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Effective nonlinear optical properties of compositionally graded films, in which the volume fraction of
nonlinear metal particles varies along the direction perpendicular to the films, are theoretically and numerically
investigated. Theoretically, we first adopt effective medium approximation to derive equivalent linear dielectric
constant and third-order nonlinear susceptibility in a z-slice. Then, the formulas for effective nonlinear optical
properties of the graded film are established, if we regard the graded film as a multilayer one. Numerically,
random resistor-capacitor networks are used to simulate our system. We find that the surface plasmon resonant
bands and the optical nonlinearity enhancement magnitude for compositional graded profile become broader
and larger than those in the nongraded case. Moreover, for a graded profile p�z�=azm, increasing a �or
decreasing m� is helpful to broaden the resonant bands. To one’s interest, there exist two enhancement peaks in
the frequency region 0.4�p���0.6�p, which are not predicted by our approximate theory. Otherwise, our
theoretical results are found to be in good agreement with numerical simulation data.
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I. INTRODUCTION

Nonlinear optical properties of metal-dielectric compos-
ites have received much attention over the years because of
their potential applications in engineering and technology.1–3

For instance, the large optical nonlinearity and figure of
merit in these materials are of importance in industrial appli-
cations such as ultrafast switching, signal regeneration and
high speed demultiplexing.4

Recently, graded materials have attracted considerable in-
terest in various engineering applications due to their differ-
ent physical properties from the homogenous materials and
conventional composite ones.5 In nature, there exist many
graded materials, such as biological cells6 and liquid crystal
droplets.7 In experiments, a graded structure may be pro-
duced by using various approaches such as deformation un-
der large sliding loads8 and adsorbate-substrate atomic ex-
change during growth.9 As graded materials are the materials
whose physical properties can vary continuously in space,
the traditional theories fail to deal with the composites of
graded material. In order to investigate the effective nonlin-
ear optical properties of graded composites, we have estab-
lished a first-principles approach and a nonlinear differential
effective dipole approximation �NDEDA�.10 To one’s inter-
est, it was found that the presence of the physical gradations
is helpful to realize appreciable optical nonlinearity.10 Alter-
natively, the graded metallic films were also found to possess
large nonlinear optical properties.11,12

In addition to the graded composites mentioned above,
spatially graded composites are a new generation of func-
tional materials in which the geometric parameters such as
the composition or microstructure morphology �rather than
the local physical parameters� are gradually varied in one or
more dimensions.13 These materials have been successfully
manufactured for various applications.14,15 For instance, in

metal-ceramic graded composites, a continuous trade-off of
fracture toughness and high thermal conductivity of metals is
made with ceramic hardness and low thermal conductivity.
In addition, in heat and impact protection applications, the
material multifunctionality consists of the ability to provide
structural support by virtue of the metallic portions of graded
materials.15 Based on effective medium approximation and
numerical simulation, Hui et al. investigated effective ther-
mal conductivity of the graded thin film with compositional
gradient.16 More recently, optical nonlinearity enhancement
in compositionally graded metal/dielectric film was
calculated.17 In this paper, we would like to investigate the
effective linear and nonlinear optical properties in spatially
graded metal/dielectric films both theoretically and numeri-
cally. To account for the equivalent linear dielectric constant
and nonlinear optical susceptibility, we resort to Bruggeman
effective medium approximation18 in conjunction with spec-
tral representation theory.19 As consequence, our formulas
can be valid for all volume fractions of nonlinear metal par-
ticles. Moreover, the approximate theory takes into account
the physical anisotropy in such a compositionally graded
film. To verify the validity of our theory, we then take one
step forward to perform numerical simulations on random
nonlinear resistor-capacitor networks, which has been widely
applied with the success to study nonlinear optical properties
in random composites.20–24 To the best of our knowledge,
there is no existing simulation data on nonlinear optical
properties in the compositionally graded films. We shall
show that the theory provides good descriptions of numerical
simulation data on linear optical absorption spectra and de-
scribes simulation data on optical nonlinearity reasonably.
Especially, numerical simulation data show that there exist
two dominant peaks in the middle frequency region, which
can not be described by our theory.

We turn now to the body of the paper. We describe the
model and present our theory in Sec. II. A description of the
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model of numerical simulations is given in Sec. III. In Sec.
IV, numerical simulation data and theoretical results are
shown. The paper ends with a discussion and conclusion in
Sec. V.

