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Path integral of the Holstein model with a ¢* on-site potential
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We derive the path integral of the semiclassical, one-dimensional anharmonic Holstein model, assuming that
the electron motion takes place in a bath of nonlinear oscillators with quartic on-site hard (and soft) potentials.
The interplay between the e-ph coupling and anharmonic force constant is analyzed both in the adiabatic and
antiadiabatic regime. In the latter we find much larger anharmonic features on the thermodynamic properties of
low energy oscillators. Soft on-site potentials generate attractive centers at large amplitude oscillator paths and
contribute to the anomalous shape of the heat capacity over temperature ratio in the intermediate to low T
range. This anharmonic lattice effect is superimposed to the purely electronic contribution associated with a
temperature-dependent hopping with variable range inducing local disorder in the system.
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I. INTRODUCTION

There is at present a large interest in the effects of a strong
electron-phonon coupling in a number of systems ranging
from dimer molecular junctions1 to carbon nanotubes,? from
organic molecular crystals,® to DNA (Ref. 4) and cuprate
superconductors.>® Several theoretical studies have focused
on the interplay between e-ph coupling and nonlinearities in
the framework of the Holstein model’® investigating the
phase diagram both in the adiabatic’ and the antiadiabatic
regime. Mainly in the latter, anharmonic effects are believed
to be large'” thus offering a picture to explain the high 7. of
binary alloys such as superconducting MgB, with a small
Fermi energy and sizeable e-ph coupling.!!

The path integral formalism provides a powerful method
to study quantum systems in which a particle is nonlinearly
coupled to the environment.'>”'* A previous path integral
analysis'> has pointed out how the phonon dispersion, which
has to be taken into account in the computation of the ground
state properties of the Holstein Hamiltonian,'6~'® induces
nonlocal e-ph correlations that renormalize downwards the
effective coupling and ultimately broaden the size of the po-
laronic quasiparticle. This explains why the polaron mass in
a dispersive Holstein model'® is lighter than in a dispersion-
less model.?® Also the thermodynamics of the Holstein
Hamiltonian can be computed within a dispersive model that
accounts for the lattice structure. '3

The Holstein diatomic molecular model was originally
cast’! in the form of a discrete nonlinear Schrodinger equa-
tion for electrons whose probability amplitude at a molecular
site depends on the interatomic vibration coordinates. The
nonlinearities are tuned by the e-ph coupling,”> whose
strength drives the crossover between a large and a small
polaron state according to the degree of adiabaticity and the
dimensionality of the system.?

In the Holstein model, the phonon thermodynamics is not
affected by e-ph induced anharmonicities.>* This follows
from the fact that the Holstein perturbing source current is
local in time and it does not depend on the electron path
coordinate. As a consequence, in the total partition function,
electron and lattice degrees of freedom are disentangled and
the latter can be integrated out analytically as far as a har-
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monic lattice model is assumed. However nonlinearities may
arise in Holstein-like systems also by virtue of on-site poten-
tials dependent on the lattice structure and, in principle, in-
dependent of the e-ph coupling. We are thus led to investi-
gate the thermodynamics of the anharmonic Holstein model
with a quartic on-site potential, which may be repulsive or
partly attractive according to the sign of the force constant
and the amplitude of the lattice displacement paths. The path
integral approach permits us to monitor the physical proper-
ties for any value of the coupling strengths.?> The presence
of a ¢* potential may, in turn, affect also the e-ph interac-
tions and sinergically interfere on the equilibrium properties
of the system. This is the focus of the present paper. Section
IT presents the Hamiltonian model, while the path integral
method is briefly described in Sec. III. The derivation of the
total partition function of the system is presented in Sec. IV,
and Sec. V contains the discussion of the physical results.
The conclusions are drawn in Sec. VL.

