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Anharmonic versus relaxational sound damping in glasses. I1. Vitreous silica

René Vacher, Eric Courtens, and Marie Foret
Groupe de Physique des Verres et Spectroscopies, LCVN, UMR CNRS 5587, Université Montpellier II,
F-34095 Montpellier Cedex 5, France
(Received 20 May 2005; revised manuscript received 17 October 2005; published 9 December 2005)

The temperature dependence of the frequency dispersion in the sound velocity and damping of vitreous silica
is reanalyzed. Thermally activated relaxation accounts for the sound attenuation observed above 10 K at sonic
and ultrasonic frequencies. Its extrapolation to the hypersonic regime reveals that the anharmonic coupling to
the thermal bath becomes important in Brillouin-scattering measurements. At 35 GHz and room temperature,
the damping due to this anharmonicity is found to be nearly twice that produced by thermally activated
relaxation. The analysis also reveals a sizeable velocity increase with temperature which is not related with
sound dispersion. A possible explanation is that silica experiences a gradual structural change that already starts

well below room temperature.
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I. INTRODUCTION

In the first paper of this series (I), the hypersonic attenu-
ation of highly densified silica glass, d-SiO,, was investi-
gated. It was found that in that material the damping of hy-
persound is completely dominated by its anharmonic
interaction with the thermally dominant modes. In the
present paper we consider the corresponding situation in
usual vitreous silica, v-SiO,, for which a large quantity of
high-quality data is already available in the literature. In the
early 1950’s, ultrasonic absorption peaks in function of the
temperature 7" were first observed in v-SiO,. These were de-
scribed by Anderson and Bémmel in terms of a phenomeno-
logical Maxwell model.! Following the discovery of the key
role played by two-level systems (TLS) in producing the
anomalous thermal properties of glasses,>? it became clear
that these should also be invoked in the description of acous-
tic relaxation. A theory including both resonant and relax-
ational sound damping produced by tunneling was developed
by Jickle.* It was then extended to higher temperatures by
including in the description the classical jumps over the en-
ergy barrier separating the wells of TLS.®> The presently ac-
cepted model for thermally activated relaxation (TAR) in-
cludes a distribution of asymmetric double-well potentials,
as discussed by Gilroy and Phillips®.

The simple extrapolation of this behavior to GHz frequen-
cies, i.e., to the hypersonic regime, has sometimes been pre-
sented as an appropriate description of the observed phenom-
ena, e.g., in Refs. 7-9. However, it has also been recognized
that TAR might not always be sufficient to account for sound
dispersion and damping. A specific example has been dis-
cussed in the case of vitreous germania, GeOz.10 The results
presented in (I) strongly suggest that v-SiO, should be an
excellent candidate to search for a possible anharmonic con-
tribution to the hypersonic attenuation.

The paper is organized as follows. In Sec. II the phenom-
enology of TAR is reviewed to formulate a description that
can reasonably be extrapolated to sufficiently high 7" and to
Brillouin-scattering frequencies. In Sec. III this formalism is
applied to available high quality sonic and ultrasonic data on
v-Si0,, covering more than four orders of magnitude in the
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frequency v. The model parameters that are thus extracted
are then used in Sec. IV to estimate the TAR contributions to
both velocity dispersion and damping at Brillouin-scattering
frequencies. The anharmonic contribution can then be ex-
tracted from the total signal. It is analyzed in terms of a mean
thermal mode relaxation time 7, in Sec. V. Interestingly, this
relaxation time is found to be about an order of magnitude
longer than that of densified silica glass, d-Si0,. Section VI
presents a synthesis of the above analysis for the entire range
of v, from ultrasonic to Brillouin-scattering frequencies. A
part of that analysis concerns the velocity changes with 7.
We find an anomalous increase of the bare velocity v.. with
T, nearly the same in v-SiO, and d-SiO,. This unrelaxed
velocity, v., is obtained after subtraction of the velocity
changes produced by both thermally activated relaxation and
anharmonicity. The T dependence of v.. suggests that silica
experiences a progressive structural change with increasing
T. Section VII is a discussion, which mentions the crossovers
between the various frequency regimes, considers the suit-
ability of power laws for the description of the dependence
of the damping on v, and evoques possible extension to other
glasses.

II. THE PHENOMENOLOGY OF THERMALLY
ACTIVATED RELAXATION

We consider an assembly of defects represented by
double-well potentials that are separated by barriers of height
V and whose depths differ by the asymmetry A. The energies
V and A are randomly distributed according to a distribution
P(A,V)dAdV to be discussed below. The system is thought
to hop continuously between the wells. The energy differ-
ence between the wells is coupled to the strain e of a sound
wave of angular frequency ) =2mv by a deformation poten-
tial y=1/2 dA/de. Owing to the delayed energy exchanged
in hopping, this produces the dissipation of the sound wave.
This situation has been described in great details
elsewhere.>®!112 To an excellent approximation, it leads to a
relaxational contribution to the internal friction given by
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In this expression, p is the material density, v is the velocity
of sound, and T is in energy units. We remark that both y and
v depend on the polarization of the acoustic wave, longitu-
dinal (LA) or transverse (TA). In this writing, V is restricted
to positive values while the distribution is symmetric in A.
We also note that P(A,V)dA dV is a density, i.e., a number
per unit volume. The associated velocity change, which fol-
lows from the Kramers-Kroning relation, is given by

O A 1
(_v) = 3 f dAf dV P(A, V)sech2
U /el va T

1+ 07
(1b)

In these equations, 7is the relaxation time for hopping within
the double well. It is given by