II. MODEL AND THEORY

We consider nonlinear metal/dielectric compositionally
graded films with width d along the z axis �see Fig. 1�. For a
slab of material at position z, a volume fraction p�z� of me-
tallic materials with linear dielectric constant �1 and third-
order nonlinear optical susceptibility �1, and dielectrics with
�2 and �2 are distributed at random. We restrict our discus-
sion in a weakly nonlinear case, i.e., the nonlinear term of
the component �i�E�2 �i=1,2� is assumed to be weak in com-
parison with the linear one �i. To realize compositional
graded films, p�z� is chosen to vary only in the z direction.
Without loss of generality, we take the bottom and the top of
the films to lie at z=0 and z=d.

Generally, it is impossible to calculate equivalent �local�
dielectric constant �̄�z� and nonlinear susceptibility �̄�z� ex-
actly in terms of p�z� for a z-slice. Here, we resort to three-
dimensional effective medium approximation �EMA� for es-
timating these local physical properties. For �̄�z�, EMA
reads,18

p�z�
�1 − �̄�z�

�1 + 2�̄�z�
+ �1 − p�z��

�2 − �̄�z�
�2 + 2�̄�z�

= 0. �1�

To first order in �i, the local �equivalent� nonlinear sus-
ceptibility �̄�z� is given by25,26

�̄�z��E0�2E0
2 = p�z��1��Elin,1�2Elin,1

2 �

+ �1 − p�z���2��Elin,2�2Elin,2
2 �

� p�z��1��Elin,1�2�

��Elin,1
2 � + �1 − p�z���2��Elin,2�2��Elin,2

2 � ,

�2�

where Elin,i means that the linear local field is to be taken
from the solution to the linear problem when the external
field E0 is applied at position z, while �¯� means the spatial
average. Note that the decoupling treatment has been
adopted in Eq. �2�.27,28

Within the spectral representation theory, the averages of
spatial local fields are expressed as19

�Elin,1
2 � =

1

p�z�	0

1 
 s

s − x
�2

m�x�dxE0
2,

�Elin,2
2 � =

1

1 − p�z��1 − 	
0

1 s2 − x

�s − x�2m�x�dxE0
2, �3�

and

��Elin,1
2 �� =

1

p�z�	0

1 � s

s − x
�2

m�x�dx�E0�2,

��Elin,2
2 �� =

1

1 − p�z��1 − 	
0

1 �s�2 − x

�s − x�2
m�x�dx�E0�2, �4�

where s��2 / ��2−�1�, and the spectral density function m�x�
for three-dimensional system is given by

m�x� =
3p�z� − 1

2
��3p�z� − 1���x�

+ �3��x − x1��x2 − x�
4	x

if x1 
 x 
 x2

0 otherwise,
�

where ��¯� is the step function and x1,2= �1
+ p�z��2�2p�z��1− p�z��� /3.

In what follows, we aim at studying the effective linear
dielectric constant �e and effective third-order nonlinear sus-
ceptibility �e of the composite films. Actually, since �̄�z� and
�̄�z� are known for each z-slice, the problem reduces to the
one of multilayers.29 If the electric field is polarized perpen-
dicular to the planes of the graded films, the effective linear
dielectric constant �ef f

z is given by

1

�ef f
z =

1

d
	

0

d dz

�̄�z�
, �5�

and the effective third-order nonlinear susceptibility �ef f
z is

given by

�ef f
z =

1

d
	

0

d

�̄�z�� �ef f
z

�̄�z�
�2
 �ef f

z

�̄�z�
�2

dz . �6�

For electric field polarized in the plane of layers, �ef f
x and

�ef f
x are given by a simple integral, i.e.,

�ef f
x =

1

d
	

0

d

�̄�z,��dz , �7�

and

�ef f
x =

1

d
	

0

d

�̄�z,��dz . �8�

III. NUMERICAL SIMULATION

To test the validity of our theory, one represents the
graded film as a random nonlinear resistor-capacitor net-