II. THE ANHARMONIC HOLSTEIN MODEL

We consider the one-dimensional anharmonic Holstein
Hamiltonian consisting of (i) one electron hopping term; (ii)
an interaction which couples the electronic density (fl~ f) to
the lattice displacement u; at the [-site, and (iii) a bath of N
identical dispersionless anharmonic oscillators with mass M
and frequency w:

H=H®+H"P" + HP",

Ho==12 fifm;
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the sum (,) is over z nearest neighbors and ¢ is the tight
binding overlap integral. g is the e-ph coupling in units of
fiw. Choosing the atomic mass M of order_lO4 times the
electron mass, we get g=1.1456Xg\2hw (meV A™"),
where fiw is given in meV. 4, in units of meV A4 controls
the strength of the nonlinearities and determines whether the
on-site potential V(u;,)=Mw?u?/2+ &u}/4 is hard (6>0) or
soft (§<<0). In the latter case, V(u;) attains the maximum at
ul=Mw?/|8) and the inflection point occurs at u}
=Mw?/3] 8. The condition |&|u?>2M” yields an attractive
on-site potential. Then, the range of the atomic path ampli-
tudes generating attractive scattering centers depends on the
value of the anharmonic force constant. For |§] >2Mw? the
potential becomes attractive for a portion of large amplitude
atomic paths while small amplitude paths weigh the repul-
sive range.

In the following computation of the electron path integral
coupled to the anharmonic oscillator, after setting the poten-
tial parameters, we select at any temperature the class of
atomic paths that mainly contribute to the Euclidean action.
As the distribution of the path amplitudes has a cutoff on the
scale of the lattice constant, say, i.e., ulz<1 Az, the on-site
potentials are always bound from below also in the attractive
cases.

III. THE PATH INTEGRAL METHOD

The Holstein Hamiltonian in (1) can be mapped onto the
time scale according to space-time mapping techniques ex-
tensively described in previous works'>2%?7 and hereafter
outlined.

Defining x(7) and y(7') as the electron coordinates at the
[ and m lattice sites, respectively, H¢ in (1) transforms into

H(7,7) == i f (D) fG(7) + [ (D], (2)

where 7 and 7' are continuous variables ([0, 3]), with 8
being the inverse temperature. After setting 7/ =0, y(0)=0
and taking the thermal averages for the electron operators
over the ground state of the Hamiltonian, one gets the aver-
age electron hopping energy per lattice site:

w1 = T Gl x() - 7+ G, A, )

where G[x(7), 7] is the electron propagator at finite tempera-
ture.

By treating the lattice displacements in (1) as 7— depen-
dent classical variables, u,— u(7), we obtain from H*P" in
(1) the averaged e-ph energy per lattice site, which is iden-
tified as the perturbing source current j(7) in the path integral
method:

_(H()

Jj(7) N

gu(7). (4)

As the Hamiltonian model assumes a set of identical os-
cillators we study the path integral for the electron coupled
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to a single anharmonic oscillator of the bath. The path inte-
gral reads

B
<X(,3)|X(0)>=IDX(T)6XP{—J dTE(X(T))]
0

B
X fDu(T)exp{—f dTO(M(T))]7
0

E(x(7)) = %x%) +h(7)).

OW() = J1i2(7) + (] + w40, ()

where the kinetic term (m, is the electron mass) is normal-
ized by the functional measure of integration over the elec-
tron paths.

Since the electron hopping does not induce a shift of the
oscillator coordinate, the Holstein e-ph interactions are local
in time and, in the semiclassical treatment, the source current
Jj(7) is independent of the electron path. As a consequence,
oscillator and electron coordinates appear disentangled in (5)
while the coupling occurs through the parameter g.

IV. THE PARTITION FUNCTION

The quantum statistical partition function Z; is derived by
integrating (5) after imposing periodicity conditions, B is the
period, both on the electron and oscillator paths:

ZT= J dx<x(ﬂ)|x(0)> = Zel X Zosc’

B
Z,= 3€ Dx(T)exp<— f dTE(X(T))) ,
0

B
Z o = ngu(T)expl—f dTO(u(T)):|, (6)

0

where $Dx(7) and $Du(7) are the functional measures of
integration.