Vv h A 2
exp—sech—
T=T p 2T
where 7, is the inverse of an attempt frequency, as shown in
detail, e.g., in Ref. 12.
The key in applying these expressions is to use a reason-
able distribution P(A, V). For small A and V, the distribution

is often replaced by a constant P. This is suggested by the
T dependence of the specific heat at low 7 which only

probes low values of A and V.13 Of course, a constant P
cannot be extended to high values of A and V as this leads to
a diverging integral density of defects, which is unphysical.
A reasonable guess for P(A,V) can be obtained with the
help of the soft-potential model (SPM)'“. That model is
characterized by a distribution of random dimensionless
cubic and quadratic coefficients, £ and 7 respectively, by an
energy scale of the potential &£,, and by a characteristic
crossover energy W<E&,.'* We are only interested here
in the region <0 with 1>]|y|>& which gives double
wells with barriers centered at the origin of the soft mode
coordinate x. As shown in Ref. 15, owing to the latter
choice, the variables ¢ and 7 are not statistically indepen-
dent. This leads to a seagull singularity in their distribution,
P(&,m)=|n|Py(&,m)/2, where Py(£,7) is finite near the
origin. For the range of values of interest here, one has
A=Eydn*?/\2 and V=E,|5|*/4. The deformation potential
of the SPM is also function of |7 with apy*|7]
as defined in Ref. 16 and further explained in Ref. 17.
The terms y*P(A,V)dA dV of (la) are transformed into
yéPMP(f ndédn in the SPM. Using the Jacobian
|a(A,V)/a(E, 7/)|—8§|17|5’2/2\2 one finds that P(A,V)
o V14D (€, 1).'° This was already used by Keil et al.'® who
selected a distribution P(V) proportional to V¢ times a
Gaussian. These authors experimentally found that indeed ¢
is very near 1/4 in the case of silica.

For convenience, and for lack of different compelling in-
dications, we assume that the distribution can be factored
into
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P(A,V) =f(A)g(V). 3)
For g(V), inspired by Refs. 16 and 18, we use the normalized
form
1[Vv\* 1 v2>
v — 4
o ()

Since {<1, this expression is integrable. The norm N, is
selected so that g(V) integrates to 1. This gives

N;:JO x‘gexp(— %x2>dx=r(l—§)U(%—§,0)~

(4b)

The function U(a,0) is the parabolic cylinder function.!” As
explained in the following section, our independent analysis
of a collection of data larger than that used in Ref. 18 also
leads to { very close to 1/4. This provides a solid support for
this particular choice of g(V). For f(A) we use a simple
Gaussian, rather similar to the Gaussian cutoff of the linear
asymmetry coefficient D, used by Gil et al.?® Indeed,
D, &n|c AV so that a Gaussian in D, is very close to
one in A, the power of V connecting the two variables being
quite small. This functional form for f(A) was already em-
ployed succesfully by Bonnet.?! It is written

2
2 ) (sa)

f(A) = fooexp( 2A2

where f is defined by the normalization condition that the
integral of f(A) equals f,V,. The norm Ny is then dimension-
less and given by

* 1
N'= f exp(— 552x2)dx =278, (5b)

where we defined
6= Vy/A., (6)

A¢ being the cutoff value of the asymmetry. We finally re-
mark that with the above definitions, the integral density of
defects is

N= F dAfoc dV P(A,V) = £,V (7)
—» 0

To complete the calculation, we now introduce (4a), (4b),
(5a), and (5b) into (la) and (1b), and use (2). In performing
the integrals in (1a) and (1b), we make the same approxima-
tion as in Ref. 6, that sech(A/2T) is replaced by 1 for
|A| <2T and by zero otherwise. This eliminates the sech fac-
tors in (la), (1b), and (2) and simply replaces the limits of
integration on A by +27. It is convenient to define a dimen-
sionless constant

C = yfNo/pv*. (8)

One obtains
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where ®(z) is the error function,

dv, (9a)

dv, (9b)

d(z) = %J exp(— x?)dx. (10)

NmTJo

For the purpose of comparison with literature results, it will
be useful to relate the value of C with the “tunneling

strength” defined by C=Py?/pv® in the usual tunneling
model.'1022 Given the distribution (4a), one cannot

strictly define P, but this does not prevent defining C in a
consistent manner.!® We calculate this for (=1/4. We
use Yspy=A2|7/2 and C=A>Pyn/*/Wpv? from Ref. 16,
where niE W/E&y. Introducing these definitions into
yéPMP(f, n)dé dp=7*P(A,V)dA dV, and using (8), we find
in the limit of small A and V,

2 W3/4V1/4
C= \/j o ¢c. (11)
n AC

Information on the numerical handling of Egs. (9) and
our choice of suitable fitting parameters are found in
Appendix A.

III. ANALYSIS OF SONIC AND ULTRASONIC
RELAXATIONAL DATA

It is generally agreed that sonic or ultrasonic damping at
temperatures above ~10 K is dominated by thermally acti-
vated relaxation. To obtain the model parameters V,, A¢, and
7 entering Eqgs. (9), it is necessary to analyze acoustic results
over a sufficiently large range of frequencies v, this up to
high ultrasonic frequencies. It implies comparing data from
various sources and generally acquired with different mea-
surement techniques. TAR leads to a peak in Q] as observed
by Anderson and Bommel in ultrasonic pulse-echo
measurements.' These authors report precise data obtained
on the TA mode of vitreous silica at =20 MHz. This is one
of the curves that will be used for our analysis, as displayed
in Fig. 1. Other high-frequency data were measured using
the Bragg diffraction of light,® in a setup similar to the
original Debye-Sears experiment.”* Damping results at
v==200 MHz on both LA and TA modes have been obtained
in that manner.”> From these, and from results presented in
Ref. 25, it is clear that LA and TA modes lead to identical
Q7! peak shapes. This implies that similar distributions of
defects are active in the damping of all acoustic waves, in-
dependently from their polarizations. We use the data on the
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FIG. 1. The data points are internal friction results on v-SiO,
taken from the literature, Refs. 23, 1, 18, and 12 in order of decreas-
ing frequency. The solid lines show our adjustment to Eq. (9a) as
explained below.

