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In this work we derive a generalized moments expansion �GMX�, to third order, of which the well-
established connected moments expansion and the alternate moments expansion are shown to be special cases.
We discuss the benefits of the GMX with respect to the avoidance of singularities which are known to plague
such moments methods. We then apply the GMX estimates for the ground-state energy for the two-dimensional
S=1/2 Heisenberg square lattice and compare these results to those of both spin-wave theory and the linked-
cluster expansion.
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I. INTRODUCTION

Since its development nearly 20 years ago, the connected
moments expansion �CMX� of Cioslowski1 has found great
use as a calculational tool for both the quantum chemist as
well as the many-body physicist. This scheme is based on the
“t expansion” of Horn and Weinstein2 wherein the ground-
state expectation values of any Hamiltonian system may be
evaluated. The value of any analytic methodology for calcu-
lating the energy spectrum for �strongly� interacting many-
body systems is immense. Of particular interest is the accu-
rate estimation of the ground-state energy of such systems
and the settling of questions involving the nature of the
ground state or, in the case of Horn and Weinstein, of the
vacuum state. A number of calculational tools remain avail-
able to the theorist from standard perturbation and varia-
tional schemes to the more demanding and computationally
more time consuming and detail-laden exact diagonaliza-
tions. Also Monte Carlo studies have, at zero temperature
and finite cluster size and extrapolated to the bulk limit,
proven to be a useful tool. In this paper we wish to briefly
review the work of Horn and Weinstein in order to recon-
sider those arguments that led to Cioslowski’s development
of the CMX. We also shall review the paper of Mancini,
Zhou, and Meier3 in which they were able to derive a calcu-
lational cousin of the CMX, the alternate moments expansion
�AMX�. We will then derive a generalized moments expan-
sion �GMX� of which both the CMX and AMX are special
cases. Finally, as a straightforward application of the GMX
we then apply it to the S= 1

2 Heisenberg antiferromagnet on a
square lattice �at zero temperature�.

II. THEORY

As a first step in deriving the GMX it is both useful and
instructional to review the original derivation of the CMX
equations of Cioslowski. We then reconstruct the motivation
of Mancini et al. in their derivation of the AMX. Once this
methodology has been presented and after we have intro-

duced the idea of a “helper function,” the derivation �and
motivation� of the GMX will become, we hope, clear. In the
t expansion, Horn and Weinstein pointed out that for any

Hamiltonian Ĥ one may construct the operator exp�−tĤ�
which has the property of contracting any trial state ��0� onto
to the ground state ��0� provided that there is a nonzero
overlap between these states. It is then straightforward to
show that all ground-state operator expectation values in
these �contracted� states may be expressed as a power series
in the parameter t. As noted by Stubbins,4 the t→� limit of
this series must be handled carefully. Among the extrapola-
tion methods considered by Stubbins are the Padé approxi-
mant, the D-Padé analysis, Laplace or resolvent analysis, in-
version analysis, and the “E of F” or partition function
method.4,5

Of particular interest is a theorem relating the ratio

��0�Ĥ exp�− Ĥt���0�

��0�exp�− Ĥt���0�

to a series expansion in the parameter t wherein the coeffi-
cients in the expansion are connected moments of expecta-
tion values of the Hamiltonian. This then was the initiation
point for Cioslowski who considered the t expansion

E�t� = E0 + �
k

�− t�k Ik+1

k!
. �1�

Here the Ik are the connected moments of the Hamiltonian
defined recursively by

Ik = �Ĥk� − �
p=0

k−2 �k − 1

p
�Ip+1�Ĥk−p−1� �2�

where we have introduced the notation �Ĥk�= ��0�Ĥk��0�.
Cioslowski then recast the expansion in Eq. �1� by compar-
ing it to the series
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E�t� = E0 + �
j

Aje
−bjt. �3�

Then expanding Eq. �3� in a Taylor series

E�t� = �
n

antn �4�

with

an =
1

n!
	 dn

dtnE�t�	
t=0

yields explicit expressions for the coefficients an,

a0 = E0 + �
j

Aj ,

a1 = − �
j

Ajbj ,

a2 =
1

2!�j

Ajbj
2,

]

an =
�− 1�n

n! �
j

Ajbj
n. �5�

That is,

E�t� = E0 + �
j

Aj + 
− �
j

Ajbj�t + 
 1

2!�j

Ajbj
2�t2 + ¯ .

