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We describe a model-independent evaluation of the possibility of extracting detailed lattice dynamical
information from neutron powder diffraction data. The method, which we first reported recently �Phys. Rev.
Lett. 93, 075502 �2004��, is extended to include consideration of crystal symmetry. This is exploited to reduce
errors in the approach and to allow unambiguous assignment of normal modes. The experimental and compu-
tational requirements are explored, with particular attention to the use of the reverse Monte Carlo method for
generating atomistic configurations. Phonon-dispersion curves, extracted from neutron total scattering data
using the technique, are presented for magnesium oxide and strontium titanate. These are used to illustrate the
sensitivity and limitations of this method.
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I. INTRODUCTION

The possibility that neutron powder diffraction �NPD�
data might be used to measure phonon-dispersion curves is
appealing and has generated recent interest in developing
methods of extracting dynamical information from such
data.1–4 The appeal lies in the relative ease with which NPD
experiments can be performed; unlike the established experi-
mental techniques of inelastic neutron scattering �INS� and
inelastic x-ray scattering �IXS�,5,6 they do not require single-
crystal samples and are �by comparison� versatile, time-
efficient, and inexpensive.

In principle, the observed scattering function S�Q� con-
tains lattice dynamical information, but the quality of this
information is degraded through the integration over dynami-
cal and directional degrees of freedom performed in powder
diffraction experiments. There have been a number of recent
attempts to quantify the extent to which dynamical informa-
tion is preserved in this procedure; in general, they have
focused upon analysis of the pair distribution function
�PDF�, which can be derived by Fourier transform of
S�Q�.2–4,7

One proposed approach has involved using the PDF to
refine various parameters within standard dynamical
models.2 The expected PDF is calculated from the model,
and compared with that from the experimental �NPD� data.
An iterative technique, such as the Monte Carlo algorithm, is
then used to adjust the input parameters, and the procedure is
repeated until a satisfactory fit to data is obtained. For some
very simple systems—such as fcc Ni, fcc Ag, and bcc Fe—
this method has been shown to give data-driven phonon-
dispersion curves that agree with those determined indepen-
dently from INS experiments to within a few percent
accuracy.4 Materials requiring more complex dynamical
models have proved to be a stumbling block for this ap-
proach. Moreover, the potential models used in the process
have generally been determined �albeit independently� by fit-
ting to INS phonon-dispersion data. The choice of model for
any given material may be nontrivial and has been shown to
influence strongly the results obtained.3

We have recently described a method of probing the dy-
namical information held within the PDF �and similar
diffraction-derived data� directly.1,8 The technique involves
statistical analysis of atomic displacements within large en-
sembles of atomistic configurations, generated using a data-
driven process such as the reverse Monte Carlo �RMC�
method. The method differs from those reported previously
in that it does not constrain its results in terms of some form
of imposed phonon model. This model independence is par-
ticularly important when studying systems for which INS/
IXS studies are impractical �due to the unavailability of suf-
ficiently large single crystals, for example�, where a suitable
model may not be known. We hoped that, in the absence of
any imposed phonon model, we might be able to determine a
more accurate initial indication of the true limitations of
NPD as a means of obtaining dynamical information. Indeed,
we found that the dynamical information retained within the
PDF appeared similar in many ways to that observed using
techniques such as INS and IXS; in particular, the low-
frequency features appeared to be well-preserved. On the
other hand, the PDF appeared insensitive to some details of
the dispersion at higher frequencies, such as the LO/TO split-
ting at the zone center for MgO.

In this sense, the spirit of our present investigation is not
so much to evaluate the relative merits of the dynamics-
from-diffraction and INS/IXS approaches, but to explore the
extent to which dynamical information might be preserved
within diffraction data, given that this might be the only
practical method for exploring dynamical behavior within
many materials. We begin by critically reviewing previous
approaches, and continue by establishing the general method
by which dynamical information can be accessed from ato-
mistic configurations. We discuss our procedure for generat-
ing configurations, and explicitly show its independence
from the existence of dynamical information within its out-
put. Our results from applying this method to MgO and
SrTiO3, two systems whose lattice dynamics are well under-
stood, are presented and used to assess the relative capabili-
ties and limitations of the approach. We perform additional
model calculations to show the extent to which high-
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frequency modes contribute to the widths of peaks in the pair
distribution function. We complete this paper with a discus-
sion on the prospect for determining dynamical information
from powder diffraction data. In some regards we are en-
couraged that it appears possible to obtain information about
the lower-frequency ranges of the phonon-dispersion curves,
but we will note that improvements in data collection meth-
ods and data analysis will be required to improve the accu-
racy of the information.

II. DYNAMICS FROM DIFFRACTION: RECENT WORK

The PDF contains information on two-body correlation
functions. The connection between these correlation func-
tions and dynamical behavior was realized as early as the
1960s: Kaplow used PDF peak widths to determine empiri-
cal vibrational coupling constants for some simple metals at
temperatures close to their melting points.9,10 With the ad-
vent of modern synchrotron x-ray and spallation neutron
sources, and the contemporaneous increase in accessible
computational power, the problem has been revisited several
times since the late 1990s.

The recent approaches have developed from the work of
Chung and Thorpe, who proposed a formal relationship be-
tween the phonons and peak widths in the PDF.11 They
showed that the peak width �ij corresponding to the pair of
atoms �i , j� is given by

�ij
2 =

2�

N
�
k,�

n�k,�� + 1
2

��k,�� �1

2
� �e�i,k,�� · r̂ij�2

mi
+

�e�j,k,�� · r̂ij�2

mj
	

−
1


mimj

�e�i,k,�� · r̂ij��e�j,k,�� · r̂ij�exp�ik · r̂ij�� , �1�

where the sum is over all modes � and wave vectors k. The
e�i ,k ,�� are the mass-weighted normalized mode displace-
ment vectors, n�k ,�� and ��k ,�� are the mode occupation
number and mode �angular� frequency, respectively, N is the
number of unit cells, mi is the atomic mass, and r̂ij is the unit
vector directed from the equilibrium position of atom i to
that of atom j. They applied this theory to a series of semi-
conductor alloys. The excellent agreement obtained between
calculated and experimental PDF showed that the form of the
PDF could indeed be accounted for in terms of a reasonable
potential model.

Predicting diffraction data from a dynamical model is a
fundamentally different task from predicting a dynamical
model from diffraction data. The problem is that Eq. �1� is
not invertible: one cannot express �at least starting from this
relationship� the mode frequencies and displacement vectors
in terms of the observed peak widths.

Subsequently, Dimitrov and co-workers suggested that, if
one can calculate a PDF from a dynamical model, then one
should be able to use the fit between calculated and observed
PDFs to refine the model parameters.2 In doing so, one
would obtain a potential model whose parameters were
driven wholly by the available data. The authors presented
results for two systems—Ni and CaF2—chosen as they re-
quired rather different interatomic potentials to describe their

lattice dynamics. Both systems gave phonon-dispersion
curves that were essentially indistinguishable from those ob-
tained from INS experiments.