FIG. 1. The functionally graded films with width d along z
axis.
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work. The network is assumed to be a simple cubic lattice
consisting of Lx�Ly �Lz sites, where Lj is the number of
layers along j axis �j=x ,y ,z�. To modify the compositional
gradient, in a z-slice, the bonds are occupied by the nonlinear
metal component with probability p�z�, and occupied by the
nonlinear dielectric component with probability 1− p�z�.
�The z coordinate of bonds parallel to z axis is taken as that
of the midpoint�. The current i-voltage v responses of two
components has the form

i = gkv + �k�v�2v �k = 1,2� , �9�

where gk is the linear admittance and �k is termed as third-
order nonlinear susceptibility. Again, weak nonlinearity indi-
cates that �k�v�2�gk. To model the mixtures of metallic and
insulating components at finite frequencies, we take g1 and
g2 to be

g1 =
1 + i�RC − �2LC

R + i�L
�10�

and

g2 = i�C�, �11�

where R is the resistance of conducting element, L is its
inductance, C is a capacitance, and C� is the capacitance of
insulating element. If we let C=C�, and introduce the plasma
�p= �LC�−1/2 and the relaxation time =L /R, then the ratio
g1 /g2 takes Drude-like form,

g1

g2
= 1 −

�p
2

��� + i/�
�12�

For numerical simulations, we choose units such that L=C
=C�=1. This choice has been widely made in studying the
frequency response in random composites.23,24 As a result,
we have units �p=1 and =10. As far as the nonlinear sus-
ceptibilities are concerned, we assume �1 to be independent
of frequency, and for simplicity, �2 is set to be zero.

The aim here is to simulate the effective linear admittance
and nonlinear susceptibility of the networks, which are de-
fined in the following way. For a given graded profile, we
have the equivalent responses of a full uniform network of
identical nonlinear conductors, each of which has a response
of the form

i = gef fv0 + �ef f�v0�2v0, �13�

where gef f and �ef f, respectively, are the effective linear ad-
mittance and nonlinear susceptibility of the network. and
v0�V0 /Lz �or V0 /Lx�.

Since the graded film possesses anisotropic physical prop-
erties, we first assume that the planes z=0 and z=Lz are held
at potentials 0 and V0. In this connection, we have E=Eez,
corresponding to a p-polarized wave. On the other hand, free
boundary conditions �By “free” we mean that the nodes at
x=0 and x=Lx are connected only to other bonds at the same
x value, and to internal nodes� are imposed in the x direction,
while periodic boundary conditions are imposed in the y di-
rection to illustrate that every slice is a boundless film along

the y axis. When the field is applied along the z axis, we can
numerically simulate the effective linear and nonlinear re-
sponses, denoted by gef f

z and �ef f
z .

Our simulations are carried out for the system on 10
�10�30 cubic lattices. �Lz is large because each value of
the metal filling fraction is varied in z direction. We also
carry on 10�10�40 cubic lattices, and find that the results
change little�. The size of the simulation network is sufficient
as we are not focusing on the percolation problem. During
simulation, 50 different configurations are averaged over. For
each configuration, we apply Kirchhoff’s law to each of the
nodes relating the potential of the node �v�� to those of its six
neighbors �v��,

�
�=1

6

g��v� − v�� = 0, �14�

where g� is the linear admittance of the bond �. In numerical
simulation, we first solve the potentials at all nodes with Eq.
�14�, and gef f

z can be directly extracted by20–22

gef f
z =

1

v0
�
�

g��v�, �15�

where the summation is over all bonds and �v� is the poten-
tial difference �voltage� across the bond �. Note that the
relation between gef f

z and �ef f
z is gef f

z = i��ef f
z .

The effective nonlinear susceptibility is given by21,22,30

�ef f
z =

��
����v��2�v�

2

v0
4 , �16�

Eq. �16� is the discrete analog of Eq. �2�, which suggests that
the effective nonlinear susceptibility can be obtained by find-
ing the voltages at the nodes of the random network in the
absence of �1, i.e., in the corresponding linear random net-
work problem with the nonlinear term �i turned off. There-
fore, the resultant voltages from Eq. �14� are used to calcu-
late the effective nonlinear coefficient �see Eq. �16��.

Similarly, the linear admittance gef f
x and nonlinear suscep-

tibility �ef f
x in the x direction are also simulated. In this case,

the volume fraction is still gradually varied in the z direction.
However, the planes x=0 and x=Lx are held at potentials 0
and V0, free and periodic boundary conditions are imposed in
the z direction and y direction, respectively.