�6�

Now comparing Eq. �1� with Eq. �6�, we make the identifi-
cation

I1 = E0 + �
j

Aj ,

I2 = �
j

Ajbj ,

]

In = �
j

Ajbj
n−1. �7�

At this point Cioslowski introduces the functions

P1 = I1 − E0 = �
j

Aj ,

Pk = Ik = �
j

Ajbj
n−1, �8�

where the Pk’s are related through

P1 = �
k

Wk�P2,P3,P4, . . . � . �9�

The problem has now been recast into one in which we must
determine the functions Wk. Consider the helper function

Sk = PkPk+2 − Pk+1
2 . �10�

This was the critical insight of Cioslowski. He noted that
substitution of Eq. �8� into Eq. �10� leads to a functional
relationship of the Sk’s similar to that of the Pk’s through the
coefficients Aj and bj. Thus we may write S1
=�kWk�S2 ,S3 ,S4 , . . . �, with S1= P1P3− P2

2. Solving for P1

P1 =
P2

2

P3
+

1

P3
�

k

Wk�S2,S3,S4, . . . � . �11�

Comparison of Eq. �11� and Eq. �9� yields

W1 =
P2

2

P3
,

Wk+1 =
1

P3
Wk. �12�

Then the CMX expression for the ground-state energy E0 �to
third order� is given by

E0
�CMX� = I1 −

I2
2

I3
− 
 1

I3
� �I4I2 − I3

2�2

�I5I3 − I4
2�

. �13�

With a bit of clever mathematical maneuvering, Stubbins
was able to rewrite the expansion Eq. �13� in matrix form
which permitted him to make the following two important
observations: �i� a disadvantage of methods that approximate
the series as exponentials is that if one has an odd power
series then the last order is not included in the approximation
and �ii� the matrix inverse may not exist and thus answers in
this region should be discarded. This second point, the exis-
tence of singularities in certain regions of parameter space is
a major object of concern in each of these moments systems.
It should be noted that the success of this expression in es-
timating the ground-state energy has been mixed.6–9 Follow-
ing the approach of Cioslowski, Mancini et al.3 hit upon the
idea of using a different helper function than Eq. �10�. In-
stead they chose

Sk = PkPk+3 − Pk+1Pk+2, �14�

which, systematically, leads to the alternate moments expan-
sion for the ground-state energy �to third order�

E0
�AMX� = I1 −

I3I2

I4
−

1

I4

�I2I5 − I3I4��I3I6 − I4I5�
�I4I7 − I5I6�

. �15�

Most recently both the CMX and the AMX have been ap-
plied to the Rabi Hamiltonian.10

At this point there are no a priori means of determining
which expansion �if either� converges more rapidly.11 Indeed,
singularities in parameter space are known to plague these
moments methods.3,12–14 One reason for these singularities
may be that a symmetric differential operator acting on a
given functional space is not automatically a self-adjoint op-
erator and may have many self-adjoint extensions.15

We now wish to generalize the arguments, and hence the
helper functions used to derive both the CMX and AMX. If
we look at the helper functions for these expansions,
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TABLE I. Ground-state energy to second order calculated using GMX�1,1� to �1,13�.

� GMX�1,1� GMX�1,2� GMX�1,3� GMX�1,4� GMX�1,5� GMX�1,6� GMX�1,7� GMX�1,8� GMX�1,9� GMX�1,10� GMX�1,11� GMX�1,12� GMX�1,13�

0.20 −0.50666667 −0.50674157 −0.50701893 −0.50794596 −0.51313410 −0.49457117 −0.50140053 −0.50275591 −0.50377271 −0.50697705 −0.49704178 −0.50085098 −0.50173876

0.50 −0.54166667 −0.54477612 −0.56250000 −0.41497462 −0.50510760 −0.51642240 −0.53085695 −0.46812126 −0.50368489 −0.51070242 −0.52229349 −0.48528970 −0.50320386

