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This series discusses the origin of sound damping and dispersion in glasses. In particular, we address the
relative importance of anharmonicity versus thermally activated relaxation. In this first article, Brillouin-
scattering measurements of permanently densified silica glass are presented. It is found that in this case the
results are compatible with a model in which damping and dispersion are only produced by the anharmonic
coupling of the sound waves with thermally excited modes. The thermal relaxation time and the unrelaxed
velocity are estimated.
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I. INTRODUCTION

The understanding of the physical processes leading to
sound attenuation and dispersion in dielectric glasses is still
far from perfect. At least four distinct causes have been dis-
cussed: two-level systems,1–4 relaxation,5–7 Rayleigh
scattering,8–10 and anharmonicity. Anharmonicity produces a
direct interaction of sound with thermal vibrations. One
knows that for dielectric crystals it is a dominant contribu-
tion to the damping of acoustic waves.11 This has been called
either “lattice viscosity”12 or “phonon viscosity.”13 In
Akhiezer’s treatment,14,15 the sound wave modulates the fre-
quencies of the thermally excited modes and thereby their
effective temperatures. The return to thermal equilibrium
within this vibrational bath, characterized by the mean ther-
mal lifetime of the dominant vibrations �th, leads then to
energy dissipation and thereby to sound damping. This pro-
cess can be quite local, occurring between spatially overlap-
ping but not necessarily propagating modes.16 The time �th
just describes the return to equilibrium after a perturbation of
these vibrations by an acoustic wave. Described in these
terms, the Akhiezer mechanism also ought to be active in
glasses, even though the thermal modes might then be local
or diffusive ones, leading to what we shall call “network
viscosity.” One of us had already suggested long ago that at
the high frequencies of Brillouin scattering experiments, this
Akhiezer contribution should not be neglected in vitreous
silica.17 A simulation based on this mechanism was per-
formed for the case of amorphous silicon.18 It showed that
the anharmonicity of thermal vibrations can induce in glasses
sound attenuation larger than in the corresponding crystal
owing to the enhancement of the Grüneisen parameters by
internal strains. Other detailed calculations of the anhar-
monic damping of sound in glasses do not seem available in
the literature, except for extensive predictions of relaxation
times based on the fracton model.19

At temperatures above the quantum regime, owing to the
considerable disorder of glasses, damping can also result
from unstable structural features relaxing in the strain field of

the sound wave.5,6 These “defects” produce what is called
“thermally activated relaxation.” The damping depends then
on the defect density, on the strength of their coupling to
strain, and on the distribution of their relaxation times �.
These times are often much longer than typical values of �th.
Hence, this type of damping appears dominant in many
glasses at sonic and ultrasonic frequencies. It produces peaks
in the temperature dependence of the sound attenuation
which have been well described by phenomenology,6 al-
though the exact nature of the defects remains most often
unknown. A puzzling aspect is the relative “universality” of
these relaxation phenomena, as reviewed in Ref. 20. Another
nontrivial aspect is that within the soft-potential model the
relaxational features at higher temperatures and the proper-
ties associated with two-level systems, at He temperatures
and below, can be quite succesfully described using a single
picture.7

Another possible damping mechanism is scattering of the
sound waves by static density or elastic constant fluctuations.
This effect, which grows with the fourth power of the fre-
quency, was described long ago by Lord Rayleigh.8 Although
this mechanism has been invoked to explain the plateau in
the thermal conductivity of glasses, or the “end” of acoustic
branches,10,21–23 it has been known for quite some time that it
is difficult to construct a model for glasses that produces
strong Rayleigh scattering.24 It has been recently reempha-
sized that the Rayleigh scattering of sound is generally too
weak for it to play any appreciable role at frequencies below
at least 1 THz.25,26 Thus, this will not be of importance to the
present series of papers as our considerations will be re-
stricted to frequencies below �100 GHz. Similarly, another
very strong damping mechanism is the resonant
interaction—or hybridization—of the sound with other low
frequency modes, which can lead to “boson peaks.”27,28 In
the case of densified silica, this effect has been observed to
start around 1 THz and to grow then with a high power of the
sound frequency.29,30 Again, this will not be of relevance
here. Our interest will in fact mainly be in the relative
strength of the anharmonic and relaxation sources of damp-

PHYSICAL REVIEW B 72, 214204 �2005�

1098-0121/2005/72�21�/214204�9�/$23.00 ©2005 The American Physical Society214204-1

http://dx.doi.org/10.1103/PhysRevB.72.214204


ing. At very low temperatures, below liquid He, the quantum
aspect of two-level systems becomes crucial3,31 but anhar-
monic damping tends to zero owing to the weak population
of the thermal bath. Very low temperatures will not be dis-
cussed here.