LA mode at 207 MHz from Ref. 23, also shown in Fig. 1.
The independence from polarization allows including in the
evaluation sonic frequency results acquired on macroscopic
vibrational modes, such as in vibrating reed measurements.
We use the data at v=11.4 kHz of Classen, as reported in
Ref. 12. This curve is also displayed in Fig. 1. Results at
intermediate frequencies were collected using composite 0s-
cillators, at 660 kHz on the LA mode in Ref. 6, and at
180 kHz on a torsional mode in Ref. 18. As remarked in Ref.
18, this particular method can easily lead to instrumental
background-loss contributions. This might have been the
case in Ref. 6, as suggested from data on other glasses pre-
sented by the same authors in Ref. 26 which show long ab-
sorption tails at high 7. This notion is also supported by fits
that are explained below. Hence, it is the 180 kHz data from
Ref. 18 which is included in Fig. 1. With these four curves,
the analyzed data cover more than four decades in v with a
nearly linear progression in log v.

The curves shown in Fig. 1 have been simultaneously
adjusted to Eq. (9a), allowing for each measurement an in-
dependent coupling parameter C. In the Marquardt-
Levenberg routine used to this effect, the weights have been
adjusted so that each curve had approximately the same
weight, independently from the number of data points at
each particular frequency. The excellent results of this fit,
with { fixed at 1/4, are illustrated by the solid lines in Fig. 1.
The distribution parameters corresponding to these lines are
Vo=659+19 K, log|q y=—12.2£0.14 with 7, in seconds,
and V/A-=8.2+0.6. If the same fit is repeated with ¢ free,
one finds {=0.28+0.03, and similar values for the other
parameters: V,=667+21 K, log,, 7p=—12.2+0.18, and
Vo/Ac=7.7£0.7. This shows that the distribution g(V) sug-
gested by the SPM is very adequate indeed. It also shows
that { can be fixed at 1/4, which will be done for the rest of
this paper. The rather high value obtained for V,,/ Ac empha-
sizes that one should not neglect the cutoff in the asymmetry
distribution. We return to this point below.

Our analysis reveals a certain difficulty in comparing the
absolute size of the various curves. This can be related to
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FIG. 2. The data points of the two lower curves are relative
velocity changes of v-SiO, taken from the literature, Ref. 6 for 660
kHz and Ref. 23 for 6.8 MHz. The solid lines show our calculation
of the TAR contribution according to Eq. (9b) with C=1.4Xx 1073,
The data points of the upper two curves show the experiment minus
the TAR contribution.

some extent to the different polarizations of the waves in
these measurements, or also to a small part to the different
qualities of the silica samples employed. However, it seems
more likely that it arises to a large part from calibration
inaccuracies in some of these measurements. Indeed, dis-
crepancies in the size of Q7! are directly observed in com-
paring literature reports, for example, for the TA waves at
20 MHz in Refs. 1 and 25. The difficulty is also seen in
comparing the LA to TA values of Q! in Refs. 23 and 25.
While in the former case it is the attenuations that have the
same amplitudes for both LA and TA, in the latter it is the
internal frictions which are practically the same for both po-
larizations. This cannot be reconciled as attenuation and fric-
tion differ by a factor proportional to the sound velocity, and
the latter is =5900 m/s for LA and =3800 m/s for TA
waves at low 7. We also observed that the results at 660 kHz
in Ref. 6 are fitted extremely well with the same model pa-
rameters, provided one allows for a relatively small constant
background contribution to Q~', equal to 0.1 X 1073. The val-
ues of C obtained for these various measurements range then
from 1.1 X 1073 in the case of Ref. 6 to 1.8 X 1073 for Ref. 1.
These variations in C do not seem correlated to either the
measuring frequency or the wave polarization, which is an-
other reason to suspect calibration difficulties.

It is necessary to obtain a more reliable value of C to
analyze the Brillouin-scattering data in the following section.
To this effect we remark that velocity measurements are gen-
erally both accurate and precise, allowing them to follow
small changes in dv/v with excellent accuracy. We use two
measurements of the LA-wave velocity, one at 660 kHz from
Ref. 6 and the other at 6.8 MHz from Ref. 23. The experi-
mental values (8v/v).y, are shown in Fig. 2, together with
continuous lines marked (8v/v),. These are calculated from
the relaxation equation (9b) using the above values of V,
Ac, and 7, together with C=1.4 X 10~>. With the latter value,
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the dip around 50 K is completely accounted for. This is
emphasized by the difference (S0/v)exy—(00/v)y also
shown in Fig. 2. Hence, we adopt for the following the cou-
pling constant C=1.4X 1073, which happens to fall within
the range of values obtained by fitting the various Q! curves
discussed above.