The electronic contribution Z,; is computed by expanding
the paths in Fourier components

Mg

x(1)=x,+ E [rcos8(v,,7) + 5,,sin(v,,7)],
m=1
r,=2Rex,,

S,=—2Imux,,

v, =2mlp, (7)

and taking the following measure of integration:
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\2 -
%Dx(T) = W,f dx,

XH(Zwm)zf er ds,,,

)\me = \” Wﬁzﬁlme * (8)

The cutoffs over the Fourier coefficient integrations have
to ensure proper normalization of the kinetic term in the
absence of hopping processes. Thus Z,; transforms into

dr f ds,,
-A

2(r +s) f dThe(x(T))>
)

V2 A2
“= o, )Wf*”f o]l

A2 m=1

m, m=1

Mp
Xexp( :3 E

with A\, ¥’ indicating that large amplitude electron paths
have to be selected at low temperatures where the quantum
effects are larger. Two Fourier components M =2 suffice to
attain stable results as h°(x(7)) depends smoothly on the elec-
tron path. The hopping term accounts for the deviation from
the Gaussian behavior. Numerical analysis shows that, for
any choice of path parameters, h°(x(7)) decreases by decreas-
ing the temperature but its overall contribution to the elec-
tron action is substantial also at low 7.

Let us focus now on the anharmonic oscillator term Z,;...
The oscillator path is expanded in N Fourier components

Np

u(7)=u,+ E [a, cos(w,T) + b, sin(w,7)] (10)

n=1

with Matsubara frequencies w,=2nm/ and coefficients a,
=Reu,, b,=-Imu, satisfying the conditions a,=a_, and
b,=—b_,. The latter are consistent with the choice of real
paths and simplify the following 7 integration of the on-site
potential.

Note that the periodicity property u(7)=u(7+ ) would be
fulfilled also by taking the very a, coefficients in (10).2
However, such a choice would not permit fitting, with accu-
racy, the harmonic oscillator partition function, which is
known exactly: Z,=[2 sinh(Bw/2)]™". In fact, in the path in-
tegral method, the harmonic partition function Zfl reads

ZP' = @ Du(7Dexp| - Bd M2 2u?
W= p T 2[u(7)+wu(r)]
0

(11)
and taking the functional measure
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\2 -
%DM(T) = (2)\M)(2NF+1),f duo

Np
><1'[(27m)2 f da f db, (12)

with \,;=\7h2B/M, one gets from (10)—(12):
ZPI—Lﬁ (2nm)?
" Bw,y 2nm) + (Bw)

Instead, by dropping the b, terms in (10) and (12), one
would get the square root of the product series in (13), which
does not yield a reliable fit of Z, even for large Np. Note that
at high 7, the condition 2n7> Bw is fulfilled for small inte-
gers n, hence the main contribution to Zf’ is given by the
1/Bw factor that stems from the [du, in (12). This is con-
sistent with the expectation that high T paths are well ap-
proximated by their B-averaged value u, whereas fluctuation
effects become increasingly relevant towards the low-T re-
gime in which N rapidly grows. Ny clearly varies also with
the oscillator energy while the shape of Np(w,T) may differ
according to the harmonic function (Z,, harmonic free en-
ergy or specific heat) one chooses to fit.

The anharmonic partition function Z,,. in (6) can be
worked out analytically using (10) and (12) and performing
the time integration of the oscillator functional O(u(7)). This
permits us to get an insight into the role of the nonlinear
terms. The lengthy calculation yields

(13)

= o
V2 _
Z oo = —(2)\M)(2NF+1) J_m du,exp(- Bgu, — Kui - B5u§/4)
Np Np
xI1 (27Tn)2f da,exp| — >, ((yn +3B8u*/4)a’
n=1 -0 n=1

o)
» B2 2 o + B d(nmm)]

16m[7 1

Np

X f db,,exp[— > ((yn +3B6u’/4)b?