IV. NUMERICAL RESULTS

In what follows, we present numerical results based on
numerical simulations and our theory. For simplicity, we let
d=Lz. First, we investigate the effective linear and nonlinear
responses of the compositionally graded films with graded
profile p�z�=z /d. The case for nongraded profile p�z�=1/2 is
also plotted for comparison, as both profiles yield the same
amount of metal component, i.e.,

1

d
	

0

d

dz
z

d
=

1

d
	

0

d

dz
1

2
=

1

2
. �17�

In Fig. 2, we show the real part of effective linear response
Re�gef f

z � versus the normalized frequency � /�p for the case
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that the electric field is polarized along z axis. In random
composites with nongraded profile p�z�=1/2, the metal com-
ponent is larger than its percolation threshold pc=1/3, and it
can easily form an infinite cluster through the whole com-
posite. As a result, there exists a Drude peak in the vicinity
of zero frequency, in addition to a surface plasmon resonant
band.23 However, when the graded profile p�z�=z /d is taken
into account, the surface resonant band becomes more visible
than the one in the case of nongraded films, and the Drude
peak around zero frequency vanishes. The disappearance of
the peak can be understood as follows. For graded profile
p�z�=z /d, as the volume fraction of metal component at

small z slice will be smaller than 1/3, these slices will be not
metallic. In an analogy with capacitors in series, the whole
graded film will always be insulating, and hence no Drude
peak appears when the electric field is polarized along the z
axis. Moreover, the good agreement between our theory and
simulation results is obviously found.

In Fig. 3, we study the modulus of the effective third-
order optical nonlinearity enhancement ��ef f

z /�1� as a func-
tion of the normalized frequency � /�p. We find that the
optical nonlinearity enhancement for graded and nongraded
profiles is quite different, although the total volume fractions
of the systems are the same. In detail, for compositional gra-
dation, the enhancement band becomes broader and the en-
hancement magnitude is larger than those for the nongraded
case. The differences mainly result from the fact that for the
graded structure, there are much more isolated metallic clus-
ters in small z-slices, which is helpful to enhance the surface
plasmon effect and thereby the maximum of the optical non-
linearity. Therefore, for a given total volume fraction, we can
choose a suitable compositional gradation profile to achieve
appreciable enhancement of optical nonlinearity. According
to simulation results, we predict that there exist two resonant
peaks in addition to one around the plasma frequency �p.
The latter peak can be well described by effective medium
approximation, which predicts a strong dispersive �e with a
small imaginary part just beyond the band edge, resulting in
a sharp peak. The former resonant peaks may be expected
because the network model is quite different from continuum
model, and they reflect the occurrence of isolated clusters of
a few bonds �lattice animals� at the lower volume fraction

FIG. 3. Same as Fig. 2, but for effective optical nonlinearity
enhancement ��ef f

z /�1� for p-polarized light as a function of � /�p.

FIG. 4. Real part of effective linear response Re�gef f
x � and effec-

tive optical nonlinearity enhancement ��ef f
x /�1� for s-polarized light

as a function of the normalized frequency � /�p for compositional
graded profile p�z�=z /d. The curves are theoretical results, and the
symbols represent numerical simulation data.

FIG. 2. Real part of effective linear response Re�gef f
z � for

p-polarized light as a function of the normalized frequency � /�p

for compositional graded profile p�z�=z /d and nongraded profile
p�z�=1/2. The curves are theoretical results, and the symbols rep-
resent numerical simulation data.
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region of the networks.21,22 Furthermore, the discrepancies
between simulation data and our theory are quite reasonable
in that our theory, being a mean-field approximation neglects
the local field fluctuation �such an effect becomes much
stronger for the gradient profile�, to which ��ef f /�1� is very
sensitive.

Next, we have similar considerations for the electric field
polarized parallel to the plane of layers, as shown in Fig. 4. It
is observed that the results for p�z�=z /d are quite similar to
those in random composites with p�z�=1/2. Actually, in this
case, the effective linear admittance can be obtained as the
problem of the conductors in parallel. Therefore, the metallic
character at large z-slice results in the metallic behavior of
compositionally graded film. As a result, a Drude peak ap-
pears for linear conductance �see Fig. 4�a��. At the same
time, the behavior of the optical nonlinear enhancement re-
sembles that of random composites due to the fact that the
local field is spatially uniform for light polarized parallel to
the plane of layers. On the other hand, in this case, the opti-
cal nonlinearity enhancement results only from the local field
effect due to the random mixing of metal and dielectric com-
ponents, while it results from not only the local field effect
from above, but also from the compositional gradations for

electric field polarized perpendicular to the planes of the
graded films. Therefore, large nonlinearity enhancement oc-
curs for light polarized perpendicular to the planes of the
graded films.