We now return to the small cutoff value A-=80 K which
we obtained. This aspect has mostly been ignored by other
workers. It was shown in Ref. 21 that it is necessary to in-
clude a cutoff to obtain a good fit to the high-T7 tails in Fig. 1.
For example, forcing Aq=V,, the quality of the fits degrades
appreciably above ~70 K, especially for the highest v curve.
More importantly, the calculated values of (Sv/v),, are then
much too large to account properly for the dip around 60 K
observed in Fig. 2. Obviously, by the virtue of the Kramers-
Kronig transform, (8v/v), integrates over a large part of the
distribution, which is the reason for this problem. One might
wish to gain an intuitive picture of why A can be so much
smaller than V|,. To this effect, one can consider the models
of TAR drawn in Fig. 2 of Ref. 27. We take as simplest
examples model A, in which the two Si atoms of a Si-O-Si
bond are too close, and model B, in which they are too far
apart. In either case, a double-well potential for the connect-
ing oxygen results with a barrier height V that comes mainly
from the separation of the two Si. This barrier can thus be
quite high. On the other hand, the asymmetry is produced by
the difference in the wider environment of the two wells. In
a hard glass, one might expect that these environments,
which are dictated by the minimization of the energy, can be
mostly quite similar. From these considerations, one intu-
itively anticipates that the ratio V,/Ac might depend signifi-
cantly on the particular glass.

Finally, we remark that the temperature 7,,,, of the peak
positions in Fig. 1 depends linearly on In (). A similar obser-
vation was already made in Ref. 27. This typical Arrhenius
behavior supports TAR as the principal relaxation mecha-
nism to describe Fig. 1, as opposed, for eiample, to incoher-
ent tunneling that would lead to T, V{) as seen from Eq.
(2.95) of Ref. 28.

IV. ANALYSIS OF BRILLOUIN-SCATTERING RESULTS

High-resolution Brillouin-scattering measurements of the
temperature dependence of the LA linewidth of vitreous
silica have been reported in Refs. 29 and 12. Both experi-
ments were performed near backscattering and below room
T, using as exciting radiation the blue argon-laser line at
A, =488 nm. Measurements above room 7 are reported in
Ref. 30. These were performed at A =514 nm. The Brillouin
frequency shifts v from Refs. 29 and 30, the latter rescaled
to A\; =488 nm, are displayed in Fig. 3(a) over the entire
range of 7.

The frequency widths extracted from the Brillouin peaks
in Refs. 29 and 30, after correction for the instrumental
broadening, have been converted to internal friction as
shown in Fig. 3(b). The internal friction reported by Tiel-
biirger et al. in Ref. 12 is also shown on the same figure. One
notices the remarkable agreement between these two inde-
pendent determinations. It emphasizes that Brillouin scatter-
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FIG. 3. (a) The data points are Brillouin shifts obtained on
v-SiO, near backscattering, from Refs. 29 and 30. The values of
Ref. 30 have been rescaled to the blue argon-laser line,
A.=488 nm. The solid line is a guide to the eye. (b) The internal
friction derived from the Brillouin linewidths. The crosses are from
Refs. 29 and 30, while the dots are from Ref. 12. The solid curve
shows the TAR contribution calculated from Eq. (9a) using the
value of C determined from the velocities in Fig. 2.

ing gives an absolute measurement of Q~!, independent from
calibrations, since it suffices to take the ratio of the Brillouin
full-width to the Brillouin shift to extract Q~!. This state-
ment, of course, assumes that the spectroscopy can be per-
formed with the required resolution, and in particular that the
broadening produced by the finite collection aperture can be
made sufficiently small.

Also shown in Fig. 3(b) is the curve Qr_el1 calculated with
Eq. (9a) for v=35 GHz and with the parameters determined
in Sec. III. It is evident that at Brillouin frequencies TAR
cannot account for the entire internal friction. The value
C=1.4X107? is confirmed by the Brillouin velocity results
explained below. However, even if one would allow oneself
to arbitrarily double the coupling constant C, the line in Fig.
3(b) would still not superpose the data points. In particular
the peak in Q] occurs at a lower T value than the peak in the
observed Q7!. The difference between the two curves is at-
tributed to its largest part to the anharmonic coupling of the
LA waves with the thermally excited vibrational modes, as
reported in paper I for densified silica glass.

The velocities are extracted from the Brillouin frequen-
cies vy of Fig. 3(a) using v=N\ vg/2n sin /2, where n is the
refractive index and @ is the internal scattering angle, here
close to 180°. To derive precise values on v(7), it is neces-
sary to know n(T) with an equal precision. This information
has been derived from Ref. 31. The results below 300 K are
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FIG. 4. The lower data points show the measured ultrasonic
velocities from Fig. 2 together with the hypersonic velocity derived
from Fig. 3(a). The upper data points show the same velocitites
after subtraction of the TAR contribution. We note that after this
subtraction there remains a small difference between the slopes ob-
served at high T for the two different frequencies. These slopes are
shown by the dashed lines and they are discussed in Appendix B.

shown in Fig. 4, together with the velocities at 6.8 MHz from
Ref. 23. The relative changes reported in Ref. 6 have also
been converted back to velocities using v,=5888 m/s. Sub-
tracting from all three curves the (6v), calculated from Eq.
(9b), one observes that below 150 K all the data collapse
quite well. This confirms that the value of C is also correct at
Brillouin frequencies. It also emphasizes that the v depen-
dence in the depth of the dip around 70 K is well predicted
by TAR. As explained in Sec. VI B, the velocity changes that
are produced by the anharmonicity, (), show little dis-
persion compared to the large dispersion in (Sv),. Hence,
they do not modify the above conclusion.