n=1

N
380U, <
REELTY

e(n,m)
m=1

Np
525 (st mp) -~ gt0m p)])]
m,p=1

K = (Bw) 2\,
o= 2mn)? + (Bw)2JAN;,,
C(l’l,m) = anam(an+m + an—m) )

d(l’l, m,P) = anamap(an+m+p + Ap—m+p + Ap—n—-m + ap—n+m) ’

e(n,m) = anbm(bn+m - bn—m) >
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f(n,m,p) = anambp(bn+m+p + bn—m+p + bp—n—m + bp—n+m) ’

g(n,m,p) = bnbmbp(bn+m+p - bn—m+p + bp—n—m - bp—n+m) .
(14)

In c(n,m) the coefficients a; (j=n+m,n—m) vanish if j
<0 or j>Np. In d(n,m,p), a;#0 (k=n+m+p, n-m
+p, p-n-m, p-n+m)<1<k<Np. Analogous condi-
tions hold for the coefficients b, in the e(n,m), f(n,m,p),
and g(n,m,p) functions.

Note that the effective e-ph coupling g is associated only
to the 7-independent component u,, that is to the B-averaged
displacement path.!> This follows from the fact that the per-
turbing source current is nonretarded in the Holstein model
as a consequence of the local nature of the e-ph interaction.

The quartic potential induces a strong mixing of the Fou-
rier components of the path that highly complicates the nu-
merical problem. Thus the value of N appears to be crucial
in the computation. We determine Np(w,T) by fitting (with
an accuracy of 2X1072) the exact harmonic free energy
[F,=-In(Z;)/B], through the path integral harmonic free en-
ergy I’ f’ obtained from (13). As an example, for the oscilla-
tor with =20 meV, Ng(T=10 K)=59 and Np(T=200 K)
=8.

Inspection of (14) offers the key to performing reliable
path integrations according to the sign of the ¢* potential. At
high temperature, a large contribution to Z,,. is expected to
come from the paths having u, which maximizes exp(xf(u,))
with f(u,)=—(au,+u>+bul), a=Bg/x; b=B5/4x. In gen-
eral, we find that for a hard (soft) potential, the du, integra-
tion has to be carried out along the u,<0(u,>0) axis, with
cutoff |u,|,,.c~ 0.6/ k. This permits us to include the set of
paths that mainly contribute to the Euclidean oscillator ac-
tion. On the Fourier coefficients integrals [da,, [db,, we set
the cutoffs |a,|,maxs |Pulmax~0.6/\y, both for hard and soft
potentials, thus achieving numerical convergence and correct
computation of the Gaussian integrals once the nonlinearities
are switched off. It turns out [see the definitions in (14)] that
the cutoffs on the oscillator path integration are increasing
functions of temperature (<yT) consistently with the physi-
cal expectations of large amplitude displacements at high 7.
As the path displacements encounter an upper limit due to
the cutoffs, u(7)<|uy|pa+2ZNE, | @yl the distribution of
on-site potentials has a lower limit also in the case of soft
and attractive nonlinearities. This avoids numerical diver-
gences and makes the problem physically meaningful.

V. RESULTS

We test the relevance of the nonlinearities on the equilib-
rium thermodynamics of the system and present the calcula-
tion for the heat capacity in the intermediate to low tempera-
ture range.

Figures 1 show the behavior of a low energy (w
=20 meV) oscillator without (g=0) and with (g=2,4) cou-
pling to the electronic subsystem in the adiabatic regime:
t/w=5. Figures 1(a) and 1(b) assume an anharmonic
potential with positive quartic force constant &=103,
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10* meV A4, respectively. Also the harmonic heat capacity
is reported on for comparison. The hard potential lifts the
free energy over the harmonic values with a more pro-
nounced enhancement at increasing 7 and for larger . The
effect on the free energy second derivative is however scarce
and essentially consists in a slight increase (decrease) of the
heat capacity at low (high) temperatures [see Fig. 1(a)]. The
reduction of the heat capacity (with respect to the harmonic
plot) at intermediate and high T is more evident in Fig. 1(b)
where the quartic force constant is larger. This result is in
accordance with diagrammatic perturbative treatments of the
anharmonic crystals which predict negative contributions to
the constant volume specific heat arising from positive force
constants in the quartic potential.”?®3° The e-ph coupling
strength also tends to decrease the oscillator heat capacity
but the overall effect is small as the insets in the figures
show: in fact, the electronic term dominates the total heat
capacity C and the oscillator contribution is not distinguish-
able in the plots of the C over temperature ratios versus 7.
The low temperature upturn is due to the large electron en-
ergy term in (9) and precisely ascribable to the feature of the
variable range (on the 7 scale) of the electron hopping, cap-
tured by the path integral formalism.?’