Compared to the very abundant ultrasonic results, there
exist relatively few damping data at frequencies between 1
GHz and 1 THz. The “hypersonic” regime observed with
optical Brillouin scattering falls in the middle of this range.
The longitudinal acoustic �LA� waves are active in the back-
scattering geometry. To fix ideas, in the case of silica and
using the green argon-laser line, the observed hypersonic fre-
quency is then �B�� /2��34 GHz. Explanations that are
only based on thermally activated relaxations generally meet
difficulties in trying to account simultaneously for hyper-
sonic and ultrasonic attenuation results, e.g., in Ref. 32.
However, it was recently claimed that for silica, “within a
factor of 2,” the results over the entire frequency range are
well accounted for by relaxation only.33 A main purpose of
the present series is to clarify this issue. This becomes all the
more important that data are now also obtained at frequen-
cies above �250 GHz, using x-ray Brillouin scattering.34,29

In that context, one should beware of sweeping interpola-
tions of the damping behavior over great many decades in
frequency.34 As explained in the second paper of this series
�II�, the damping contribution of anharmonicity in the hyper-
sonic regime increases faster in � than that of relaxations. At
sufficiently high frequencies and temperatures T, this can
lead, over certain frequency and temperature ranges, to a
dominance of anharmonicity. Indeed, the thermal phonon
contribution increases with the thermal population and thus
with some power of T, whereas the effect of the relaxing
defects usually saturates.

In order to estimate the anharmonic contribution to sound
dispersion and damping, it is of interest to consider several
varieties of silica glasses besides usual vitreous silica, v
-SiO2. For example, it is already known that irradiation of
v-SiO2 by fast neutrons increases slightly the glass density �,
from 2.20 to �2.26 g/cm3,35 but thereby increases apprecia-
bly the hypersonic velocity while it reduces substantially the
hypersonic attenuation.36 Similarly, it has already been
shown that in permanently densified silica glass both the
relaxation at sonic frequencies37 and the hypersonic
linewidth38 are very strongly reduced. The latter experiments
were performed on a sample of mean density �
�2.45 g/cm3 which unfortunately was quite inhomoge-
neous. It is thus of considerable interest to obtain detailed
T-dependent Brillouin data on a much better sample of well-
densified silica, d-SiO2, with ��2.60 g/cm3. The results of
such an experiment are presented and discussed in this first
paper. They confirm that the hypersonic damping in d-SiO2
is indeed entirely dominated by anharmonicity. This is of
particular interest as it reveals what the shape and strength of
a pure anharmonic contribution can be in a glass.

Two quantities will be of main interest in these papers, the
damping of sound and its velocity dispersion. Damping can
be expressed in several ways. It is manifested in a Brillouin
scattering measurement by a linewidth �, where � /2� is
defined as the deconvoluted frequency half-width at half
maximum of a damped harmonic oscillator response adjusted

to the Brillouin peak. On the other hand, in ultrasonics the
damping is generally measured as an energy mean-free path
�, or as its inverse �−1=�=2� /v, where v is the sound ve-
locity and � is in rad/s. Traditionally, the attenuation con-
stant � is often expressed in dB/cm, in which case its nu-
merical value must be multiplied by 10 ln 10 to convert it to
m−1. To compare these various results over a broad range of
frequencies, we prefer to use the internal friction Q−1 which
is the inverse of the quality factor Q=� /2�. Thus, Q−1

=�−1v /�. This is particularly convenient for graphical pre-
sentation as near a relaxation peak Q−1 depends little on �,
this over many decades of �. The dispersion in v�� ,T� is
usually quite weak, and thus it is indicated to present a dif-
ferential quantity, 	v /v. In defining this quantity a suitable
reference value v0 must be selected, as 	v /v really means
�v�� ,T�−v0� /v0. A rather common choice is to take for v0

the value of v�� ,T� at the lowest measured temperature,
usually near liquid-He temperatures. One should be aware
that an arbitrary choice of v0 modifies 	v /v practically by an
additive constant, since 	v
v. Further, if Q−1 is small com-
pared to 1, which is always true here, one easily shows that
Q−1 and −2	v /v are Kramers-Kronig transforms of each
other,

− 2	v��,T�/v =
1

�
P�

−�

+� Q−1�x,T�
x − �

dx , �1�

where P means the principal part, with the related relation
for the inverse transform. As explained in Ref. 39, this
strictly requires that 	v=v−v�, where v�=v��→� ,T� is
the high-frequency limit of v, which can be called the unre-
laxed velocity. It is conceivable that “static” structural
changes might occur in function of T, and that these could
produce a temperature dependent v��T�.