Figure 5 shows the difference between the experimental
internal friction and the calculated TAR contribution. Simi-
larly to the results on d-SiO, in paper I, there is a region
where the signal falls rapidly with decreasing 7. However, it
does not seem to fall to zero sufficiently fast. In spite of the
large scatter in the experimental values, there is a hint for an
additional contribution to Q7! at low T, in the region from
~20 to ~60 K. At these hypersonic frequencies and tem-
peratures, one can anticipate a contribution Q¢ arising
from the relaxation of two-level systems (TLS) by incoher-
ent tunneling. Generally, Q71 <(T) exhibits a plateau separat-

ing a regime Q7,51 at low T<T from Qr,;,<1 at higher

T, as shown in Ref. 28 where 7,,;, and T Q"3 are defined.
The position, extent, and height of this plateau are () depen-
dent, as emphasized in Fig. 6 of Ref. 32. According to Ref.
28, the extent of the plateau should shrink to zero at suffi-

ciently high frequencies such that 7>T", where T is a fre-
quency independent characteristic temperature marking the
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FIG. 5. The internal friction observed in Brillouin scattering
after subtraction of the TAR contribution shown in Fig. 3(b). The
crosses are from Ref. 29 while the dots are from Ref. 12. The solid
line is a rough estimate for the small tunneling contribution extrapo-
lated from data presented in Ref. 32.

end of the plateau region. In v-SiO,, it has been observed
that 7°=5 K.'?> The plateau becomes then a hump slightly

above T. As shown in Ref. 32, for v=46 MHz one should

have T=3 K. This value increases with QO3 as confirmed
from sound-damping data between 330 and 930 MHz,3
showing a shoulder on the low T side of the TAR peak.

Hence, at 35 GHz one expects T~30K, giving a broad TLS
hump centered around 40 K. Q7{ ¢ T° below this hump, and
Q715> T above it.”® Extrapolating the observations re-
ported in Ref. 32 we posit

1.3 X 1073

(30/7)% + (T/30) (12)

-1
Ons=

as a rough estimate for this relatively small contribution to
Q‘l. This curve, which peaks around 40 K, is shown in Fig.
5. The difference

=07 = 01 - 0715 (13)

will be used below to analyze the anharmonic damping.
Since there seems to be a small tunneling contribution Q7 s,
then there ought to be by the Kramers-Kronig relation a cor-
responding contribution (8v)r . As shown in Eq. (2.96) of
Ref. 28, this should produce at high T a frequency dependent
term in 7 In (). As shown in Appendix B, there are reasons to
believe that it is this term that produces the difference in
slopes indicated by short dashed lines in Fig. 4.

To conclude, we find a relatively large Q;n'h at hypersonic
frequencies. It is of the same order of magnitude as Q. The
small additional term Q7 ¢ that has been discussed above is a
correction of minor importance compared to Qa_r}h, as obvious
from Fig. 5.
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FIG. 6. (a) The anharmonic damping contribution scaled by
A(T)/ . The solid line is a guide to the eye calculated from the
corresponding line in (b). The peak is located at Ty, (see Appendix
C) and its height gives 42/2. (b) The values of 7, for v-SiO, ob-
tained from the data in (a) after solving Eq. (14). Data for x-cut
crystal quartz and d-SiO, from paper I are shown for comparison.
The lines for v-SiO, and d-SiO, are guides to the eye and are sums
of negative powers of 7, while the line for c-SiO; is calculated from
Eq. (15).

V. THE THERMAL RELAXATION TIME

In the spirit of paper I we now analyze the anharmonic
damping with the expression

—1 ‘Q'Tth

oA (9
where 7y, is the mean lifetime of the thermal modes and
A(T)=vC,Tv/2pv3, is the prefactor given in Eq. (5b) of
paper I, with C, the specific heat per unit volume and vp, the
Debye velocity. We remark that all quantities entering A(7)
are known, except for the mean-square average Griineisen
parameter y?. Thus we can directly plot the quantity
QL /A as it is independent from y>. The result obtained
using the values O, taken from Fig. 5 is drawn in Fig. 6(a).
Points below 60 K are not shown, as the data is too noisy at
low T to be significant after division by Ao C,T. This plot
exhibits a peak for (7;,=1. From the height of this peak one
reads y?=3.6. With this determination, Eq. (14) can then be
solved for Q 7y, and thus for 7. The procedure is explained
in Appendix C. The result is shown in Fig. 6(b). One ob-
serves that 7,,(T) is proportional to 7~ over the main part of
the data, from ~100 K to ~300 K. At higher 7, 7, tapers
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off, while at lower T there is a hint that 7,(7) might diverge
faster than in 772, The solid line is a guide to the eye and it
is a sum of powers of 7. The same law is then used to trace
the guide to the eye in Fig. 6(a).

In Fig. 6(b) we have traced for comparison the values of
the relaxation time of the thermal modes for two other cases.
Firstly, we observe that 7,,(7) obtained in paper I for densi-
fied silica glass, d-SiO,, is substantially shorter than in
v-Si0,. However, it shows a very similar functional depen-
dence on 7. Secondly, in order to deepen the understanding,
we applied the same method of analysis to data on the LA
mode of X-cut crystal quartz, c-SiO,. We used to this effect
the attenuation coefficient measured by Bommel and Drans-
feld at 1 GHz.3* At temperatures above 150 K, we completed
these data using the width of the Brillouin line reported in
Ref. 35. These data were analyzed similarly to Fig. 6(a) lead-
ing to ¥>=0.95. The corresponding 7;,(T) is shown in Fig.
6(b). In this case, the line through these points is nor a guide
to the eye as for the two glasses, but it is an independent
determination of 7,,(7) using the well-known kinetic expres-
sion for the thermal conductivity,

1
K= ngszTth. (15)

We observe that in this case the value of 7, derived from
(line) is in remarkable agreement with that obtained from the
measurement of anharmonic damping of the acoustic modes.
This emphasizes the physical significance of 7y it really is
the mean lifetime of the excitations in the thermal bath
which at sufficiently high T is entirelly controlled by Um-
klapp processes. As pointed out in Ref. 36, this produces a
relaxation proportional to the phonon population, and thus at
high T one has 7% T~!. At intermediate T, where C,&T and
kZT', Eq. (15) indicates that 7,72 This is indeed ob-
served in ¢-SiO, over a large range of T, as seen in Fig. 6(b).