The cases of a soft on-site potential are reported on in Fig.
1(c) with 6=—10°meV A™* and Fig. 1(d) with &=
—10* meV A%, The characteristic potential parameter is
Ma?/|8]=0.5 and 0.05 A2, respectively. The potential
V(u(7)=Mw*u(1)?/2+ du(7)*/4 is attractive for those paths
such that u(7)>>2Mw?/|4|.

At any 7, we integrate over a distribution of time-
dependent potentials. Thus, at a given lattice site, the elec-
tron may experience an attractive or repulsive scattering cen-
ter according to the size of the atomic path. As an example,
at 7=200 K, we get a maximum path u,,,, such that ufwx
~0.15 A% This guarantees that V(u(7)) is generally repul-
sive in Fig. 1(c) and attractive for a broad class of paths in
Fig. 1(d).

The effects on the oscillator heat capacity are twofold: (i)
the soft potential enhances the heat capacity mainly in the
low T range with respect to the hard potential and this feature
is much more pronounced in Fig. 1(d); (ii) the trend of the
e-ph coupling is opposite to that observed in Figs. 1(a) and
1(b): now by increasing the g values one gets higher heat
capacities although the size of this effect is small on the scale
of the electronic terms in the adiabatic regime as revealed by
the C/T plots in the insets.

Let us come to the antiadiabatic regime (1/w=0.5) dis-
cussed in Figs. 2, where a low harmonic energy (w
=10 meV) is assumed to emphasize the size of the anharmo-
nicity together with a very narrow electron band. A hard
on-site potential with 6=10° meV A~* is taken in Fig. 2(a):
the shape of the oscillator heat capacity signals the effects of
the nonlinearities, which flatten the curve at intermediate 7'
and enhance the heat capacity also at low 7 with respect to
the corresponding case of Fig. 1(a). As the Debye tempera-
ture is now smaller [than in Fig. 1(a)], the hard anharmonic-
ity decreases the constant volume heat capacity with respect
to the harmonic plot over a broader temperature range.

The e-ph coupling also plays a minor role in antiadiabatic
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FIG. 1. (Color online) Anharmonic oscillator heat capacities versus temperature for three values of e-ph coupling g and oscillator energy
©=20 meV. (a) Hard potential with force constant 6=10> meV A~*; (b) =10* meV A~*; (c) soft potential with 5=—10%> meV A~*; (d) &
=—10* meV A~*. The harmonic heat capacity is plotted in (a) and (b) for comparison. The insets show the total (electronic plus anharmonic
oscillator) heat capacity over temperature ratios in the adiabatic regime 7/ w=35.

conditions. The anharmonic contribution is visible in the to-
tal heat capacity as the inset makes evident although the
dominant electronic feature persists in the low T upturn of
C/T. In Fig. 2(b), we assume g=2 and consider two cases of
soft potential: the oscillator anharmonicity becomes relevant
and such to modify the shape of the anomalous upturn in the
total heat capacity. An enhancement of the C/T values is
observed at intermediate and low 7 and, in the case of the
largest | 8| generating a soft attractive potential, the oscillator
heat capacity C,,. yields an upturn in C,,./T independently
of the electronic term.