The usefulness of this approach has been disputed by Rei-
chardt and Pintschovius, who showed that different potential
models could give rise to essentially identical PDFs.3 How-
ever, the different models gave similar phonon-dispersion
curves, which is why the different models gave similar
PDFs. Thus it could be argued that what was really demon-
strated was that different models can give rise to similar
dispersion curves. Nonetheless, the report raised serious
questions about the possibility of extracting phonons from
diffraction data.

More recently, Graf and co-workers readdressed the prob-
lem from an alternative viewpoint.4 Their approach was to
take a basic phonon model, in which the number of param-
eters could be systematically varied. For a given system, a
set of “reference” parameters was assigned, and this was
used to generate a synthetic PDF together with the corre-
sponding synthetic phonon-dispersion curves. Starting from
just one parameter, and progressing toward the full comple-
ment �i.e., as many as were used to generate the synthetic
data sets�, the values of the parameters themselves were re-
fined according to the method of Dimitrov et al.2 Upon con-
vergence, the set of phonon-dispersion curves given by the
refined parameters was calculated, and compared to that ob-
tained from the synthetic set. Goodness-of-fit values
�pdf ,�phonon could be determined for both the PDFs and the
dispersion curves.

The authors observed different behavior for different ma-
terials, distinguished primarily by the complexity of their
lattice dynamics. For “simple” systems, such as bcc Fe, the
parameters converged on those used to generate the original
synthetic data set; moreover, as the number of parameters
was increased, both �pdf and �phonon decreased monotoni-
cally. On the other hand, “complex” materials—a term that
included bcc Nb—behaved rather differently. Even when all
parameters were allowed to vary, the system did not con-
verge on the same set of parameters as those used to generate
the synthetic data sets. Additionally, in some instances, an
increase in the number of force constants refined resulted in
an improved value of �pdf but an increase in �phonon �or vice
versa�. The authors interpreted these results as an indication
that one could not use diffraction data to determine phonon-
dispersion curves for materials with “complex” dynamics.
Since the distinction between “simple” and “complex” is one
that can only be applied a posteriori, they suggested that the
method was unlikely to be of any general use.

In retrospect, some aspects of this most recent report give
cause for concern, and one especially so. In the instance in
which the number of parameters included in the refinement
process was equal to the number used to generate the syn-
thetic data sets, there must—without question—exist a solu-
tion for which �pdf=0 and �phonon=0 �the latter would not
affect the fitting procedure, of course�: it is given by the very
parameters used to generate the synthetic data sets them-
selves. That this solution was not found for a number of
systems would indicate that the refinement procedure used
by the authors did not arrive at the global minimum in these
instances, and raises the possibility that the same was true
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when fewer parameters were included in the refinement pro-
cess. This immediately casts suspicion on any inference
drawn from the relative behavior of �pdf and �phonon in that
study, especially for “complex” systems.

What is clear from this body of work is that reasonable
phonon models give reasonable fits to the PDF data. Also, if
different models produce similar dispersion curves, they will
give similar fits to the PDF. What is needed is an approach
that does not rely on the use of particular phonon models. In
other words, is it possible to extract dynamical information
from diffraction data as mode frequencies and displacement
vectors, rather than as parameters in a predetermined inter-
action potential? This is the key question we aim to address
in this paper.

III. THEORY

A. Extraction of dynamical quantities from atomistic
configurations

Traditionally, the atomic-scale structures of crystalline
materials are reduced to the average atomic positions within
the crystallographic unit cell. Some additional information in
terms of the atomic dynamics is given in the displacement
parameters of each atom, which correspond to its root-mean-
squared displacement from the average position. With the
advent of diffractometers capable of measuring simulta-
neously the intensities of Bragg reflections and diffuse scat-
tering �such as the GEM instrument at ISIS12,13�, it has be-
come increasingly possible to resolve short-range structural
features in the same materials.

One method of visualizing these features is through re-
finement of atomistic configurations consistent with diffrac-
tion data. These configurations essentially represent a crys-
tallographic supercell, with no implicit symmetry constraints
on the atomic positions. The average structure across the
configuration matches that obtained through traditional re-
finement methods—such as the Rietveld method—and so
both store the same long-range structural information. How-
ever, the short-range information can be incorporated within
the configuration in the form of individual atomic displace-
ments.

To a first approximation, these displacements are deter-
mined by the nature of the phonon modes that govern the
lattice dynamics of the material. Indeed, the configuration
can be considered as a “snapshot” of the atoms undergoing
vibrational motion. Consequently, the configurations are far
from unique; different configurations can essentially be con-
sidered as “snapshots” of the same set of atoms taken at
different times and as such are equally consistent with the
experimental diffraction data.

There is a rigorous link between the nature of the phonon
modes and the displacements we might observe in an atom-
istic configuration.14,15 For each atom j in the unit cell �, the
instantaneous displacement u�j� , t� from its equilibrium po-
sition r�j�� is given by the linear superposition of the effects
of all phonon modes � at all wave vectors k,

u�j�,t� = �
k,�

û�j,k,��exp�i�k · r�j�� − ��k,��t� . �2�

Here, û�j ,k ,�� is the amplitude vector of the mode � at wave
vector k. This quantity may be decomposed further,

û�j,k,�� =
û�k,��

Nmj

e�j,k,�� , �3�

where e�j ,k ,��, N, and mj retain their meanings from Eq.
�1�. The scalar quantity û�k ,�� is the normalized mode am-
plitude, and is independent of the type of atom j. The sets of
vectors e�j ,k ,�� corresponding to any two modes � ,�� are
orthonormal,

�
j

e�j,k,�� · e�j,− k,��� = ���,��� . �4�

Being parallel to the û�j ,k ,��, they describe the characteris-
tic relative atomic motions associated with the mode.

It is convenient to subsume both the normalized mode
amplitude and the time dependence into the normal mode
coordinate Q�k ,� , t�,

Q�k,�,t� = û�k,��exp�− i��k,��t� , �5�

which, upon substitution into Eq. �2�, gives

u�j�,t� =
1


Nmj
�
k,�

e�j,k,��exp�ik · r�j���Q�k,�,t� . �6�

The normal mode coordinates are useful quantities as their
time averages are related directly to the normal mode
frequencies,15

��Q�k,���2� =
�

��k,���n�k,�� +
1

2
� . �7�

In the high-temperature limit �kBT����, Eq. �7� has the
simpler form

��Q�k,���2� =
kBT

�2�k,��
. �8�

These quantities can also be expressed in terms of the instan-
taneous atomic displacements u�j� , t� by reverse Fourier
transform of Eq. �6�,

Q�k,�,t� =
1


N
�
j,�


mj exp�ik · r�j���e*�j,k,�� · u�j�,t� .

