq. �47�, although the calculation in the
latter case needs a steepest descent analysis of the integral.
For both cases we obtain An= 3

4 �−1�n, and all correlations are
distance independent, assuming values consistent with the
spherical constraint

�SiASjA	 =
3

8
, �SiB1,2

SjB1,2
	 =

3

16
, �SiASjB1,2

	 = −
3�2

16
.

�48�
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It is also relevant to perceive that the sum of all correla-
tions is not proportional to the susceptibility, Eq. �31�. This
feature also happens in the classical mean spherical model.29

Here, however, the reason is based on the fact that we have
to take first the quantum thermal averages in order to get the
magnetization and then obtain the susceptibility from deriva-
tion in a field; the order of these two operations cannot be
exchanged since 
Pi�

2 ,Sj��=−2�ij��,�Pi� in the Hamiltonian,
Eq. �3�, which implies �e−�H /�h�−�e−�H�H /�h.

For all cases, excluding the point g=T=h=0, the correla-
tions functions decay exponentially with distance, as ex-
pected for a system without thermal �T�0� or quantum �g
�0� phase transition �see Fig. 7�. In fact, this can also be
inferred from the analysis of the correlation length � �in units
of d�. By writing An= �−1�n�2T /�4	2−8J2�exp�−n /2��, we
identify, from Eq. �A10� with s=0 and n�1:

� = −
1

2 ln
	/��2J� − ��	2/2J2� − 1�
. �49�

The above formula can also be obtained for the case T→0
from a careful steepest descent analysis of Eq. �47�. From
Eq. �49� one can see that the � diverges as the point
g=T=h=0, corresponding to 	=�2J, is approached. How-
ever, this divergence is strongly dependent on the path cho-
sen:

� �
�2

16
exp�3�

4
��2J

g

, T = h = 0, �g/J� → 0,

�50�

� � 2�9 + 6�2�J

h
, g = T = 0, �h/J� → 0, �51�

and

� �
3�2J

4T
, g = h = 0, �T/J� → 0. �52�

Notice the consistency between Eqs. �32�–�34� for �cell and
Eqs. �50�–�52� above. In particular, one observes that
�cell��2 in all cases.

V. ENTROPY AND SPECIFIC HEAT

The entropy of the system is calculated from Eq. �22� as
follows:

S = −
�F

�T
= �

k,m
� ��k,m

exp���k,m� − 1
− ln
1 − exp�− ��k,m��
 .

�53�

From the equation above, the specific heat is readily ob-
tained:

C = T
�S

�T
= �

k,m

���k,m�2exp���k,m�

exp���k,m� − 1�2 �1 −

g

�k,m
2 T

�	

�T

 ,

�54�

as displayed in Fig. 8. Note that the above expressions are
formally similar to those of a free bosonic system, except for
the explicit g dependence in Eq. �54� characteristic of the
spherical model, although the chemical potential is here a
special function of g, T, and h through the spherical condi-
tion, Eq. �A7�. Interestingly, the �	 /�T term is also present
in the classical spherical model.2

Notice that for g�0 the well-known2 drawback �finite C
and diverging S� of classical spherical models concerning the
third law of thermodynamics as T→0 is absent in Eqs. �53�
and �54�. However, by taking g→0 and h=0 in Eq. �53�, this
anomaly appears as

S � Sdiv + Sdiv
BK −

1

2�
k,m

ln
�2	 + Jk,m�

2�2J
+ N

= Sdiv + Sdiv
BK −

1

2�2
N

3
ln� 	

�2J
−� 	2

2J2 − 1
 +
N

3
ln

	

�2J
�

+ N, N � 1, �55�

FIG. 7. Absolute values of spin-spin correlation between sites A
�-�-�, sites B1,2 �-�-�, sites B1 and B2 �-•-�, and sites A and B1,2

�-�-� as function of distance �in units of d /2�, for g=0.05J,
T=0.05J, and h=0.05J. The straight lines indicate the exponential
decay.

FIG. 8. �a� Entropy per site and �b� specific heat per site as
function of T for g=0.1J and h=0 �inset: g=h=0�.
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where Sdiv= �N /2�ln�T /g� and Sdiv
BK = �N /2�ln
T / �2�2J��. We

note that the extra divergent term Sdiv is absent in the clas-
sical spherical model. By following the path g=T, with
T→0, such term disappears and we obtain 
see inset of Fig.
8�b��

C = CBK +
N

2
, �56�

where the classical result2 reads

CBK =
N

2
�1 + 4K2dzs

dK

 , �57�

with K=J /8T and zs=	 /J.
For T� �J ,g ,h� and nonzero g a steepest descent analysis

of the continuum limit of Eqs. �53� and �54� leads to

S

N
�

1

3
��l

T

exp�−

�l

T

 +

2

3
D��d

T

0.5

exp�−
�d

T

, T

� �J,g,h� , �58�

C

N
�

1

3
��l

T

2

exp�−
�l

T

 +

2

3
D��d

T

1.5

exp�−
�d

T

, T

� �J,g,h� , �59�

where 	0=	�g ,T=0,h�, D=�4�
	0 / ��2J�−1�, �l=�2g	0,
and �d=�2g�	0−�2J�. The first exponential dependence in
S and C above is due to the flat mode; the second is related
to the gap of the dispersive modes, as shown in Fig. 2. In the
second term of Eq. �59� the k-independent contribution in the
low-k expansion for the dispersive eigenmodes �k,±1, Eq.
�18�, leads to the exponential dependence multiplied by a
1/T2 prefactor �similar to Einstein’s model�; on the other
hand, the k2 term in that expansion multiplies a spin-wave-
like T0.5 factor, thus generating the overall 1 /T1.5 depen-
dence. On the other hand, for T� �J ,g ,h� we have

S

N
�

1

2
ln� T

4g

 + 1, �60�

C

N
�

1

2
. �61�

We remark that the degrees of freedom associated with the
canonical conjugate momentum Pi� do not add to the high-
temperature specific heat due to the contribution of the g
term in Eq. �54�.