0.80 −0.60666667 −0.62972973 −3.61578947 −0.49865941 −0.53605709 −0.58600538 −0.46649864 −0.51312991 −0.53345704 0.02289639 −0.50092738 −0.51673982 −0.54768367

0.90 −0.63500000 −0.67419355 −0.04510870 −0.51019437 −0.55176660 −0.69326168 −0.48703861 −0.52290390 −0.55877719 −0.46042145 −0.50983722 −0.52935352 −0.17067123

0.95 −0.65041667 −0.70074143 −0.19576434 −0.51603636 −0.56123868 −0.89849526 −0.49384489 −0.52857582 −0.58281414 −0.47686613 −0.51429208 −0.53923138 −0.43909399

0.98 −0.66006667 −0.71830580 −0.24396110 −0.51961846 −0.56756060 −1.47480410 −0.49749816 −0.53232224 −0.60625162 −0.48322923 −0.51711119 −0.54742698 −0.46177868

0.99 −0.66335000 −0.72445895 −0.25654728 −0.52082848 −0.56978708 −2.33084502 −0.49866946 −0.53363728 −0.61678455 −0.48503797 −0.51808511 −0.55073370 −0.46655290

1.00 −0.66666667 −0.73076923 −0.26785714 −0.52204724 −0.57207719 −14.22274143 −0.49982264 −0.53498825 −0.62935277 −0.48673012 −0.51907888 −0.55441625 −0.47055658

TABLE II. Ground-state energy to second order calculated using GMX�2,2� to �2,12�.

� GMX�2,2� GMX�2,3� GMX�2,4� GMX�2,5� GMX�2,6� GMX�2,7� GMX�2,8� GMX�2,9� GMX�2,10� GMX�2,11� GMX�2,12�

0.20 −0.50709779 −0.50836581 −0.51565445 −0.48930458 −0.49885951 −0.50057896 −0.50155959 −0.50394836 −0.49690405 −0.49962239 −0.50022195

0.50 −0.56716418 −0.37246193 −0.48957739 −0.50201310 −0.51216188 −0.47639166 −0.49718073 −0.50094649 −0.50572626 −0.49212934 −0.49886888

0.80 −4.28947368 −0.46084069 −0.49954683 −0.52907285 −0.47298784 −0.49587622 −0.50411832 −0.33598847 −0.49545383 −0.50014554 −0.50748327

0.90 0.08695652 −0.46564942 −0.50390909 −0.57410742 −0.48144489 −0.49780099 −0.50997205 −0.48276803 −0.49711598 −0.50213894 −0.42839289

0.95 −0.09397651 −0.46756454 −0.50652884 −0.66223816 −0.48369340 −0.49883067 −0.51573284 −0.48726330 −0.49780190 −0.50372763 −0.48411461

0.98 −0.15080314 −0.46861876 −0.50828052 −0.91144326 −0.48476381 −0.49949480 −0.52145537 −0.48886763 −0.49820720 −0.50506996 −0.48867521

0.99 −0.16547205 −0.46895776 −0.50889843 −1.28218141 −0.48508721 −0.49972601 −0.52404845 −0.48930313 −0.49834350 −0.50561692 −0.48961191

1.00 −0.17857143 −0.46929134 −0.50953462 −6.43457944 −0.48539650 −0.49996277 −0.52715496 −0.48970103 −0.49848095 −0.50622921 −0.49038680
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Sk
�CMX� = PkPk+2 − Pk+1Pk+1,

Sk
�AMX� = PkPk+3 − Pk+1Pk+2,

we note that there is a sum rule for the subscripts. The sum
rule states that the subscript sum in any Sk expression must
be equal, even though the subscripts of each term in the
products can be different. For example, consider

Sk = PkPk+4 − Pk+3Pk+1 �16�

and

Sk = PkPk+5 − Pk+3Pk+2,

Sk = PkPk+5 − Pk+4Pk+1, �17�

we see in Eq. �17� that there are actually two sum rules for
the combination PkPk+5. Inspired by this symmetry we write
the following helper function:

Sk
�m,n� = PkPk+�m+n� − Pk+mPk+n �18�

and observe that Sk
�1,1�=Sk

�CMX� and Sk
�1,2�=Sk

�AMX�. Now using
the ansatz of Eq. �18� and the recursive argument of
Cioslowski we arrive at a generalized moments expansion to
third order,

E0
GMX�m,n� = I1 −

In+1Im+1

In+m+1
−

1

In+m+1

 �Im+1In+2m+1 − Im+n+1I2m+1��In+1I2n+m+1 − I2n+1In+m+1�

�In+m+1I2�n+m�+1 − I2n+m+1In+2m+1� � . �19�

Equation �19� represents our main result. Once again the
condition of size extensiveness is preserved since the
moments Ik are related to cumulants.19 Here it should be
noted that one obvious advantage of the GMX expression
is in the avoidance of singularities. That is, it is well
established that both the CMX and the AMX are plagued by
poles appearing in the denominators of each respective
expansion. However, the GMX allows for one to avoid a

particular pole by choosing a different value for �m ,n�.
Hence, in theory at least, all regions of parameter space
may now be examined. This is an exciting result and
thus adds to the versatility afforded by such moments
methods.

Before we apply Eq. �19� to the S= 1
2 Heisenberg square

lattice, we should mention a word on scaling. As has been
shown previously16 each of the connected moments of the

TABLE III. Ground-state energy to second order calculated using GMX�3,3� to �3,11�.

� GMX�3,3� GMX�3,4� GMX�3,5� GMX�3,6� GMX�3,7� GMX�3,8� GMX�3,9� GMX�3,10� GMX�3,11�

0.20 −0.51629849 −0.48739384 −0.49777807 −0.49953378 −0.50032400 −0.50161406 −0.49826745 −0.49960920 −0.49990261

0.50 −0.48545178 −0.49617733 −0.50138730 −0.49134125 −0.49805713 −0.49932614 −0.50047125 −0.49811875 −0.49943683

0.80 −0.48911606 −0.49969957 −0.49249224 −0.49726611 −0.49893649 −0.48340044 −0.49882755 −0.49941338 −0.50005349

0.90 −0.48979174 −0.50433700 −0.49448582 −0.49756027 −0.49925800 −0.49773425 −0.49902686 −0.49951401 −0.49595614

0.95 −0.49010516 −0.51296051 −0.49502547 −0.49767873 −0.49951760 −0.49818691 −0.49909319 −0.49957042 −0.49886902

0.98 −0.49028823 −0.53697513 −0.49528475 −0.49774414 −0.49975412 −0.49835175 −0.49912743 −0.49961051 −0.49911234

0.99 −0.49034858 −0.57258186 −0.49536343 −0.49776518 −0.49985745 −0.49839697 −0.49913813 −0.49962559 −0.49916301

1.00 −0.49040863 −1.06697819 −0.49543882 −0.49778588 −0.49997913 −0.49843851 −0.49914853 −0.49964180 −0.49920523

TABLE IV. Ground-state energy to second order calculated using GMX�4,4� to �4,10�.

� GMX�4,4� GMX�4,5� GMX�4,6� GMX�4,7� GMX�4,8� GMX�4,9� GMX�4,10�

0.20 −0.49748461 −0.49912758 −0.49974940 −0.50032206 −0.49931973 −0.49978994 −0.49990319

0.50 −0.49811271 −0.49929239 −0.49948950 −0.49966731 −0.49975964 −0.49988908 −0.49990356

0.80 −0.50000323 −0.49996836 −0.49997064 −0.50017848 −0.49999506 −0.49999370 −0.49999102

0.90 −0.50012358 −0.50027764 −0.50031524 −0.49993544 −0.50004900 −0.50006280 −0.49964816

0.95 −0.50026221 −0.50046724 −0.50063186 −0.49996332 −0.50008517 −0.50011693 −0.49991400

0.98 −0.50036130 −0.50059525 −0.50093614 −0.49998389 −0.50011015 −0.50016163 −0.49994186

0.99 −0.50039668 −0.50064062 −0.50107205 −0.49999124 −0.50011908 −0.50017961 −0.49994856

1.00 −0.50043319 −0.50068745 −0.50123373 −0.49999881 −0.50012833 −0.50019959 −0.49995457
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Hamiltonian Ik��Ĥk� to leading order. Thus for example �to
third order� CMX� I5 while AMX� I7. For the generalized
expansion Eq. �19�, we have that E0

�m,n�� I2�m+n�+1 to third
order.