Equation (15) assumes propagating thermal phonons. For
this reason, it becomes invalid in glasses at soon as 7 in-
creases beyond the thermal conductivity plateau located
around 10 K in v-SiO,. However, we remark that the func-
tional dependence 7,;(T) observed in the two glasses is very
similar in shape to that in ¢-SiO,. We have no simple expla-
nation for this. In glasses, there are two competing effects
that modify the picture presented above. On the one hand,
the strict quasimomentum conservation which is invoked in
Umklapp processes is strongly relaxed, and this must greatly
enhance the interactions in the thermal bath, decreasing 7y,.
This could account for the observed difference between crys-
tal and glasses. On the other hand, the thermal modes are not
expected to be propagating plane waves but they are at best
diffusive. This restricts the spatial extent of the modes,
greatly decreasing their overlap and thereby their interac-
tions, which increases 7. We believe it is the latter effect
which produces the much longer 7, in v-SiO, compared to
d-Si0,. Indeed, in d-SiO, the boson peak is strongly
reduced.’” This increases the crossover frequency w,, be-
yond which the acoustic excitations become diffusive, as re-
cently confirmed by inelastic x-ray scattering.®® This in turn
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FIG. 7. The internal friction at 35 GHz from the Brillouin-
scattering measurements of Refs. 12 (O) and 29 (+). The solid
curve is the entire adjustment made here, which is the sum of three
contributions O}, Q71 s and Q1.

increases the mean spatial extent of the modes and thereby
their interactions leading to a faster thermalization.

Finally, we remark that the above analysis gives values
for the mean Griineisen parameter y>. We find 0.95 for the
LA mode of x-cut quartz, 3.6 for v-SiO,, and 8 for d-SiO,. In
the case of crystal quartz, the agreement between the line
calculated from the thermal conductivity « and that obtained
from Q! gives a solid support for the value of y?. Unfortu-
nately, one cannot make a similar comparison for the glasses.

VI. SUMMING-UP
A. The internal friction

Figure 7 summarizes the present analysis of the internal
friction observed in v-SiO, with Brillouin scattering
around 35 GHz. One identifies two main contributions:
Qr_el1 arising from thermally activated relaxation and Qa_nlh
=Q7'—(Q; 1+ 07515 which results from network viscosity.
Around room 7, Qa_r}h is nearly twice as large as Qr_ell . The
incoherent tunneling contribution Q7 g, if it really exists at
these high frequency and temperatures, mainly produces the
small hump around 40 K. Although there is a hint for such a
feature in the data shown in Fig. 7, it would need to be
confirmed by more precise measurements. Also, we ne-
glected in this analysis a possible contribution arising from
the quasiharmonic oscillators of the soft-potential model.'”
This is explained in Appendix D.

As v is increased beyond 35 GHz, we find that the value
Qr_el1 calculated with Eq. (9a) saturates. This saturation essen-
tially results from the cutoff in f(A). For example at room T,
O, does not increase beyond ~1.5X107%. On the other
hand, at sufficiently high T, Q- continues to grow with Q
according to Q;nlh=AQT[h which applies as long as Q7 <1.
We also find that A7y, is practically constant from 100 to
300 K. For these reasons, the total Q™! becomes dominated
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FIG. 8. (a) Calculated velocity changes produced by TAR (rel)
and by network viscosity (anh) at two typical frequencies. (b) The
measured velocities at the same frequencies (lower data points) and
the unrelaxed values v, after correction for TAR and network vis-
cosity (upper data points). The line is a fit of v., to Wachtman’s
equation as a guide to the eye. The v., data for d-SiO, from paper I
are also shown for comparison.

by network viscosity, it continues to increase proportionally
to ) up to several hundred GHz, and it is nearly 7 indepen-
dent from 100 K to 300 K. This is in excellent agreement
with the results on acoustic propagation reported for
v-Si0, thin films by Zhu, Maris, and Tauc.?® These authors
find that the mean-free path, €7!, grows in Q? from
~30 GHz to ~300 GHz, and that it is nearly independent of
T from 80 to 300 K. Since ¢~'=Q~'Q/v, the dominance of
Q;nlh, its growth «(), and its near constancy in 7, fully ac-
count for the data reported in Ref. 39. Our predictions are
also fully consistent with three data points measured with
UV Brillouin scattering from ~50 to ~100 GHz.**4!

On the other hand, at ultrasonic frequencies, i.e., much
below 35 GHz, the contribution of Q! which decreases pro-
portionally to () becomes completely negligible compared to
Qr_ell. This justifies the analysis based only on TAR that was
performed in relation with Fig. 1.

B. The velocity changes

Figure 8(a) shows the velocity changes calculated from
Eq. (9b) for TAR, and using

() a1 ”
U ) wn 214027

for the network viscosity, this at two typical frequencies. One
notices that the increase in v from 6.8 MHz to 35 GHz leads
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to a large reduction of |Sv,y|. On the other hand, |Sv,,l,
although quite large above 100 K, changes relatively little
with v. In particular, the dashed curve is entirely in the re-
gime O 7, <1, so that it is practically independent of () at
lower () values. This justifies the approach used to determine
C in Fig. 2 where the anharmonicity contribution was simply
neglected. At sufficiently high 7', anharmonicity always leads
to a quasilinear decrease of v with 7, very similar to what is
observed in crystals.*>*3 This has been seen in ultrasonic
measurements in a large number of glasses, e.g., in Ref. 44
where this effect is interpreted as such. At these frequencies,
one is in a regime where the velocity changes are dominated
by network viscosity while the damping mainly originates
from TAR. It is generally necessary to go up to Brillouin
frequencies to observe in Q7' both contributions simulta-
neously.