VI. CONCLUSIONS

We have studied a quantized version of the spherical spin
model on the AB2 chain, whose topology is of interest in the
context of ferrimagnetic polymers and oxocuprates. We have
focused attention on the effects of quantum �g� and thermal
�T� fluctuations, under an external magnetic field �h�, in ob-
servables such as local spin averages, cell magnetization and
susceptibility, correlation functions, entropy and specific
heat.

The quantum AB2 spherical model goes through a spon-
taneous symmetry breaking to a state with ferrimagnetic
long-range order at the only critical point g=T=h=0. The
correlation functions for g=T=h=0 are distance independent
and assume finite values consistent with the spherical restric-
tion. The approach to the critical point is characterized
through several paths in the �g ,T ,h� parameter space: for
T=h=0 and �g /J�→0 the susceptibility �cell �and correlation
length �� exhibits an essential singularity, i.e.,
ln �cell�1/�g, whereas for g=T=0 and �h /J�→0 or for g
=h=0 and �T /J�→0 they display power-law decays with h
and T, respectively: �cell�1/h and �cell�1/T2. In any path
chosen the relation �cell��2 holds.

On the other hand, for any finite g, T, or h quantum and/or
thermal fluctuations destroy the long-range order in the sys-
tem. In this regime, the spins remain ferrimagnetically short-
range ordered to some extent in the �g ,T ,h� parameter space
as a consequence of the AF interaction and the AB2 topology.
This field-induced quantum paramagnetic behavior is char-
acterized by a rapid increase of the cell magnetization in very
low fields. These results are confirmed by the analysis of the
local spin averages and spin-spin correlation functions. The
asymptotic limits of the correlation functions are also pro-
vided with respect to g, T, and h. Further, the analysis of the
entropy and specific heat revealed that quantum fluctuations
fix the well-known drawback of classical spherical models
concerning the third law of thermodynamics.
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APPENDIX: CHEMICAL POTENTIAL CALCULATION
IN THE Nš1 LIMIT

In order to obtain the chemical potential 	�g ,T ,h� from
Eq. �23� in the N�1 limit, we use the Euler-Maclaurin sum
formula:

�
k,m

→ �
m

N

3
�

−�

� dk

2�
, N � 1, �A1�

from which the last term in Eq. �23� becomes

�
−�

� dk

2�

g

2�k,m
coth�1

2
��k,m


= 2�
−�

� d�

2�

g

2����
coth�1

2
�����
 +

g

2�0
coth�1

2
��0
 ,

�A2�

with the two dispersive bands ��k,±1� now represented by
����=�2g	+2�2gJ cos � and the flatband denoted by
�0=�2g	. Next, by considering the following function:
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Y�a,b,c,�� =
�c coth
�c�a + b cos ���

�a + b cos �
, �A3�

and its Fourier series

Y�a,b,c,�� = �
n=0

�

An�a,b,c�cos�n�� , �A4�

An�a,b,c� = �2 − �n0��
−�

� d�

2�
Y�a,b,c,��cos�n�� , �A5�

B0�a,c� = Y�a,b = 0,c,�� , �A6�

we can express Eq. �23�, for N�1, as

2A0�2	

T
,
2�2J

T
,

g

4T

 + B0�2	

T
,

g

4T

 +

h2�1 + �2/2�2

4�	 + �2J�2

+
h2�1 − �2/2�2

4�	 − �2J�2
=

3

4
. �A7�

The Fourier coefficients An�a ,b ,c� can be evaluated using
the partial fraction series of the hyperbolic cotangent:

coth x =
1

x
+ �

s=1

�
2x

x2 + s2�2 , �A8�

and

1

c + d cos �
=

1
�c2 − d2�1 + 2�

s=1

�


�c/d�

− ��c/d�2 − 1�scos�s��
, c � d � 0,

�A9�

so as to obtain

An�a,b,c� = �2 − �n0��− 1�n �
s=−�

�

�as/b� − ��as/b�2 − 1�n

�as
2 − b2

,

�A10�

B0�a,c� =
1

a
+ 2�

s=1

�
1

as
, as = a +

s2�2

c
. �A11�

At this point we remark two important limits of A0 and B0:
for g=0,

A0 =
T

2�	2 − 2J2
, B0 =

T

2	
, �A12�

and for T→0, we have c= �g /4T�→�, so that as+1−as→0
and, in the continuum limit, the Euler-Maclaurin sum for-
mula leads to

A0 =
�g

�
�

0

� dx
��2	 + x2�2 − 8J2

, B0 =
g

2�2g	
.

�A13�
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