We are now poised to study the ground-state energy of the
S= 1

2 Heisenberg antiferromagnet on the square lattice. Here
we shall use the already calculated connected moments of
Zheng, Oitma, and Hamer17 who extended the work of Lee
and Lo.18 We shall also compare our results to those of Man-
cini, Massano, and Murawski.8

The anisotropic S= 1
2 Heisenberg antiferromagnet may be

described by the well-known Hamiltonian

H = �
�lm�

Sl
zSm

z + ��Sl
xSm

x + Sl
ySm

y � �20�

where �lm� denotes nearest-neighbor pairs and Sx ,Sy ,Sz are
spin operators and � is the coupling parameter. A spin rota-
tion on the odd sublattice m yields the following transformed
Hamiltonian:

H = �
�lm�

Sl
zSm

z −
�

2
�Sl

+Sm
+ + Sl

−Sm
− � �21�

which has a ground state at �=0 of all spins “up.” Here S±

are the usual spin raising and lowering operators. A listing of
the connected moments for this system may be found in the
Appendix of Ref. 17.

In Tables I–VII we have summarized our results for the
two-dimensional S=1/2 Heisenberg model using the
GMX�m ,n� expansion for the ground-state energy. Once

again we reiterate that the particular cases GMX�1,1� and
GMX�1,2� are just the well-known CMX and AMX expan-
sions, respectively. First some general comments regarding
the nature of this particular Hamiltonian. The physically
most interesting point is the isotropic point �=1, where stan-
dard perturbation theory has given more accurate results than
the best current Monte Carlo estimates for the ground-state
energy, while coupled-cluster methods are 3–5 times less ac-
curate and t-expansion methods are an order of magnitude
worse.17 As Zheng et al. have noted, this may not be a fair
comparison of these different schemes as the value �=1 is a
singular point corresponding to a Goldstone-type first-order
transition in which physical observables display square-root
singularities �from spin-wave theory�. Hence it is a bit sur-
prising that overall, all orders of GMX�m ,n� are relatively
well behaved and consistent with extrapolations of the
ground-state energy from the small-coupling regime. Once
again this result is encouraging.

In second order, we notice a number of interesting fea-
tures. For example GMX�1,8� appears to have a local mini-
mum �signaling perhaps a pole� near the value �=0.5 while
GMX�1,3� is well behaved only for values of ��0.5.
GMX�1,7� also is fine only at small values of �. On the
other hand GMX�2,5� grossly undershoots the CMX
=GMX�1,1� results for small � while at �=1 there is large
discrepancy. So how do we interpret such data? Well, by its
very nature for �m ,n� “large,” GMX�m ,n� contains only
higher-order moments of the Hamiltonian. Physically this
means that the very low-energy excitations are not being
included in the expansions for E0. Hence one would expect,

TABLE V. Ground-state energy to third order calculated using GMX�1,1� to �1,6�.

� GMX�1,1� GMX�1,2� GMX�1,3� GMX�1,4� GMX�1,5� GMX�1,6�

0.20 −0.50664537 −0.50660489 −0.50650783 −0.50591683 −0.52650975 −0.52007212

0.50 −0.54084839 −0.53900032 −0.52519335 −0.29419611 −0.51797880 −0.51735817

0.80 −0.60146341 −0.58643916 −0.42004626 −0.37539936 −0.53723727 −0.53254509

0.90 −0.62677201 −0.60097607 −0.38051451 −0.57589170 −0.54965238 −0.50625670

0.95 −0.64027274 −0.60719414 −0.36989634 −0.54457181 −0.55606226 −0.48248887

0.98 −0.64862891 −0.61047112 −0.36610920 −0.53978018 −0.55989123 −0.46696204

0.99 −0.65145564 −0.61147791 −0.36521698 −0.53905920 −0.56115608 −0.46188642

1.00 −0.65430267 −0.61243920 −0.36449223 −0.53863427 −0.56241245 −0.45694710

TABLE VI. Ground-state energy to third order calculated using GMX�2,2� to �2,5� and GMX�3,3� to �3,4�.