VI. CONCLUSIONS

We have studied the path integral of the one-dimensional
nonlinear Holstein model in which a set of dispersionless
oscillators provides the environment for the electron. The
model is semiclassical as the lattice displacements are treated
classically while the electron operators are thermally aver-
aged over the ground state Hamiltonian. The e-ph coupling
of the model is local and generates a perturbing current
which linearly depends on the oscillator path amplitude u(7)
where 7is the time (or inverse temperature) of the Matsubara
Green functions formalism. The anharmonicity on the lattice

site is modeled through a ¢* potential that may result attrac-
tive for a set of displacement paths in the case of a negative
quartic force constant (soft potential). We have derived the
path integral of the interacting system and computed the total
partition function selecting, as a function of the temperature
(T<200 K), both the electron and oscillator paths that yield
the largest contribution to the action. While quantum electron
paths have increasing amplitudes at decreasing temperatures,
the atomic displacements are growing functions of 7. This
relevant physical feature is accounted for in our model as the
cutoffs on the electron path integration are proportional to
the electron thermal wavelength whereas, on the atomic path
integration, we find cutoffs proportional to 7.

The oscillator partition function includes the effect of the
coupling to the electron subsystem but the on-site anharmo-
nicities play a major role mainly when the potential is soft
and the harmonic energy is low. Among the thermodynamic
properties we have chosen to present the heat capacity C in
view of the upturn in the C/T behavior due to the low T
electron hopping tuned by the value of the overlap integral in
the Hamiltonian model. The computation is highly time con-
suming, especially because of the strong mixing of the path
Fourier components generated by the nonlinear potential.

In general we find that (i) in the case of a hard quartic
potential, switching on the e-ph coupling leads to lower free
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FIG. 2. (Color online) Anharmonic oscillator heat capacities
versus temperature in the antiadiabatic regime ¢/ w=0.5 and oscil-
lator energy w=10 meV. The harmonic heat capacity is also plot-
ted. (a) Hard potential force constant =10° meV A™* with three
values of e-ph coupling g. (b) Two soft potential force constants at
fixed e-ph coupling. The insets show the total (electronic plus an-
harmonic oscillator) heat capacity over temperature ratios. The elec-
tronic contribution is plotted separately for comparison.

energy and its second derivative, (ii) when the quartic poten-
tial is soft, e-ph coupling and anharmonicity act sinergically
enhancing the thermodynamic functions.
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These results can be understood on general physical
grounds. In fact, a hard quartic potential shifts the character-
istic phonon frequency upwards, thus hardening the spec-
trum and broadening the size of the quasiparticle. If the e-ph
coupling is enhanced (independently of the on-site anharmo-
nicity) the magnitude of the source that causes the lattice
distortion becomes larger. This further hardens the vibrations
and leads to decrease the anharmonic heat capacity over the
whole temperature range. Instead, when the quartic potential
is soft the phonon frequency is lowered and the oscillator
potential well is more flexible. In this case, larger e-ph cou-
pling strengths favor the self-trapping of quasiparticles with
heavier effective masses. This is physically equivalent to
softening the phonon spectrum and enhancing the heat ca-
pacity.

The electron contribution to the heat capacity is dominant
in the adiabatic regime whereas antiadiabatic systems are
expected to present significant anharmonic corrections. In
fact, in the antiadiabatic regime the quasiparticle is a small
size object on the lattice scale and the electron energy asso-
ciated with the overlap integral is small. Thus, this regime
proposes a physical picture in which the electron hardly hops
from site to site and its effective mass becomes heavier on
the scale of the atomic mass. But a potential well generated
by “lighter oscillators” is more sensitive to on-site anhar-
monic effects.

In particular, soft potentials increase the heat capacities
over the harmonic values and reinforce the upturn in the C/T
versus T plots when the on-site anharmonicity is such as to
produce attractive potentials for a set of lattice displacement
paths. Since the path amplitudes are larger at high 7, soft
attractive potentials induce rapidly increasing phonon heat
capacities at growing T as shown in Fig. 2(b).

Thus our path integral investigation and the thermody-
namical results point to a complex role of the lattice anhar-
monicities in the one-dimensional Holstein model and sug-
gest that on-site potentials may be experienced as attractive
or repulsive according to the temperature and the amplitude
of the atomic path. Such potentials may provide scattering
centers generating a local disorder whose effect on the
system thermodynamics is superimposed on the disorder
induced by the hopping of electrons with variable range.
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