As discussed in Ref. 40, if Q−1 is given by a single Debye
relaxation,

Q−1��,T� = A��/�1 + �2�2� , �2a�

where A and � are independent of frequency but might de-
pend on T, it follows from �1� that

− 2	v��,T�/v = A/�1 + �2�2� . �2b�

Finally, concerning the various independent contributions to
�, and thus to Q−1, we shall adopt the equivalent of “Mat-
thiessen’s rule”41 that these are simply additive. Thus, if Qrel

−1

is produced by relaxation and Qanh
−1 by anharmonicity, the

total Q−1 will simply be Qrel
−1+Qanh

−1 . It should also be noted
that the right-hand side of �1� only describes velocity
changes associated with frequency-dependent damping,
while “static” velocity changes �v��T�−v0� /v0 might result
from T-dependent structural effects.

The paper is organized as follows. In Sec. II, the experi-
mental aspects are described, including the spectrometer and
the characterization of the sample. In Sec. III, the new Bril-
louin scattering data obtained on a well-densified sample of
d-SiO2 are presented. These are then analyzed in Sec. IV. A
discussion concludes the paper in Sec. V.
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II. EXPERIMENTAL ASPECTS

The experiments reported here are particularly demanding
both in terms of sample quality and spectrometer resolution.
The Brillouin frequency shift �B produced by light scattering
from an acoustic wave of velocity v in an isotropic medium
is given by

�B =
2nv
�L

sin�/2� , �3�

where n is the refractive index of the sample, �L the vacuum
wavelength of the exciting laser, and  the scattering angle.
The scattered light must be collected over a finite aperture
�. Hence, if one is interested in small linewidths—which is
eminently the case here—the broadening produced by �,
proportional to cos� /2��, must be minimized by working
with the smallest acceptable � and near backscattering, i.e.,
for �180°. In isotropic media the transverse acoustic
modes are not active in backscattering. This is why the mea-
surements are restricted here to the LA mode.

Densification has an enormous effect on v which at room
T changes from �5950 m/s for v-SiO2 to �7050 m/s for
d-SiO2 with �=2.63 g/cm3. Thus, near backscattering and at
�L=5145 Å, �B changes from �34 GHz in v-SiO2 to
�42 GHz in d-SiO2. On the other hand, densification also
reduces considerably the sound attenuation and hence the
half-width of the Brillouin line. In v-SiO2 at room T a half-
width ��B�75 MHz is observed,17 whereas it falls below 20
MHz in d-SiO2. Note that ��B would equal � /2�—the
quantity of main interest here—in the absence of parasitic
sources of broadening. In fact, these narrow linewidths can
only be measured on samples that are very homogeneous in
their density. It is easily estimated from the above figures
that an inhomogeneity within the scattering volume of only
1% in density would lead to a broadening of the Brillouin
signal by about 400 MHz. This value would be totally unac-
ceptable when the instrinsic width of interest is only a few
MHz. Furthermore, such small linewidths are usually not
measurable in commercial Brillouin instruments. The Bril-
louin spectrometer used in these measurements is briefly de-
scribed in Sec. II A.

Permanently densified silica, d-SiO2, is obtained by sub-
mitting v-SiO2 to high pressure at elevated T.42 Our series of
samples was prepared from short cylinders of silica that were
submitted to �8 GPa of quasihydrostatic pressure at T
�700 °C. Different densities were achieved by varying the
duration of the treatment. We used samples with initial �
values of 2.31, 2.46, and 2.63 g/cm3, besides v-SiO2 with
�=2.20 g/cm3. A typical raw sample had a diameter of 4
mm and a length of 8 mm. Although the samples are often
cracked, those at the highest densities can be clear and trans-
parent. Their surfaces are smooth but not flat. Thus, to per-
form Brillouin scattering at room T, the samples can be
placed in an index matching fluid. This is not feasible at
either cryogenic or elevated temperatures. Hence, a selected
sample of the highest density had to be cut and polished with
flat faces. It was then carefully characterized to identify a
suitable region to perform these experiments. This is de-
scribed in Sec. II B.