�9�

It is this connection between the atomic displacements
and the normal mode frequencies, via the Q�k ,� , t�, that un-
derpins our approach to extracting phonons from atomistic
configurations. Equation �9� essentially describes a change of
basis between these two quantities, with the mapping given
by the mode displacement vectors e*�j ,k ,��. We can extend
this concept mathematically by assembling the Q�k ,� , t� for
all modes � into a single column vector Q�k , t�. There will
be 3Z components to this vector, where Z is the number of
atoms in the �primitive� unit cell. The corresponding set of
Eqs. �9� is given by the relation

Q�k,t� = A�k� · T�k,t� . �10�

Here, A�k� is a 3Z	3Z matrix whose rows index the 3Z
normal modes � and the columns the displacements of each
atom j along the Cartesian axes 
� �x ,y ,z. Its entries
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A�,
j�k� are given by the Cartesian components e

*�j ,k ,�� of

the mode displacement vectors. The column vector T�k , t� is
defined by the atomic displacements u
�j� , t� along the Car-
tesian axes,

T
j�k,t� =
mj

N
�

�
u
�j�,t�exp�ik · r�j��� . �11�

Importantly, the elements of T�k , t� are quantities we are
able to calculate directly from our atomistic configurations.
In principle, Eq. �10� could be used to convert these values to
the elements of Q�k , t�; however, this would require explicit
knowledge of the normal displacement vectors. Rather, our
understanding of these vectors is limited to their orthonor-
mality, a property we proceed to exploit.

First, the time-averaged matrix S�k� is calculated using
the relation

S�k� = �T�k� · TT�− k�� . �12�

In the present context, the concept of “time-averaging” cor-
responds to taking averages over large numbers of configu-
rations. The error associated with this assumption scales in-
versely with the square root of the number of configurations.
The usefulness of the quantity S�k� lies in the property that
the basis of Q�k , t� is the set of normal coordinates and
hence the matrix ��k�= �Q�k� ·QT�−k�� is diagonal with en-
tries �in the high-temperature limit�

�i,i�k� =
kBT

�2�k,i�
. �13�

Substitution of Eq. �10� into Eq. �12� gives

��k� = A�k� · S�k� · AT�k� , �14�

which essentially represents a matrix diagonalization prob-
lem. The uniqueness of diagonalization yields the elements
of ��k� �and hence the mode frequencies� from S�k�. Fur-
thermore, the eigenvectors of S�k� are the elements of A�k�.
In this way, the method yields both the frequencies and nor-
mal mode displacement vectors of the phonons at arbitrary
wave vector.

B. Symmetry considerations

The choice of basis for T�k , t� is somewhat arbitrary;
atom/Cartesian direction coordinates have been used in the
above analysis solely for the purpose of simplicity. However,
any basis that spans the same vector space as these will allow
calculation of S�k� and, in turn, the normal mode coordinates
and frequencies. It is reasonable then to question whether a
more judicious choice of basis might exist than the one sug-
gested above. In addressing this issue, we explore the means
by which knowledge of the underlying symmetry of the
structure in question can assist in choosing a suitable basis
for T�k , t�, simplifying the form of S�k� and allowing de-
tailed insight into the nature of each normal mode.

The analysis begins by explicating the relationship be-
tween S�k� and the dynamical matrix D�k�. There is an im-
mediate natural connection between these two matrices as, in

both cases, their eigenvalues are directly related to the nor-
mal mode frequencies. On the one hand, S�k� stores this
information in terms of the mass-weighted displacements of
the atoms while D�k� is constructed from the individual
forces between atoms. This can be seen more formally by
considering explicitly the elements of each matrix,

S
j,�j��k� = �mjmj��
1/2�

���


,�� j j�

���
	

	exp�ik · �r�j���� − r�j��� , �15�

D
j,�j��k� =
1

�mjmj��
1/2�

��

�
,�� j j�

0��
	

	exp�ik · �r�j���� − r�j0�� . �16�

In both instances, the elements correspond to correlations
between the pair of atoms j and j� along the axes 
 and
� �
 ,�� �x ,y ,z�, respectively. � and � are the displace-
ment and force constant matrices, respectively, whose ele-
ments are given by


,�� j j�

���
	 =

�u
�j��u��j�����
N

, �17�

�
,�� j j�

���
	 =

�2W

�u
�j���u��j����
, �18�

where W is the lattice energy. Finally, Eqs. �15� and �16� give
the relation �in the high-temperature limit�

S�k� · D�k� = kBT . �19�

The purpose of establishing this relationship between the
normal mode coordinates and the dynamical matrix is that
significant effort has previously been expended in finding
ways of simplifying the dynamical matrix; by association,
we can use these same methods to simplify S�k�.

The essential concept is that D�k�—and hence
S�k�—must be left invariant when acted upon by the sym-
metry operations of the space group of the crystal itself.16–18

Formally, this can be expressed by the statement

S�k� = ��k;i� · S�k� · ��k;i�−1, ∀ i , �20�

where ��k ; i� is a matrix representation of the ith symmetry
operation of the space group acting at the wave vector k.
These relations place �often severe� restrictions on the values
elements of S�k� can assume. Some might be zero, some the
same as other elements, or indeed some the linear combina-
tions of a number of elements in the matrix.

An elegant group theoretical approach has shown that a

symmetry-reduced matrix Ĥ�k�, composed of a minimal
number of independent matrix elements, can be constructed
by successive matrix transformations of a random Hermitian
matrix H by the ��k ; i�,19
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Ĥ�k� = �
i

��k;i� · H · ��k;i�−1. �21�

Importantly, this simplification allows calculation of a matrix
V�k� that is capable of block-diagonalizing each of the
��k ; i�, and hence is also capable of block-diagonalizing

Ĥ�k�.16 The columns of V�k� are the symmetry-coordinate
vectors, and if we express S�k� with these as a basis, the

resulting matrix Ŝ�k� will be in block-diagonal form.
This serves to reduce the diagonalization problem of Eq.

�14� to the diagonalization of the set of �smaller� blocks of

Ŝ�k�,

�i�k� = Âi�k� · Ŝi�k� · Âi
T�k� , �22�

where i runs over all blocks in Ŝ�k�. Each block in this
matrix now corresponds to a single type of symmetry; in the
appropriate group theoretical language, the blocks can be
associated with irreducible representations �IRs� of the point
group of the wave vector.17 It is possible that more than one
mode will correspond to a given IR and that some IRs may
not correspond to any modes at all. Nevertheless, the modes
from different blocks are precluded from mixing and so their
individual contributions to S�k� can be separated. The eigen-

vectors Âi�k� are expressed in the basis of symmetry-
coordinate vectors, and so must be converted back to atom-
direction coordinates to correspond to the related entries of
A�k�. Importantly, they now give the symmetry-adapted
mode displacement vectors.