� GMX�2,2� GMX�2,3� GMX�2,4� GMX�2,5� GMX�3,3� GMX�3,4�

0.20 −0.50639731 −0.50533305 −0.48975331 −0.48496548 −0.49270540 −0.49061509

0.50 −0.51889962 −0.45152196 −0.48403716 −0.50176056 −0.48557484 −0.49506369

0.80 −0.43441975 −0.45885139 −0.49861516 −0.50737448 −0.48453357 −0.49899526

0.90 −0.40434037 −0.46288339 −0.50282857 −0.49497429 −0.48586896 −0.49683825

0.95 −0.39331392 −0.46514041 −0.50515244 −0.48524702 −0.48638879 −0.48845469

0.98 −0.38790044 −0.46668398 −0.50660019 −0.47953783 −0.48667752 −0.48490639

0.99 −0.38627869 −0.46724984 −0.50708968 −0.47776911 −0.48677088 −0.48448904

1.00 −0.38474284 −0.46785045 −0.50758192 −0.47609014 −0.48686301 −0.48437658
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for example, GMX�1,8� to yield poor results for the ground-
state energy, especially at small values of the coupling con-
stant �. The appearance of local minima may indicate for
these particular expansions the existence of singularities in
parameter space. For the third order results, it is apparent that
the GMX�1,1�=CMX�3� values are best throughout the en-
tire range of �. Once again there seems to be a bit of anoma-
lous behavior in most of the GMX expressions, most of
which exhibit a �local� minimum at �=0.2 followed by os-
cillatory behavior before settling down �i.e., converging�.
Again we attribute this to the onset of singularities. An ear-
lier calculation by Mancini et al.8 using a Lanczos tridiago-
nal scheme as well as the AMX and CMX up to CMX�8�

was also severely plagued by the appearance of singularities.
In particular, they made the following observations: �i� all
orders of the AMX have poles and �ii� all orders of the
CMX�N� �for N�4� have poles. One then is encouraged that
GMX�m ,n� may avoid such singularities for any particular
choice of �m ,n� and thus investigate the entire range of pa-
rameter space.

At this point there is no way to determine a priori which
values of �m ,n� will yield the lowest estimate for E0 at any
particular order. A general observation may be made, how-
ever, that the best overall results for the two-dimensional
S=1/2 Heisenberg model, for all regions of parameter space,
seem to be the well-established CMX and AMX expansions.
It is certainly the case that, overall, at small values of the
parameter �, the GMX�m ,n� results appear to have lower
estimates for E0 than the CMX and AMX. However, at the
singular point �=1.0 the CMX gives the best �most negative�
results. The ultimate accuracy depends both on the particular
Hamiltonian under investigation and most importantly on the
quality of the reference function, chosen to have maximal
overlap with the true ground-state wave function. Clearly
more results are needed for a variety of Hamiltonian systems
in order to determine whether or not there does indeed exist
a systematic way of predicting which values of �m ,n� will be
best. In the meantime, through the derivation of the GMX we
have at least uncovered a way to avoid unwanted poles with-
out resorting to any particular approximation scheme or con-
tinuity trickery.12 This then allows for a study of E0 through-
out all regions of parameter space.
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TABLE VII. For comparison reasons we list ground-state en-
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�
CMX-LT

seventh order
Spin-wave theory

third order
Laplace method

seventh order

0.20 −0.50666529 −0.50657179 −0.5066653

0.50 −0.54163641 −0.5413803 −0.5416359

0.80 −0.60677223 −0.607376 −0.6067604

0.90 −0.63537633 −0.636654 −0.6353801

0.95 −0.65101764 −0.652718 −0.6510589

0.98 −0.66083842 −0.66287 −0.6609227

0.99 −0.66418527 −0.66637 −0.6642888

1.00 −0.66756890 −0.6699993 −0.6676946
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