A. High resolution spectrometer

Three main criteria are to be satisfied by a spectrometer
suitable for these Brillouin measurements: contrast, resolu-
tion, and accuracy. A very high contrast between the Stokes
shifted frequency �S=�L−�B and the exciting laser fre-
quency �L can be achieved by multiple passes through a
planar Fabry-Perot �PFP� interferometer.43 However, the
resolution of such a PFP is insufficient to measure ��B. It is
thus placed in series with a spherical Fabry-Perot �SFP�
which is the scanned instrument. The high accuracy on �B is
achieved by producing a frequency adjustable reference sig-
nal �M��S with an electro-optic modulator working near �B.
In practice, this reference is also used to dynamically adjust
the PFP which works as a filter only transmitting the Stokes
Brillouin line.

We used a modern version of the instrument described in
Ref. 44. The PFP has a spacing of 2 mm and it is used in four
passes. The SFP has a free spectral range of 1.5 GHz and a
finesse of �40. A typical spectrum obtained in scanning just
the SFP is illustrated in Fig. 1. One recognizes two orders of
the elastic line at �L, the Stokes Brillouin signal at �S, and
the modulation signal at �M. All these lines are at a rather
high interference order. A very high accuracy on �S is ob-
tained as only the fractional order separating it from �M
needs to be determined, while �M itself is known to the ex-
tremely high accuracy of the frequency generator. This pro-
vides for a determination of �B to better than 2 MHz absolute
accuracy provided the Brillouin signal is appropriately in-
tense and symmetric. The instrumental half-width of this
SFP is �20 MHz. Using photocounting and numerical de-
convolution the half-width of a sufficiently intense damped
harmonic oscillator �DHO� Brillouin line can then be deter-
mined with ±2 to 3 MHz precision.

B. Sample characterization

The mean densities of the various samples were carefully
determined by the flotation method. Their refractive index at

FIG. 1. Signal obtained in scanning a full order of the spherical
Fabry-Perot. One recognizes two elastic peaks marked �L, the
Stokes shifted peak �S, and the modulation signal �M. The latter is
stopped during the acquisition of the Stokes signal.
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the sodium D lines ��=5893 Å� was measured with an Abbe
refractometer. This gave results in good agreement with a
previous determination.45 The corresponding indices for �L
=5145 Å were extrapolated. Their values vary linearly with
� and are given by

n�5145 Å� = 1.022 + 0.200��g/cm3� , �4�

to 10−3 accuracy.
Figure 2 shows the hypersonic velocities measured at

room temperature on the four original densities, plus one at
an additional density of 2.60 g/cm3 �see below�. The
samples of intermediate densities �2.31 and 2.46� were much
cracked internally, which produced a spread of velocities that
translated into broader and distorted Brillouin lines. This did
not prevent a sufficiently accurate determination of a mean
velocity, with a ±10 m/s error bar which is still small on the
scale of Fig. 2. The important point is that v is a strong
function of �. One finds dv /d�=1.87�103 in m/s per
g /cm3, at small densifications. As seen in Fig. 2, this slope
steepens towards higher densities.

Brillouin scattering is a rather local probe. In the back-
ward geometry used here, different small areas of a sample
cross section can be probed. The measurement of �B is then
a test for the sample homogeneity. This revealed that one of
the samples of highest density was rather homogeneous, with
�B ranging from 42.32 to 42.35 GHz across its section. This
piece was then selected for cutting and polishing, to obtain
flat faces in order to be able to perform the Brillouin mea-
surements in function of T. Unfortunately, this mechanical
process introduced an appreciable distribution of frequen-
cies, to such an extent that the Brillouin lines became quite
asymmetric. This sample was then used for Brillouin scatter-
ing with x-rays in Ref. 23, and subsequently in Refs. 46 and
29. It should be remarked that these inhomogeneities do not
appreciably affect the x-ray Brillouin scattering results. The
latter experiments are indeed performed with four orders of
magnitude less frequency resolution than here, the error bars
on � /2� being then at best ±30 GHz.29 During the x-ray
measurements the sample was maintained at an elevated
temperature for a long time in order to increase the signal by