In practice, those elements of Ŝ�k� that do not belong to
one of these blocks �i.e., the off-�block�-diagonal entries�
tend to have small, but nonzero, values. This is a product of
the implicit errors associated with the construction of S�k�
from the average of a finite set of configurations and errors
introduced during the generation of the atomistic configura-
tions. The exclusion of these values from the matrix diago-
nalization procedure serves to reduce the associated error in
the mode frequencies obtained.

We have shown how the diagonalization process might be
simplified through the appropriate choice of a symmetry-
adapted basis. The group theoretical analysis required to cal-
culate this basis is formidable and it is fortunate that excel-
lent reviews for such a treatment of the dynamical matrix
exist in the literature.16,17,19 The method is valuable in that it
both reduces the computational effort of the diagonalization
procedure represented by Eq. �14� and provides a means by
which both the symmetry and the mode displacement vectors
of all normal modes may be assigned without ambiguity.

IV. GENERATION OF ATOMISTIC CONFIGURATIONS

A. Reverse Monte Carlo method

We were encouraged by a recent study in which the rel-
evant analysis of reverse Monte Carlo configurations of 
-
and �-quartz, generated by fitting to NPD data, was able to
reproduce detailed single-crystal diffuse scattering patterns.20

Such patterns are direct manifestations of the phonon ener-

gies and dispersion, and their preservation within RMC con-
figurations suggests the method is an appropriate tool with
which to probe the extent of dynamical information acces-
sible from NPD data.

The RMC procedure, discussed in detail elsewhere,21,22

involves minimization of the “mismatch” function

�RMC
2 = �S�Q�

2 + �T�r�
2 + �Bragg

2 , �23�

where

�S�Q�
2 = �

k
�

j

�Scalc�Qj�k − Sexp�Qj�k�2/�k
2�Qj� ,

�T�r�
2 = �

j

�Tcalc�rj� − Texp�rj��2/�2�rj� ,

�Bragg
2 = �

hkl

�Icalc�hkl� − Iexp�hkl��2/�2�hkl� . �24�

Here, the �S�Q�
2 contribution includes components from each

of k data sets. The radial distribution function T�r�, chosen
for convenience, is related to the partial pair distribution
functions gij�r� and is given by

T�r� = 4�r�0��
ij

cicjb̄ib̄j�gij�r� − 1� + ��
i

cib̄i	2� ,

�25�

where �0 is the configuration number density, ci is the con-

centration of species i, and b̄i is its neutron scattering
length.23 There are various forms similar to the functions
S�Q� and T�r� that may be used with equivalent results. The
use of both real-space and reciprocal-space terms is impor-
tant, as each accentuates different structural features. For this
same reason, we include consideration of the Bragg scatter-
ing intensities, which ensure our configurations are consis-
tent with the Rietveld-refined average crystal structure;
moreover, they add some additional dimensionality to the
process through assignment of the Miller indices. In this
way, the data constrain both the single-atom �Bragg� and pair
�PDF� correlation functions of the configurations.

In its minimization procedure, the RMC method generates
random atomic moves, calculating at each stage the con-
comitant effect �2 on the overall mismatch function. Any
move for which �2�0 is accepted automatically, while
others are accepted only with probability exp�−�2 /2�. The
algorithm is repeated until �2 has converged to some equi-
librium value. At this point, the RMC fit to the experimental
data will be to within the errors � j. It is possible to continue
running the RMC algorithm on these equilibrium configura-
tions; while the fits to data do not improve further, the
method continues to generate and accept moves, such that
configurations separated by sufficiently many moves may be
considered independent. When generating ensembles of con-
figurations for our phonon analysis, we used equilibrium
configurations separated by at least N ln 10 atom moves: one
can expect at least 90% of atoms to have moved under these
conditions.

The fitting procedure itself is performed by the suite of

MODEL-INDEPENDENT EXTRACTION OF DYNAMICAL… PHYSICAL REVIEW B 72, 214304 �2005�

214304-5



programs RMCPROFILE.21,24 Final output from the procedure
is in the form of the atomistic configurations themselves,
with each configuration capable of reproducing the observed
structural data to within the specified error limits. In this
sense, the RMC method is more similar to a refinement pro-
cess than a modeling tool; its output is driven wholly by
experimental data. The most obvious difference between the
RMC approach and a typical least-squares refinement is the
possibility that unfavorable moves might be accepted during
the refinement procedure. Its effect is to maximize the
amount of configuration space that RMC is able to sample.
In principle, it ensures the method finds the global energy
minimum, given a sufficient number of iterations.

There are two “popular” concerns frequently expressed
about the RMC procedure: first, the equilibrium configura-
tions obtained are rarely unique, and second, the technique
favors high-entropy configurations �as they are more likely
to be sampled�. The uniqueness problem is not surprising
given the large number of variables refined in each configu-
ration, and means that care must be taken in choosing which
conclusions might be justifiably drawn from an individual
RMC configuration. We have already mentioned that one
way of interpreting this degeneracy is in terms of different
solutions corresponding to snapshots of the same set of at-
oms at different times; that is, one can view equivalent �yet
different� configurations as different superpositions of the
normal modes on the same set of atoms. Indeed, it is this
very degeneracy that we require when extracting dynamical
information from ensembles of configurations.

The prevalence of high-entropy configurations is poten-
tially problematic in that we cannot be certain that such con-
figurations represent the most realistic picture of the local
atomic displacements in a given material. The consideration
of Bragg intensities within the refinement procedure serves
to reduce its effects somewhat; however, configurations gen-
erated using this basic RMC method routinely contain re-
gions whose local structure is highly distorted, with chemi-
cally unreasonable atomic positions �Fig. 1�a��. The incor-
poration of spurious atomic displacements within configura-
tions has significant ramifications for any proposed extrac-
tion of dynamical information, giving rise to �often severe�
anisotropy and a concomitant reduction in the quality of any
results obtained.

B. Atomistic restraints and constraints

One method of addressing the entropy problem is to in-
troduce a number of constraints and restraints on the fitting
procedure. In all cases, the underlying principle is to use
sound chemical and physical knowledge to prevent RMC
arriving at chemically or physically unreasonable configura-
tions. Perhaps the simplest constraint—the “closest-
approach” constraint—prohibits atoms from approaching
each other closer than some physically sensible distance
�typically chosen to coincide with the start of the first ob-
served peak in the experimental T�r� function�. For some
systems with very simple structures, implementation of this
constraint within the RMC algorithm can be sufficient to

temper the incorporation of damaged regions within configu-
rations; in general, however, this is not the case.