The velocity changes in tetrahedrally coordinated glasses,
in particular in v-SiO, and in d-SiO,, are more complex than
described above. Figure 8(b) shows the observed velocities,
v, and the unrelaxed value that is corrected for both TAR and
network-viscosity dispersions, v,=v—[(80)ej+ (V) mnl. As
observed, the experimental points collapse to a v,, which on
this scale is essentially ) independent. However, rather than
being constant, v.. increases considerably with 7. In the same
figure, the results obtained in paper I for d-SiO, are shown
for comparison. Both solid lines are guides to the eye ob-
tained by an ad hoc adjustment to Wachtman’s equation.*’
The behavior of v, is remarkably similar in both glasses,
pointing to an anomalous hardening of silica with increasing
T. As discussed in paper I, the earlier proposal that this is a
manifestation of large structural inhomogeneities*® is not
supported by observations. The anomalous hardening has re-
cently been attributed to a progressive local polyamorphic
transition associated with abrupt rotations of randomly dis-
tributed Si-O-Si bonds, found in simulations.*’ Thermal agi-
tation would redistribute the Si-O-Si bond angles in configu-
rations where they are more resilient. However, contrary to
Ref. 48, our results indicate that a very similar mechanism
would then be active in permanently densified silica. Repeat-
ing the warning made in paper I, although v, has a clear
physical significance, it would be nearly impossible to per-
form at the moment an experiment to directly measure it.
This is even more so in v-Si0, than in d-Si0,, owing to the
lower w,, of the former glass.

C. The tunneling strength

It remains to compare the value C=1.4X 1073 found in
Sec. III to the tunneling-strength parameter C==3.0X 107*
from the literature. To do this, both values are inserted in Eq.
(I1) to calculate the cutoff energy W that applies to the
present case. We find W=7 K, as opposed to the TLS value
W=4 K derived from the low-T specific heat data.'® Such a
larger value of W was already reported, resulting from a
similar analysis in Ref. 18. Its origin was convincingly ex-
plained there as arising from a different weighing of the dis-
tribution of W values, in W=* for the specific heat, and in w-!
for the ultrasonic absorption. The value of C is thus fully in
line with expectations.
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VII. DISCUSSION

We have shown that ultrasonic and hypersonic damping
and dispersion in vitreous silica at temperatures above the
quantum regime originate in at least two main processes:
thermally activated relaxation and network viscosity. These
have different ) and T dependences which leads to a non-
trivial variation of the scattering linewidth I" with Q. At a
given T, TAR dominates the damping at low (), while anhar-
monicity dominates at sufficiently high (). Between these
two regimes there occurs a “dynamical crossover” which for
v-Si0, at room T falls near our Brillouin frequency, as
shown in Fig. 10 of Ref. 39 and confirmed in Fig. 7 above.
Above this crossover, the damping is dominated by
Qon=AQ7,, which implies that ['c Q2. As ) is increased
far beyond optical Brillouin frequencies, another broadening
mechanism eventually comes into play. Around 300 GHz,
one expects the onset of a new contribution to Q~!, growing
with a higher power of (), possibly in 3, as suggested in
Ref. 49. This additional contribution is currently thought to
result from the hybridization of the acoustic modes with
boson-peak excitations,’®>! as inelastic x-ray scattering ob-
servations on d-SiO, strongly suggest.>®>? Unfortunately, in-
elastic x-ray scattering at sufficiently small scattering vectors
and with sufficiently high energy resolution could not yet be
performed on v-SiO, to settle the issue of this onset. This
hybridization eventually leads to the Ioffe-Regel crossover at
., above which the excitations have lost their plane-wave
character. Then, the wave vector g does not remain a good
label for the modes which are at best diffusive.® The exci-
tations of the thermal bath are expected to be of that nature
in glasses, as discussed in Sec. V.

Power laws ' )", or I'cg" which is equivalent as long
as the frequency is well below the Ioffe-Regel limit so that
g}, are often employed to represent the damping data
I'(Q). As just explained, I'«()? is a reasonable approxima-
tion in the region between the dynamical crossover and the
Ioffe-Regel one. On the other hand, such laws should be
viewed as quite rough approximations in the TAR-dominated
regime. The reason is that the dependence of I' on () pre-
dicted by Eq. (9a) is more complicated. It cannot be written
simply in terms of a T-dependent exponent n(7T). For ex-
ample, in v-SiO, at room 7, a value n=1.3 is given in Ref.
54, while n=1.8 is derived from Ref. 7. We conclude that
power laws in the TAR-dominated regime are ad hoc devices
which only represent approximately the data, especially if
the latter are sufficiently noisy to mask the disagreements.

At this point, it is legitimate to ask to what extent anhar-
monicity might be important to sound damping in other
glasses. The answer to this question depends on two factors:
(i) the strength, density, and distribution of the relaxing de-
fects; and (ii) the strength of the anharmonicity. It is conceiv-
able that in glasses that contain a large quantity of defects up
to high values of V; and A, TAR would mask the anharmo-
nicity. In that case the dynamical crossover might move up to
nearly w,,, so that a regime I' < ()?> might not be observable
at all. We have found such a case in lithium diborate,
v-Li,B,0,.5! This type of situation is expected for most
polymers in which the tunneling strength C is quite large.?
On the other hand, there exist many glasses or amorphous
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materials for which C is quite small, well below 10~*.2> Such
are the amorphous group IV semiconductors, C, Si, and Ge.
In that case, the anharmonicity is expected to dominate over
a considerable range of () and a calculation to that effect has
already been performed.>> Of the tetrahedrally coordinated
glasses, it will be particularly interesting to reinvestigate
v-GeO, and v-BeF,. Difficulties met in obtaining a quantita-
tive description of damping and dispersion in germania on
the basis of TAR alone, described in Ref. 10, might find their
resolution by including in the analysis the cutoff A and the
network-viscosity contribution.