the thermal population of the acoustic mode. We used T
=575 K,23 a temperature which is too low to appreciably
relax the densification over the long duration of the x-ray
experiment. Checking the optical Brillouin spectrum after
the first x-ray experiment we discovered that the sample had
become locally much more homogeneous, presumably owing
to the thermal treatment. Nice symmetric and narrow Bril-
louin lines were then observed. At room T, one end of the
sample had a velocity indicating ��2.60 g/cm3, while near
the opposite end we found ��2.57. The corresponding dif-
ference in �B is of the order of 1 GHz. The former region had
a linewidth ��B=25 MHz, while the latter had ��B
=40 MHz. These two regions were separated by a less ho-
mogeneous one, with asymmetric Brillouin lines and a
higher width. For the measurements presented in Sec. III, the
region of density 2.60 and with the narrower line was se-
lected. It should be remembered that part of the observed
broadening can easily arise from small remaining inhomoge-
neities.

III. BRILLOUIN SCATTERING RESULTS

Figure 3 presents the Brillouin results obtained on the
sample region with �=2.60 as explained in Sec. II B. For the
low-T measurements, the sample was placed in a He-flow
optical cryostat. The temperature of the gas flow is stabilized
to much better than 1 K, and the sample temperature is read

FIG. 2. Hypersonic velocity measured in d-SiO2 in function of
the sample density. The line is a guide to the eye showing the initial
slope.

FIG. 3. The measured Brillouin frequency shift �B �a�, and the
half-width ��B �b�, as a function of the temperature T for the
sample of density �=2.60 g/cm3. Different symbols are used for
data taken in the cryostat and in the oven. Although the raw data in
�b� might suggest a dip around room temperature, it is more likely
that this effect is related to sample inhomogeneities, as explained in
the text.
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with a silicon diode. For the high-T measurements, the
sample was mounted in an optical oven stabilized to ±1 K.
The value of , the scattering angle internal to the sample,
was taken at 178.1° for these measurements in order to mini-
mize the collection angle broadening. The measured spectra
were fitted to a DHO response function of frequency �B and
half-width ��B, convoluted with the experimental instrumen-
tal function.

The values �B are shown in Fig. 3�a�. The error bars on
these values are of the order of the size of the points. The
values ��B are shown in Fig. 3�b� with error bars that are
given by the Marquardt-Levenberg least-square fitting algo-
rithm. Care was taken to keep the laser beam on the same
sample spot during the several days needed for measure-
ments. It was, however, not possible to recover exactly the
same position on the sample after its transfer from the cry-
ostat to the oven. If residual inhomogeneous broadening is
present—as we suspect—its amount is likely to vary from
place to place. This could explain the difference—beyond the
size of the error bars—between the level of ��B observed in
the cryostat and that in the oven.

It is now of interest to briefly compare the results obtained
on d-SiO2 to these in v-SiO2. Figure 4 illustrates data ob-
tained long ago on v-SiO2.47 The velocities below room T
are compared in Fig. 4�a�. The values of v for d-SiO2 are
derived from the data shown in Fig. 3�a� using Eq. �3�. As T
is raised from liquid He temperatures, one clearly observes a
dip of v in v-SiO2. Within the accuracy of our experiment,

such a dip is totally absent in d-SiO2. It is well known that
the dip is produced by the T dependence of thermally acti-
vated relaxational motions. This will further be discussed in
paper II. Its absence in d-SiO2 demonstrates that thermally
activated relaxation becomes negligible after densification. A
strong decrease of these relaxations compared to v-SiO2 has
already been reported for the less densified sample of
d-SiO2 that was examined with both Brillouin scattering38

and vibrating reed37 measurements. In that sample there re-
mained a clear dip in v, but the relaxation peak observed
with vibrating reed had decreased by a factor of about 6
compared to v-SiO2. We conclude that in our case, the dip in
v being absent, the relaxation contribution to the damping
must be totally negligible.

Figure 4�b� shows the corresponding half-widths. A loga-
rithmic scale is used here to emphasize the low-T region and
also because the damping in v-SiO2 is quite a bit larger than
in d-SiO2. As discussed in paper II, the v-SiO2 values result
from a combination of relaxation and anharmonicity. Below
10 K, they fall, however, below the ��B values observed in
d-SiO2, which would be surprising were it not for the inho-
mogeneity of the d-SiO2 sample dicussed above. Hence, we
attribute the level of 8 MHz, illustrated by the dashed line, to
the residual inhomogeneous background. The corresponding
level for the data measured in the oven is estimated to be
about half of that, i.e., �4 MHz.