1. Bond length and bond angle restraints

An additional restraint, in which individual bond lengths
and bond angles are prevented from drifting from their
known values, has been proposed25,26 and has been success-
ful in moderating disorder in a number of systems �Fig.
1�b��.27,28 It involves the incorporation of additional energy
terms in the calculation of �2 of the form

�bond
2 = �

bonds
�r − r̄�2/�bonds

2 ,

�angle
2 = �

angles
�� − �̄�2/�angles

2 . �26�

Here, r̄ and �̄ are mean bond lengths and bond angles, re-
spectively, and �bonds, �angles their standard deviations. These
values can be obtained from the experimental radial distribu-
tion function.29 Such restraints serve to restrict the set of
configurations generated by RMC to those that contain
physically reasonable bond lengths and bond angles �for
which the contribution of the terms represented by Eq. �26�
to the value of �RMC

2 is minimal�.
The RMC method, moderated using the constraints and

restraints detailed above, has historically been used to gen-
erate realistic atomistic configurations, from which some
conclusions about static short-range and long-range struc-
tural features can be drawn. For these purposes, the method
appears to work well as it stands. However, in our attempt to
extract dynamical information from these configurations, we
are asking very different and subtle questions of the data.
Consequently, it is essential that we ensure that any addi-
tional constraints used in the refinement procedure do not
prejudice the dynamical information retrievable from the re-
sulting configurations.

In this context, we note that the bond length/bond angle
restraints act as harmonic potential functions, modeling in-
teratomic bonds and three-body angles as harmonic oscilla-
tors, with the force constants entering in the form of the
�bonds and �angles values. To test whether the implementation
of these restraints has any effect on the phonon-dispersion
curves obtained, we used the RMC procedure to generate
two different configurational ensembles each corresponding
to a 15	15	15 supercell of SrTiO3. In order to control
against the influence of diffraction data itself on the phonon
dispersion, no actual data sets were used to constrain the fits
in either instance. The ensembles differed in that the first was
allowed to proceed without any potential restraint; as such,
the atoms in these configurations—constrained neither by
data nor by imposed restraints—essentially followed a “ran-
dom walk” about their initial positions. On the other hand, a
potential restraint was applied to the second ensemble, using
typical values of �bonds and �angles.

In each case, 300 configurations were generated, and the
corresponding phonon-dispersion curves calculated along
high-symmetry directions. Our results �Figs. 2�a� and 2�b��
clearly indicate that the inclusion of potential restraints
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within the RMC procedure has a pronounced effect on the
shape of the phonon-dispersion curves. As expected, those
curves generated from the potential-free configurations show
negligible dispersion across the Brillouin zone �BZ�, while
many features—including mode softening near the zone cen-
ter and zone boundary—are distinguishable within those
generated using the potential restraint. We would emphasize
here that the phonon-dispersion curves shown in Fig. 2 were
calculated from RMC configurations that had never seen dif-
fraction data. The RMC procedure was driven only by con-
straints �if present�, and consequently the presence of large
error bars is not surprising. For those curves determined
without any constraints �Fig. 2�a��, there are no regions of
the phonon spectrum—between approximately 3 and
20 THz—that are not within one standard deviation of some

mode. On the other hand, there are a number of such regions
in the curves determined using the bond-angle constraints
described above �Fig. 2�b��—in spite of the absence of any
diffraction data to drive the dispersion.

This effect is easily rationalized in terms of those sets of
atomic motions that have no effect on �bond

2 and �angle
2 . Such

moves are inherently more likely to be accepted, and their
concomitant predominance among the configurations will be
reflected in a low value of the associated mode frequency.
For SrTiO3, there are two types of motion that fall into this
category: translations of the Sr atoms �which are left unteth-
ered by the potential constraints� and “rigid-unit”-type dis-
placements, which correspond to the octahedral tilting mode.
Indeed, inspection of the associated normal displacement
vectors reveals the effect of both types of motion on the

FIG. 1. �Color online� Regions of equilibrium RMC configurations representing a 10	10	10 supercell of SrTiO3 generated from NPD
data at 295 K. �a� In the absence of any constraints or restraints, RMC introduces a number of regions of localized “damage,” which involve
unreasonable bond distances and bond angles. �b� The use of Ti–O bond length and O–Ti–O bond angle restraints successfully moderates the
behavior of the Ti/O framework, but the displacement of the unrestrained Sr atoms �shown here as unbonded atoms� increases to an
unrealistic level in response. �c� Implementation of the DW constraint avoids the introduction of damaged regions, and allows small
concerted displacements of large regions of the configurations �corresponding to large wavelength acoustic modes�. All three configurations
give essentially identical fits to data.
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phonon-dispersion curves, as shown in Fig. 2�b�: the set of
three modes that occur at lowest frequency across the BZ
correspond to translation of the Sr atoms alone, and the oc-
tahedral tilt mode can be seen to soften—as might be
expected—along �� � �� toward R.

By effectively introducing a simple potential model into
the RMC refinement procedure, the restraints ensure that the
configurations produced are simultaneously consistent with
both the diffraction data and the potential model. If such a
model were physically reasonable and applied in a manner
whereby the restraints are weakly weighted with respect to
the data constraints, then one might expect to arrive at rather
excellent RMC configurations in this way. The restraints pre-
vent the RMC configurations from moving toward high-
entropy configurations while the data provide the finer de-
tails of the local atomic displacements within crystalline
materials.

2. Distance window constraints

Irrespective of their precise form, or indeed the various
numbers and types of bonds they involve, restraints of the
type represented by Eq. �26� inherently impart some shape to
the phonon-dispersion curves obtained. For this study, it is
essential that we probe only that dynamical information
present within the diffraction data themselves. Consequently,
we sought to find methods of generating similarly realistic
configurations using RMC without at the same time influenc-
ing the extent of dynamical information held within them.

We initially considered a “slack tether” constraint, in
which atoms were tethered to their crystallographic �average�
sites so that they were allowed move freely �i.e., without
penalty to �2� within a predefined radius, but were forbidden
from straying further than this distance. This constraint, like
the potential restraints above, was effective at preventing the
incorporation of damaged regions within the RMC configu-
rations. However, as the atoms were tethered to some point

within the configuration and not their neighboring atoms, it
also prevented any correlated motion of large regions of at-
oms within the same configurations. The acoustic branches
of the phonon dispersion no longer fell to zero frequency
near the zone center as a consequence.