To summarize, TAR essentially explains acoustic damp-
ing results in silica glass up to a few GHz. At higher frequen-
cies, the anharmonic coupling of hypersound to the modes
that form the entire thermal bath becomes progressively
dominant. This conclusion, in line with previous
observations® and simulations,’ corrects statements to the
contrary often found in the literature, e.g., in Refs. 7-9. The
anharmonicity which in our view produces Qa_r}h is a coupling
of sound to the whole bath, in addition to the relatively small
fraction of modes forming the boson peak. This process,
which we call network viscosity, is in a way quite similar to
the usual lattice viscosity of crystals.

APPENDIX A: ESTIMATING EQS. (9)

For the Marquardt-Levenberg adjustment of Egs. (9), it is
convenient to use the parameters C, V,, logym, ¢, and 6.
Taking as integration variable x=V/V,,, and defining the
auxiliary variables a=V,/T and y=Q,, Eq. (9a) becomes

©

12> y exp(ax) 4

~Cex (—— .
*oep * 1 +y? exp(2ax) *

Qr‘el1 =C @(\"55/a)af >

0
(A1)

Good results are obtained with a simple trapezoidal integra-
tion, taking a geometric progression for the vector of x val-
ues. We used x starting at =10"* and ending at =10, in steps
of 1%. Eq. (9b) is handled similarly.

APPENDIX B: VELOCITY CHANGES DUE
TO INCOHERENT TUNNELING

One observes on the upper curves of Fig. 4 that there is a
small difference in the high-temperature slopes for the two
different frequencies. The origin of this effect might be in the
velocity dispersion associated, by the Kramers-Kronig trans-
form, with the relatively small damping Q}lLS produced by
incoherent tunneling. At high 7, the damping is given by the
third equation (2.94) of Ref. 28,

1 _ _mC A

=— . B1
e 4'r'min kBT ( )

The corresponding dvry g is derived from the third equation
(2.96) of Ref. 28, which gives for the {)-dependent part
C
5UTLS = 045?(111 Q)T (BZ)

The temperature T° marks the end of the low-T plateau re-
gion in Q7! and it is given by Egs. (2.78) and (2.79) of Ref.
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28. Owing to the logarithmic dependence in (B2), it is the
difference of slopes at two frequencies which is significant,

A(dvrs) — (5U1)TLS - (0v)1Ls

C

(B3)

With the values in Fig. 4, and calculating 7" following Ref.
28, one finds C=7 X 1075. As expected, this is smaller than
the tunneling strength found from specific heat measure-
ments at low temperatures,? the reduction being of the order
of Ac/T. Hence, it is not unreasonable to assign the differ-
ence in slopes observed at high 7 in Fig. 4 to the Kramers-
Kronig transform of Q}]{S.

APPENDIX C: SOLVING EQ. (14) FOR THE RELAXATION
TIME

It is in principle trivial to solve the quadratic equation
y=x/(1+x?) for x=Qr;, in terms of the measured
y=Q7!/A. However, imaginary roots do occur in the region
around x=1 owing to fluctuations in the data, leading to
some points for which y>1/2. These are the points whose
ordinate lies above the maximum of the solid curve drawn in
Fig. 6(a). For these data points, we simply replaced x by 1, as
the nearest real solution. This produces a line of data points
with 73, =1/ in the presentation of Fig. 6(b). For the data
points with y<<1/2, one must select between the upper and
the lower root of the quadratic equation. This is set by the
location of the maximum in the solid curve, Ty,. For
T<Tyax the upper root applies since ()7, >1, while the
lower root applies at higher temperatures.
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APPENDIX D: ANOTHER POSSIBLE SOURCE
OF DAMPING

We have not considered the damping arising from the
weak anharmonicity of the nearly harmonic oscillators (HO)
of the soft-potential model in the domain %>0.!7 This con-
tribution should be most active at “intermediate” frequen-
cies. In v-Si0O,, its strength has actually been predicted to be
largest near our Brillouin frequency.!” It must be noted that
the entire (),7) domain covered by the propagating pulse
measurements of Ref. 39 falls within this “intermediate” fre-
quency range where the additional damping obeys
0o CT/\Q.'7 If the strength of Qf, would be sufficient,
one should definitely notice its effect on the ({),7) depen-
dence of the mean-free path reported in Ref. 39 from 80 to
300 K and from 30 to 300 GHz. On the contrary, the mean-
free path is found practically 7 independent and it increases
«()?, in agreement with the network-viscosity contribution.
It seems thus justified to neglect Qpt, in our analysis of the
Brillouin results up to 300 K. The difficulty in estimating the
size of Qﬁlo apparently lies in finding the proper value for the
tunneling-strength parameter C that applies to it. The value
C=3X%107%, appropriate for TLS at very low temperatures,’>
is certainly too large here. Indeed, using this value in Eq.
(3.18) of Ref. 17, we calculate Q5;6,=5 X 107> X T(K), which
at 300 K is larger than the entire Q™! observed. From an
analysis of heat-release measurements there are grounds to
adopt here a value of C which is at least five times smaller®.
Even so, the resulting Oy, is still too large to agree with the
results of Ref. 39. Our Brillouin measurements up to 700 K
shown in Fig. 3(b) suggest that there could be a small con-
tribution «7 that starts being felt above ~400 K. This con-
tribution would then be of the order of 107° X 7T(K), which
implies a very small effective C for this particular damping
mechanism.
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