IV. NETWORK VISCOSITY

The data shown in Fig. 3�b�, corrected for the estimated
inhomogeneous background, is used to calculate the internal
friction Q−1=2� /� shown in Fig. 5. As explained above,
this result should be interpreted in terms of the Qanh

−1 pro-
duced by anharmonicity. The theory of lattice viscosity was
developed for crystals, in which case the calculation of cor-
relation functions48 or the sums over modes11,49 could be
carried out quite far. For glasses, only the fracton model has
been pursued to the point of making analytic predictions for
the acoustic linewidth.19,50 However, the development de-
scribed in Ref. 11, in particular the one leading to Eq. �131�
of that review, is essentially based on the standard equations

FIG. 4. Comparison of d-SiO2 and v-SiO2 showing the veloci-
ties �a� and the linewidths �b� below room temperature. The
v-SiO2 data was acquired long ago �Ref. 17� with a similar spec-
trometer but at a laser wavelength of 4880 Å and without electro-
optic modulated reference. The solid lines result from calculations
explained in the text. The dashed line in �b� indicates the estimated
inhomogeneous background of the d-SiO2 sample.

FIG. 5. The internal friction of the d-SiO2 sample. The calcu-
lated line is explained in the text.
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of viscoelasticity supplemented by a simplifying assumption
regarding the details of the collision term in the Boltzmann
equation. A fully parallel reasoning can be made for glasses.
Hence, for ��th
1, similarly to the phonon viscosity term
of Ref. 13, we posit that network viscosity in glasses leads to
the internal friction

Qanh
−1 = A��th, �5a�

with

A = �2CvTv
2�vD

3 . �5b�

Here Cv is the specific heat per unit volume, v is the velocity
of the sound wave, vD is the Debye velocity, and �2 is a
mean-squared average Grüneisen parameter for the thermally
excited modes.11,18 We neglect the thermal conduction term
in Eq. �131� of Ref. 11. Experience shows that the latter is
already considerably smaller than the phonon-viscosity one
in crystals.51 This should be even more so in glasses owing
to the much reduced thermal conduction.18 The strongest as-
sumption in �5a� and �5b� is presumably the use of a single
relaxation time �th�T�. A second assumption is to take �2

constant.
As the temperature is lowered, one expects that �th in-

creases, so that the condition ��th
1 eventually becomes
violated. We use the Ansatz that Qanh

−1 is then given by �2a�,
where �=�th and A is given by �5b�,

Qanh
−1 = A��th/�1 + �2�th

2 � . �6�

As pointed out in Ref. 48, this amounts to introducing an
exponential decay in the time-dependent relaxation function.
This is preferable to the expression �4.15� proposed in Ref.
49, as the latter does not have a finite Kramers-Kronig trans-
form.

It is now of interest to estimate �th from the data shown in
Fig. 5. This is done using �6�, in which all quantities are
quite well known except for the value of �2 that enters A
according to �5b�. The other nontrivial quantities in A are �1�
the specific heat Cv�T� for which we use the data from Ref.
52, complemented at high T with the specific heat of v
-SiO2 appropriately scaled to account for the higher density
of d-SiO2; and �2� the Debye velocity for which we use vD

3

=0.322 v3, a numerical coefficient quite universal for glasses
and taken from v-SiO2. With the above, one calculates A /�2,
which is a quantity that increases rapidly with T at low T.
One divides then Q−1 by that quantity, to obtain a result
which according to �6� is equal to �2��th / �1+�2�th

2 �. One
notes that in function of T the latter is maximum at ��th
=1, and that the maximum value is simply �2 /2. Unfortu-
nately the noise in Q−1 / �A /�2� becomes much too high at
low temperatures owing to the smallness of A /�2, so that a
clear maximum cannot be identified. One notes, however,
that the maximum in Qanh

−1 /A is not a maximum in Q−1, as A
is a rapidly growing function of T. At ��th=1, there is rather
a steplike increase in Q−1�T�. Such a feature is clearly rec-
ognizable between 25 and 35 K in the semilog presentation
of Fig. 5. This suggests that ��th reaches 1 around 30 K. An
extrapolation of Qanh

−1 /A from higher T indicates then that

�2	8 is an appropriate value, with an uncertainty smaller
than 20%. The resulting value ��2.8 is reasonable, espe-
cially owing to the observations made in Refs. 18 and 53. To
complete the task, one can then solve for ��th, the quadratic
equation �6�. For each data point, the lowest root must be
kept for ��th�1 and the highest one for ��th�1. The noise
in our data produces some complex roots for T�40 K.
These have been rejected. Dividing the roots by �, the val-
ues of �th shown in Fig. 6 are then obtained. The uncertainty
in �2 produces a similar uncertainty in the absolute scale of
�th. This is of no consequence for the following discussion.