Eventually, we arrived at a relatively simple constraint
which acts to preserve the distances between neighbors
within a predefined “window” of values �referred to hereafter
as the distance window �DW� constraint�. Any move pro-
posed by the RMC algorithm that would either bring pairs of
neighboring atoms too close together or separate them by too
great a distance is automatically rejected. Essentially, the
constraint involves the incorporation of additional terms in
the calculation of �RMC

2 of the form

�DW
2 = �

ij

��rij� , �27�

where the �-function-like terms ��rij� are given by

��rij� = �0, rij,min � rij � rij,max,

� , otherwise.
� �28�

The summation typically involves those pairs of atoms �i , j�
that are either nearest or next-nearest neighbors. In this way,
the constraint acts to maintain a sense of connectivity
throughout configurations, rather than simply removing in-
tensity from regions of the various gij�r� functions �the effect
of closest-approach constraints�. For each pair �i , j�, the lim-
iting values of the corresponding peak in the experimental
T�r� function give appropriate values of rij,min and rij,max. In
practice, the “window” of allowed values defined by rij,min
and rij,max is often extended in order to avoid placing too
strict a constraint on the configurations and to allow RMC
some flexibility. DW constraints that are too restrictive can
affect the peak shapes in the calculated T�r� function: the
tails of peaks are truncated, forcing the residual atomic den-
sity to accumulate near the cutoff values. This is readily di-

FIG. 2. �Color online� Phonon-dispersion curves calculated from equilibrium RMC ensembles containing 300 configurations, each
representing a 15	15	15 supercell of SrTiO3. No experimental data were used in the refinement process; rather, the ensembles were
refined subject to �a� no restraints or constraints, �b� bond length and bond angle restraints, and �c� DW constraints. Error bars correspond
to 1� intervals and are large in the absence of any real diffraction data to drive the refinement procedure. The �� � �� �25 mode referred to
in the text is indicated in panel �b� by an asterisk.
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agnosed and addressed by slackening the DW constraints
applied.

Configurations prepared in this way �Fig. 1�c�� lack the
regions of localized damage that plague those generated
without constraints, while their respective fits to data are
essentially identical. Disorder in these configurations mani-
fests itself in the form of small concerted displacements of
large regions of atoms. In Fig. 1�c�, the magnitude of these
displacements can be seen to vary across the configuration.

The fact that �DW
2 is zero-valued for any configuration

with values of rij within their allowed “windows” avoids the
incorporation of any bias on the phonon dispersion. An en-
semble of SrTiO3 configurations was generated in the same
manner as that used to study the effects of the potential re-
straints, and the resulting set of phonon-dispersion curves
calculated. Encouragingly, our results �Fig. 2�c�� illustrate
that the DW constraint yields a set of featureless dispersion
curves, similar in nature to those calculated from uncon-
strained RMC configurations. Consequently, the constraint
appears to function as desired: it successfully moderates dis-
order in the RMC configurations while leaving the associated
phonon-dispersion curves unaltered.

V. DATA COLLECTION AND REDUCTION

Having established the various theoretical and computa-
tional requirements, we turn now to describe our methods of
collection and reduction of diffraction data. The quality of
any dynamical information extracted from scattering data
will depend on at least three experimental factors. First, we
require high resolution of the pair distribution function. This
is particularly relevant to the measurement of high-frequency
modes, whose effect on interatomic displacements is subtle.
The PDF resolution

r �
3.791

Qmax
�29�

depends on the maximum observed scattering vector Qmax.
Consequently, to resolve displacements to within a few
tenths of an angstrom, we require scattering data with Qmax
of �40 Å−1. This resolution might also be expected to affect
the range of frequencies observable in any phonon-
dispersion curves determined from the diffraction data. A
second requirement is the need for the total scattering to be a
good integration over all possible changes in energy, allow-
ing both elastic and inelastic scattering events to occur. This
implies that the energy of the incident neutron beam must be
higher than the energy scale of the phonons in the material.
High incident neutron energy also ensures that the energy
integration is as close to constant Q as possible. Finally, any
background scattering needs to be minimized, so that it is
possible to measure scattering at high values of Q with good
statistical accuracy.

The GEM instrument at ISIS is suitable for such measure-
ments as it has �i� a large number of detector banks giving a
wide coverage of Q for high-energy neutrons, �ii� a relatively
low intrinsic background, �iii� relatively high resolution for
measurement of Bragg peaks, and �iv� the high energy of the
incident beam is sufficient to ensure that the scattering beam

will include all phonon-creation processes.12 The scattering
data analyzed in this paper were collected on this instrument.
However, given the advent of synchrotron sources with in-
creasingly high-energy x-ray beams, permitting measure-
ments to Qmax�30–40 Å−1 �albeit with weak intensities at
high values of Q due to the Q-dependent x-ray form factors�,
we expect to see an increasing use of synchrotron x-ray
beams for total scattering measurements.

Following their collection, the total scattering data were
corrected for the effects of background scattering, absorp-
tion, multiple scattering within the sample, beam intensity
variations, and the so-called Placzek correction was
applied.24 These corrected data were then converted to S�Q�,
T�r�, and Bragg intensity data; all three sets were used as
input for the RMC procedure in the manner described above.

VI. CASE STUDIES

We proceeded to apply our technique to two systems. The
first, for which some preliminary results have recently been
reported �Fig. 3�a��,1,8 involves determination of the phonon-
dispersion curves in rocksalt-structured MgO. We had cho-
sen this system initially as its lattice dynamics, although non-
trivial, are well understood.30,31 The analysis is repeated in
the present context so that, by comparison with the previ-
ously reported results, it might act as a means of assessing
the merits �or otherwise� of both the symmetry-adapted ap-
proach and the DW constraint outlined above.

FIG. 3. �Color online� �a� MgO phonon-dispersion curves given
in our initial analysis of RMC configurations derived from NPD
data �Refs. 1 and 8�. The lines trace equivalent modes across each
symmetry direction. �b� Symmetry-adapted phonon dispersion de-
termined as described in the text �colored data points and lines� and
calculated using a standard shell lattice dynamical model from Ref.
30 �black lines�.
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As a second case study, we determined the phonon-
dispersion curves of SrTiO3 across a range of temperatures.
Its dynamical behavior, which is also well understood,32–35 is
significantly more complex than that of MgO; in particular,
the material possesses two modes with strongly temperature-
dependent behavior. One is at the R point of the BZ, giving
rise to a displacive phase transition upon softening at 105 K.
The other is at the zone center and corresponds to an incipi-
ent ferroelectric instability at low temperature. We were in-
terested to observe whether these features were discernible in
the diffraction-based phonon-dispersion curves.

A. Magnesium oxide

Neutron total scattering data were collected at room tem-
perature on the GEM instrument at ISIS12,13 over a range of
momentum transfers 1�Q�42 Å−1. These data were used
as input for the RMC procedure to generate an ensemble of
2000 configurations. In order to prevent the incorporation of
disorder within these configurations, we employed DW con-
straints as discussed above, with the critical distances deter-
mined by inspection of the experimental T�r� functions. The
ensemble was analyzed according to the method described
above along the symmetry directions �0 0 ��, �0 1 ��,
�0 � ��, and �� � �� at intervals of 1 /10. In contrast to the
method employed in our previous report,1 we included con-
sideration of the crystal symmetry in the present analysis.
Consequently, there is a slight improvement of the quality of
our results �Fig. 3�b��. Moreover, we were able to assign
modes automatically at each wave vector, rather than relying
upon tedious manual inspection of the corresponding eigen-
vectors.