In the end, we take one step forward to investigate the
optical nonlinearity enhancement in compositionally graded
films with a power-law profile p�z�=a�z /d�m for different a
with m=1 �Fig. 5� and different m with a=1 �Fig. 6�. In Fig.
5, with increasing a, the total volume fraction increases,
which causes the surface plasmon resonant band to be broad-
ened over a range of frequencies. In addition, a sharp peak
occurs at high frequency around the plasma frequency �p,
and it exhibits blue-shift with increasing a. Again, we predict
two prominent surface plasmon resonant peaks in the fre-
quency region 0.4�p
�
0.6�p and the locations of these
peaks are almost independent of a. These properties cannot
be observed in our theory. However, we still find that the
effective medium approximation can be used to estimate the
effective nonlinear optical susceptibility qualitatively. From
Fig. 6, we note that as m increases, the magnitude of optical
nonlinearity enhancement become strong, accompanied with

FIG. 5. Same as Fig. 2, but for power-law grade profile p�z�
=azm with m=1 and different a.

FIG. 6. Same as Fig. 2, but for power-law grade profile p�z�
=azm with a=1 and different m.
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the narrow resonant band. Actually, with increasing m, more
and more isolated metallic clusters appear in small z-slices.
As a result, the surface plasmon resonance is enhanced and
the optical nonlinearity is enlarged. Again, there are some
discrepancies between the numerical simulation data and the-
oretical data, but our theoretical results capture the qualita-
tive feature of the simulation data correctly.

V. CONCLUSION AND DISCUSSION

In this paper, we have studied both theoretically and nu-
merically the effective linear and nonlinear optical properties
in compositionally graded films, in which the volume frac-
tion of metal component varies along the direction perpen-
dicular to the film. On the theoretical side, we first adopt the
effective medium approximation in conjunction with the
spectral representation theory to obtain the local �equivalent�
linear dielectric constant and third-order nonlinear suscepti-
bility at z-slices. Then, we regard the compositional graded
film as a multilayer one to derive the effective linear and
nonlinear optical properties. In order to check the validity of
our theory, we perform numerical simulations on random
resistor-capacitor networks, by taking into account the com-
positionally graded profile. Both our theory and numerical
simulations show that the presence of compositional grada-
tion is helpful to achieve large enhancement of optical non-
linear susceptibilities especially when the applied field is po-
larized perpendicular to the plane of layers. The theoretical
results for linear response are in good agreement with nu-
merical simulation data. Moreover, the theoretical results for
nonlinear optical susceptibility are also in reasonable agree-
ment with numerical simulation results. To one’s interest,
with numerical simulations, two surface plasmon resonant

peaks are found in the frequency region 0.4�p���0.6�p,
which are totally neglected in our theory.

Here we would like to add a few comments. As we have
invoked the Bruggeman effective medium approximation
with spectral representation to study the equivalent �local�
linear dielectric constant and third-order nonlinear suscepti-
bility, our established formulas can be indeed valid for large
volume fractions of metal component. In this connection, we
predict the wide surface plasmon resonant bands. However,
for small total volume fractions p=�0

ddzp�z�, the microstruc-
ture in each slice should be described by the one that metal
particles are randomly embedded in the dielectric host. Then,
one should expect sharp enhancement peaks in the optical
nonlinearity instead of resonant bands.

Our present work can be extended in a variety of ways.
For instance, both our theory and numerical simulations are
limited to the weakly nonlinear case. That is to say, the con-
tribution from the nonlinear response is much less than the
one from the linear response. When the nonlinear response
becomes strong, optical bistability may arise.31,32 It is of
great interest to investigate the optical bistable properties in
compositionally graded films. In addition, our calculations
can be further generalized to the study of second and third
harmonic generations in compositionally graded films. In
this connection, numerical simulations are now being carried
out to check our predictions in Ref. 33.
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