We observe that �th increases rapidly on cooling. It varies
approximately in 1/T from �150 to 600 K, and progres-
sively faster below �100 K. This is illustrated by the dashed
line of slope −1 in Fig. 6. To produce the guides to the eye
used in Figs. 4–6, we first adjusted �th�T� to a sum of inverse
powers of T, obtaining the solid line shown in Fig. 6. We
also adjusted v�T� to v0�1−a / �e�/T−1�� which is derived
from Wachtman’s equation as discussed in Ref. 54. This
gives v0=6853 m/s, a=−1.052�10−2, and �=328 K, cor-
responding to the line shown in Fig. 4�a� which provides an
excellent fit of v up to the highest measured data point at T
near 600 K. Having v�T�, we can calculate ��T�, and then
Qanh

−1 �T� and ��B�T� as shown in Figs. 4�b� and 5. The sharp-
ness of the step near 30 K strongly depends on the assumed
T dependence of �th�T� in that region. Its exact position also
depends on the value selected for �2. At this stage, the lim-
ited quality of the data would not justify attempting any fur-
ther improvement on these adjustments. The main difficulty
obviously arises from the inhomogeneous background con-
tribution to ��B.

We can now use Eq. �2a� and �2b� to calculate the velocity
change �	v /v�anh associated with Qanh

−1 . As indicated in the
Introduction, the result of this calculation is then referred to
the unrelaxed velocity v��T� whose T dependence can have a
structural origin. Thus one has

FIG. 6. The thermal relaxation time obtained from the data in
Fig. 5 using Eqs. �5a�, �5b�, and �6� as explained in the text. The
dashed line shows the 1/T behavior at high T. The solid line is a
guide to the eye explained in the text.
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v − v��T�
v��T�

= −
A/2

1 + �2�th
2 , �7�

where v is the Brillouin value measured at frequency �. All
velocity changes being relatively small, v��T� can be re-
placed by v��0�=v0 in the denominator on the left-hand side.
Further, A being anyway very small when ��th�1, ��th can
be neglected in the denominator on the right-hand side of �7�,
so that finally

v��T� − v0

v0
�

v − v0

v0
+

A

2
. �8�

We remark that the size of the “correction” term A /2 is di-
rectly proportional to the value selected for �2. Figure 7
shows �v−v0� /v0 and �v�−v0� /v0. Both exhibit an anoma-
lous T dependence, increasing as T increases, but this
anomaly becomes quite a bit stronger for the unrelaxed ve-
locity �v�−v0� /v0.

V. DISCUSSION

The above results suggest that in d-SiO2, contrary to all
other investigated glasses, the damping of sound observed in
Brillouin scattering is purely produced by the network vis-
cosity, i.e., by the anharmonic interaction of collective modes
rather than by the relaxation of local “defects.” Two features
deserve additional discussion: �1� the temperature depen-
dence of the relaxation time of the dominant thermal modes,
�th�T�, and �2� that of the unrelaxed sound velocity v��T�.

The particular behavior of �th�T�, which decays �1/T
above �150 K, probably reflects the fact that in a glass, as
opposed to crystals, the thermal modes are mostly diffusive
or nonpropagating. By comparison, in crystal quartz, for ex-
ample, there is a large range of T where �th decreases with
1/T2.16 To understand the nature of this difference, we con-
sider the only available calculation of anharmonic lifetimes
in disordered systems. It is based on the fracton model.19

This model accounts for the nonpropagating nature of the
modes. As pointed out by the authors of Ref. 50, fractons

have been used to “obtain explicit results,” but “the approach
would apply to any localized vibrational states.” We believe
this remark is in particular true for what concerns the func-
tional dependence in T of the relaxation times. Indeed, the
dependence found in Ref. 19 does not involve any of the
various fractal dimensions, but just the crossover energy
��co above which the modes become nonpropagating. The T
dependence results from the thermal population of the modes
and their spatial overlap. It is presumably of quite general
applicability to such situations, independently from the frac-
tal model. The crossover energy is well known for d-SiO2 as
it has been carefully determined by x-ray inelastic scattering
measurements.23,29,46 It is located at about 9 meV, or corre-
spondingly at Tco=��co/kB�110 K. The prediction of Ref.
19 is that all relaxation times vary like ��1/T for T�Tco,
whereas they diverge with ��exp�Tco/T� at lower tempera-
tures T�Tco. We note that, qualitatively, this is in perfect
agreement with our observations.