Despite the obvious improvement in the accuracy of the
phonon frequencies obtained, the same general conclusions
can be drawn. First, many of the features observed in sets of
phonon-dispersion curves determined using INS can be seen
to occur in those reported here: the energy scale is appropri-
ate, and the dispersion among the low-frequency modes is
well reproduced. On the other hand, as we noted in our pre-
vious report,1 the diffraction data are insensitive to any split-
ting of the LO and TO branches at the zone center.

We investigated the absence of any LO/TO splitting in the
RMC-determined phonon-dispersion curves by generating a
new ensemble of 3000 configurations with a molecular-
dynamics �MD� simulation. The MD model used was a stan-
dard shell potential,36 which is capable of reproducing
LO/TO splitting at the zone center. This splitting was evident
within the phonon-dispersion curves calculated from the en-
semble of configurations; consequently, it is not the method
of analysis itself responsible for the absence of LO/TO split-
ting in the RMC-derived configurations.

We subsequently generated artificial S�Q�, T�r�, and
Bragg intensity data sets from the MD configurations them-
selves, and used these as input for the RMC procedure. A
further 500 configurations were generated in this manner,
using precisely the same parameters used initially to generate
configurations from the experimental diffraction data. While
the fits to data obtained were near perfect, the phonon-
dispersion curves calculated from these configurations again

lacked any LO/TO splitting at the zone center.
These results suggest there may be inherent limitations to

what is possible to achieve using this approach. Even with
idealized data sets �such as the MD-derived diffraction data�
and data analysis capable of extracting all phonon-dispersion
features—including the LO/TO splitting—it may not be pos-
sible to replicate the phonon-dispersion curves measured ex-
perimentally using spectroscopic techniques such as INS and
IXS. This having been said, the low-frequency modes appear
to be well preserved in the data; such modes are generally
the most important, as they dominate the dynamical behavior
of materials.

B. Strontium titanate

To investigate whether NPD data were sensitive to any
temperature-dependent behavior of the phonon-dispersion
curves in SrTiO3, neutron total scattering data were collected
at a range of temperatures: 105, 150, 200, 250, and 295 K.
These were collected on the GEM instrument at ISIS12,13

over a range of momentum transfers 2.2�Q�46 Å−1. For
each temperature, the three sets were used as input for the
RMC procedure to generate approximately 2000 configura-
tions, each containing a 15	15	15 array of primitive cubic
unit cells. Again, in order to prevent the incorporation of
disorder within these configurations, we employed DW con-
straints as discussed above, with the critical distances deter-
mined by inspection of the experimental T�r� functions. In
practice, these were the same values as those used in our
evaluation of the DW constraint above, and so we were con-
fident of their independence from the observed phonon-
dispersion curves.

Each ensemble was analyzed according to the method de-
scribed above along the symmetry directions �� � ��, �� � 0�,
� 1

2
1
2 ��, � 1

2 � ��, and �� 0 0� at intervals of 1 /15. Again, we
included consideration of the crystal symmetry in our analy-
sis, and so we were able to assign unambiguously the various
modes at each wave vector. Our results �Figs. 4�a�–4�e�� are
interesting for a number of reasons. First, there is a large
degree of reproducibility in the broad dispersion features
across the five temperature values. Second, the overall spread
of energies is very similar to that of the earlier INS measure-
ments �Fig. 4�f��. Third, a significant degree of mode soften-
ing is observable both at the R point and at the zone center
with decreasing temperature. Indeed, it is possible to quan-
tify the extent to which the frequency of each mode changes
over the temperature range studied. Importantly, from among
all modes across the BZ, the two that exhibit the greatest rate
of softening over this temperature range are—as expected—
the R25 �octahedral tilt� mode at the R point on the zone
boundary and the �15 �ferroelectric� mode at the zone center.
Fourth, to a lesser extent than seen in the phonon softening
discussed in the previous point, the analysis does lead to a
general softening of modes across the phonon spectrum on
cooling. We believe that this is an artifact of some limitations
on the data quality.37 This leads to small errors that will have
the effect of adding a small component to the mean-square
atomic displacements. In turn, this has a proportionally
greater effect at lower temperatures, where thermal motion is
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FIG. 4. �Color online� Phonon analysis of SrTiO3 configurations generated using the RMC method, with NPD data collected at �a� 295 K, �b� 250 K, �c� 200 K, �d� 150 K, and �e�
105 K. The modes have been classified according to their symmetry. The softening of modes at the R and � points is evident and the relevant components of the dispersion curves have
been circled; these correspond to the octahedral tilting and ferroelectric modes, respectively. �f� Phonon-dispersion curves of SrTiO3 at 297 K measured by INS �Refs. 33 and 35� �filled
and open circles� and from a harmonic potential model �solid lines, model 5 in Ref. 35�. The high-frequency region of the plot �which extends to �25 THz and for which no experimental
data were measured� has been excluded for clarity.
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lower, and the inverse relation between displacements and
frequencies will lead to an underestimate of phonon frequen-
cies at lower temperatures.

Interestingly, the details of the phonon dispersion are
mostly absent from those curves measured at higher tem-
peratures; it is only upon cooling to temperatures approach-
ing the phase transition that features such as softening of the
R25 and �15 modes become evident. Even at 105 K, however,
it is only the low-frequency modes whose dispersion re-
sembles that measured in INS experiments. As seen to occur
for MgO, the diffraction data seem ignorant of any appre-
ciable variation with wave vector among the high-frequency
modes.

VII. THE CONTRIBUTION OF THE HIGH-FREQUENCY
MODES

Because our approach has primarily run into problems in
determining the behavior of the high-frequency modes, we
have carried out a separate evaluation of the contributions of
the high-frequency modes to the widths of the peaks in the
PDF. Our approach is to compute the phonon-dispersion
curves with the General Utility Lattice Program �GULP�38

using tuned interatomic potential models, and to compute the
peak widths via Eq. �1�. The contribution of the higher-
frequency modes can be assessed by only including certain
frequency ranges in the summations in Eq. �1�. Specifically,
we only include contributions from zero up to a maximum
frequency, �max. Figure 5 shows the results of this procedure
for all the lower-r peaks in the PDF for both MgO and
SrTiO3. It should be noted that the complete sum in each
case agrees well for both cases in comparison with experi-
mental data. The MgO potential model used was taken from

Ref. 39; the SrTiO3 model was adapted from Ref. 40.
The key result from Fig. 5 is that the widths of the peaks

in the PDF are relatively insensitive to a large range of fre-
quencies above some particular value—approximately 15
THz for MgO and 10 THz for SrTiO3. This result in fact is
independent of the choice of temperature. However, each
peak has a somewhat different sensitivity to the value of
�max, which also implies that different peaks will contain
independent information about the contributions of different
phonons to their widths.

Based on this analysis, it is not surprising that the meth-
ods discussed in this paper have not worked as well on the
higher-frequency modes as on the lower-frequency ones. Of
course, this general statement is fully consistent with the fact
that the contribution to the atomic displacements of any vi-
bration of frequency � is proportional to kBT /�; what we
have accomplished in these calculations is to quantify this
point.

VIII. DISCUSSION

The two examples discussed in this paper indicate to
some extent the level of dynamical information that one
might or might not reasonably hope to extract from diffrac-
tion data. On the one hand, if the available information were
limited to the mean-squared displacements alone �e.g., from
temperature factors�, we would expect the observed phonon-
dispersion curves to appear as dispersionless bands across
the BZ, similar to those shown in Figs. 2�a� and 2�c�. The
fact that we have measured relatively detailed dispersion fea-
tures for both MgO and SrTiO3 indicates that it is possible to
access significantly more than simply mean-squared dis-
placements. Indeed, general trends among the low-frequency
modes reproduce those measured using direct spectroscopic
techniques such as INS. This is important as the low-energy
modes dominate dynamical behavior; consequently, knowl-
edge of their energies and characteristic atomic displace-
ments is invaluable in understanding their effects on a range
of physical properties. On the other hand, the diffraction data
appear insensitive to a number of other features of the dis-
persion curves. For example, the splitting of the LO and TO
modes at the zone center in MgO was not observed in the
measured phonon-dispersion curves. That this was true even
when idealized MD-derived data sets were used suggests
there are some inherent limitations to the level of dynamical
information retrievable; this point has been quantified using
some lattice dynamical models.

What, therefore, is the best we can hope to achieve? This
question has implications for both the experimental and the-
oretical aspects of our analysis, and we discuss these here
separately.

From an experimental viewpoint, by using NPD to mea-
sure phonon spectra we are asking much more of this type of
scattering data than has been done previously. Although the
data from total scattering instruments such as GEM are al-
ready of very high quality, every aspect of data collection
and treatment has to be rigorously assessed and, where nec-
essary, improved. In particular, the impact of instrumental
resolution should be investigated further and a robust self-

FIG. 5. Dependence of the widths of various peaks in the pair
distribution function on the maximum frequency included in the
sums within Eq. �1� for �a� MgO and �b� SrTiO3.
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consistency of normalization protocols between the different
data sets used in the RMC refinements established. By way
of an example, long-range fluctuations (such as those visible
in some SrTiO3 configurations �Fig. 1�c��) may be caused by
omission of low-Q data from the refinement process. These
data can be difficult to normalize robustly and are often
masked by the truncation ripples of the low-Q Bragg peaks
in the S�Q� data �truncation arising from the need to convo-
lute S�Q� with the configuration box function prior to mod-
eling with RMC21�. With appropriate treatment, their inclu-
sion may help to prepare more realistic configurations. The
general message is that the better the data are, the higher the
quality of the configurations—and hence the phonon-
dispersion curves—will be. Consequently, we are making
parallel efforts to ensure that the data collection and treat-
ment are as reliable and as self-consistent as possible.

In terms of any theoretical limitations, it was not initially
clear what level of dynamical information might be present
in scattering data. In principle, refinement of the RMC con-
figurations using Bragg scattering intensities allows us to
measure the single-particle correlation functions; the use of
diffuse scattering S�Q� and T�r� data sets gives us the pair
correlation functions. One important question is whether
knowledge of the first- and second-order correlation func-
tions is sufficient to describe the phonon spectrum, or
whether higher-order correlations are important. Indeed, to
what extent are the possible forms of the higher-order corre-
lation functions fixed by the first- and second-order correla-
tion functions? This latter question has been addressed pre-
viously to some extent by Welberry and co-workers within
the context of the effect of atomic ordering on diffraction
patterns.41–43 On the one hand, it was shown that two-dimen-
sional pairwise-disordered systems �i.e., those for which the
pair correlations vanish� can support many vastly different
triplet correlations, each of which could be used to generate
atomistic configurations that differed in their triplet correla-
tions but would give rise to identical diffraction behavior. On
the other hand, configurations with strong pair correlations
were found capable of supporting only a limited range of
possible triplet and higher-order correlations.41 These results
were obtained for two-dimensional systems; the extension to
three dimensions may carry with it additional constraints on
the relationships between pair and higher-order correlations.

In practice, most systems will inevitably lie somewhere
between these two extremes, where the peaks in the PDF are
neither infinitely sharp �absolute pair correlations� nor infi-
nitely broad �zero pair correlations�. In such instances, it ap-

pears that the single-particle and pair correlation functions
can at best approximate the triplet and higher-order correla-
tions, a finding suggested previously by Evans.44 One would
expect the validity of this approximation to improve with
increasing strength of the single-particle and pair correla-
tions.

The dynamical matrix D�k�, however, is wholly deter-
mined by two-body terms �as described by Eqs. �16� and
�18�� and by definition contains all the information required
to describe the lattice dynamics. The relationship between
D�k� and S�k� established in Eq. �19� gives that S�k� �the
quantity extracted from the experimental data� must also
contain all dynamical information, stored in the pair correla-
tions of the atomic translations. While pair correlations alone
might not necessarily give rise to a unique family of atom-
istic configurations �with different families determined by
different triplet and higher-order correlations�, this result
shows that the phonons are determined uniquely by S�k�.
What this means is that, in principle, the diffraction data
contain all necessary information to describe the lattice dy-
namics, and that higher-order correlation functions do not
pose any problems.

This leads naturally to the important question of whether
phonon-dispersion curves measured using NPD are of any
practical use. Our results for MgO and SrTiO3 would sug-
gest that many important features of the phonon dispersion—
the low-frequency regions, and the existence and temperature
dependence of soft modes—are indeed preserved within dif-
fraction data. With the knowledge that an attempt to extract
dynamical information from such data is to some extent jus-
tified, one might find the most practical method incorporates
both model-independent and model-dependent approaches;
for example, the form of the high-frequency modes might be
fixed by an appropriate model, allowing data-driven refine-
ment of the �usually more important� low-frequency region.
This is clearly a compromise when compared to the direct
observation of mode frequencies one obtains using INS.
Nevertheless, the prospect that such information might be
accessible using comparatively facile experiments such as
NPD is incredibly valuable when studying systems for which
established spectroscopic methods are prohibitive or inap-
propriate.
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