Further, the thermal conductivity � in the Debye model
can be calculated from �th using the standard kinetic equation
�=CvvD

2 �th /3.41 Doing this, we find a calculated � which is
considerably larger than the measured one.55 Its T depen-
dence also disagrees with the observations, as the calculation
gives a ��T� that decreases with increasing T at high T, such
as in a crystal, contrary to the observed increase55 beyond the
typical thermal conductivity plateau56 common to glasses.
The reason for this is, of course, that the modes contributing
to Cv are at best diffusive so that the kinetic equation is not
applicable. This provides a second and independent indica-
tion that the thermal modes are essentially nonpropagating.

Regarding the sound velocity, we first remark that the
network viscosity has the usual effect of decreasing the ve-
locity from v� to v as T increases. This is evident from a
comparison of the two curves illustrated in Fig. 7. What is
abnormal is that the unrelaxed velocity v��T� increases with
T. This anomaly is common to glasses that contain tetrahe-
dral building blocks, as shown experimentally for
SiO2,GeO2,BeF2, and zinc phosphate in Ref. 57. An earlier
proposal that this might be a manifestation of large structural
inhomogeneities special to refractory glasses58 does not seem
supported by the fact that the effect is particularly strong in
BeF2 which has a low glass transition temperature Tg. A
more likely explanation might be that there is a specific
structural feature in SiO2-like glasses which leads to a
T-dependent reversible structural change as shown in recent
simulations.59 It was found in these that the angular position
of the Si-O-Si plane around the Si-Si direction has distinct
equilibrium values separated by 90° jumps. The latter would
produce in the glass a gradual transition similar in nature to
the �−� transformation in cristobalite. One might ask why
there is no corresponding contribution to Q−1 owing to such
a transitionlike mechanism. A possible explanation it that the
transition being distributed in T, most of the volume is al-
ways very far from ���1 so that the additional damping
might be much too weak to be observable.

Another question of interest is whether the unrelaxed ve-
locity v��T� could somehow become measurable in an ap-
propriate experiment. One could naively imagine that it

FIG. 7. The relaxed �v−v0� /v0 and unrelaxed �v�−v0� /v0 ve-
locity changes. The line is the adjustment with Wachtman’s equa-
tion �Ref. 54�.
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would suffice to investigate very high sound frequencies, as
for example by going to sufficiently high momentum ex-
change Q in an x-ray Brillouin scattering experiment, to
eliminate the viscous relaxation term in �2b� by forcing
��th�1. Consider, however, the value �th�5�10−14 s
which is found at room T in Fig. 6. To achieve ��th=1
would require � /2��3 THz, which is already above
�co/2��2 THz. One runs then into a regime in which the
sound waves are presumably hybridizing26 with the SiO4 li-
brational mode,60 producing the boson peak.30 Although such
a measurement might give an indication about v�, it is cer-
tainly not a clear-cut situation. The other alternative would
be to reduce the temperature so as to increase the value of
�th. This also soon meets its limits as the size of the viscous
relaxation becomes negligible below �100 K, as seen from
Fig. 7. We thus find that it would unfortunately be difficult to
obtain a direct measurement of the unrelaxed sound velocity.

To conclude, it seems that we have found a glass in which
the Brillouin sound damping appears to be entirely con-
trolled by the network viscosity. This already suggests that it
is probably not appropriate to simply neglect the anharmonic
damping as proposed for silica in Ref. 33. This illustrates
that the question is of importance, as it finally ties in with
much more fundamental and debated issues, such as the ori-
gin of the thermal anomalies of glasses.4 We are fully aware
that the noise in Fig. 3�b� is still far from satisfactory. We
could only progress on this issue if we had an appreciably
more homogeneous sample than the already excellent one
used in this study. If so, it would be relatively straightfor-
ward to increase the spectrometer performance by using a
spherical Fabry-Perot of larger spacing, such as 10 or 25 cm,
the latter giving a factor 5 improvement over the present
resolution.
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