PHYSICAL REVIEW B 72, 214203 (2005)

Absence of dipole glass transition for randomly dilute classical Ising dipoles
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Dilute dipolar systems in three dimensions are expected to undergo a spin glass transition as the temperature
decreases. Contrary to this, we find from Wang-Landau Monte Carlo simulations that at low concentrations x,
dipoles randomly placed on a cubic lattice with dipolar interactions do not undergo a phase transition. We find
that in the thermodynamic limit the “glass™ transition temperature 7, goes to zero as 1/ VN, where N is the
number of dipoles. The entropy per particle at low temperatures is larger for lower concentrations (x

=4.5%) than for higher concentrations (x=20% ).
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Disordered insulating materials often have randomly
placed electric or magnetic dipoles that have long-range di-
polar interactions. Examples include impurities in alkali ha-
lides that can be used for paraelectric cooling,'? diluted
ferroelectric materials,® disordered magnetic materials, and
frozen ferrofluids.* These systems are typically modeled with
spin glass Hamiltonians that have simpler interactions and
yet are believed to capture the essential physics of interacting
dipoles. Based on theoretical studies of spin glasses with
long-range interactions,’~® one would expect dilute Ising di-
polar systems to undergo a spin glasslike transition as the
temperature decreases. (We use the terms Ising and uniaxial
synonymously.) In particular, the three-dimensional Ising
spin glass with 1/7° interactions undergoes a finite tempera-
ture spin glass phase transition.®” Since dipoles have similar
interactions that fall off as 1/7°, one might expect disordered
dipolar systems to also have a spin glass phase transition.
However, in this paper we find the surprising result that,
unlike such long-range spin glasses, dilute dipolar Ising sys-
tems do not undergo a spin glass phase transition as the
temperature decreases. This may explain the lack of experi-
mental evidence for such a transition in very dilute dipolar
systems.

An example of dipoles is two-level systems (TLS) that
dominate the physics of glasses at low temperatures.'® TLS
often have randomly oriented electric dipole moments that
interact through an elastic strain field with a long-range in-
teraction that is a stress tensor generalization of the vector
dipolar interaction.!" While there have been experimental
hints of a spin glass transition among TLS in glasses at low
temperatulres,12 there has been no definitive experimental
proof that such a transition occurs. Since the estimated con-
centration of TLS is low (100 ppm), our result may explain
the absence of a transition, even though TLS dipoles are
randomly oriented and may not be uniaxial.

There are other examples of dilute dipolar systems that do
not have finite temperature spin glass phase transitions.
These include dilute Eu,Sr,_,S, where the Eu’* ions have
dipoles with s=7/2 moments,'? and a variety of Ising rubies
[(Cr,Al,_,)O5 with small x].'"* Another example is the insu-
lator LiHo,Y;_,F, (Ref. 15) in which the holmium ions have
Ising magnetic dipole moments that lie along the z axis due
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to crystal field effects.'® For very dilute systems (x=4.5%)
LiHo,Y,_,F, shows no sign of a transition.'” The lack of
low-temperature freezing in LiHo,Y,_,F, has been attributed
to dominant quantum mechanical effects in the so-called spin
liquid or antiglass phase.!”-'® However, a theoretical investi-
gation of whether or not classical interacting dipoles undergo
a spin glass phase transition at low concentrations has been
lacking.

Several previous studies of dipolar interactions between
randomly placed Ising dipoles have focused on the
ferromagnetic transition that occurs at higher dipole
concentrations.>!'??Y Monte Carlo simulations have looked at
intermediate concentrations with x=25%, where there is a
spin glass transition.”?! Xu et al.® used mean field theory and
found, depending on the lattice structure, ferromagnetic or
antiferromagnetic transitions at higher concentrations. They
found a spin glass phase at lower spin concentrations, but the
properties of this phase were unreliable because they had a
replica symmetric solution. In short, there have been no de-
finitive theoretical studies of the very dilute classical cases.
In this paper we present the results of Wang-Landau Monte
Carlo simulations on classical dilute Ising dipolar systems in
three dimensions. We find that there is no phase transition for
low concentrations, in qualitative agreement with experi-
ment.

In spin glasses the distribution P(g,T) of the overlap or-
der parameter g changes from being a Gaussian centered at
q=0 at high temperatures to a bimodal distribution with
peaks at g==+1 at low temperatures. At intermediate tem-
peratures it is relatively flat. We can define a characteristic
glass transition temperature T, as the temperature where
P(gq,T) is the flattest. In the thermodynamic limit we find
that rfor a given dipole concentration 7, goes to zero as
1/+/N, where N is the number of dipoles. Also, we examine
the entropy and find that for concentrations less than 20%
there is a nonzero entropy per dipole as 7— 0. The entropy
and lack of a transition are consistent with a large number of
accessible low-energy states and glassy behavior.

We consider Ising dipoles randomly placed on a simple
cubic lattice at concentrations of x=4.5%, 12%, and 20%.
The interaction between any two dipoles p, and p, separated
by a vector 7y, is given by the Hamiltonian
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In addition to the energy units set by H, the units are set by
ﬁl:if, the lattice constant a=1, and Boltzmann’s constant
kg=1. These will be referred to as MC units where appropri-
ate. We use the Ewald summation technique to handle the
long-range nature of the dipole interactions.”? For x=4.5%,
the lattices had L3 sites with L=6, 8, 10, and 12, and for
x=12% and 20%, L=4, 6, and 8. The number of dipoles N is
the smallest even integer greater than or equal to xL>.

The glassy energy landscape at low concentrations makes
it difficult to equilibrate at low temperatures with the tradi-
tional Metropolis Monte Carlo approach. To overcome this,
we have used the Wang-Landau (WL) Monte Carlo
technique?’ to calculate the density of states n(E), where E is
the energy of the system. Briefly, this algorithm starts with
an initial guess n(E)=1 and executes a weighted random
walk on the energy landscape. Single flips of randomly se-
lected dipoles are then accepted with a probability of
min[1,n(E;)/n(E,)], where E; and E; are the energies before
and after the trial flip. If a step is accepted (rejected), then the
density of states is updated by the rule n(Ey;)— yn(Eg;),
where y>1 is a scale factor. A histogram of the visited en-
ergies h(E) is recorded. The criterion for a satisfactory esti-
mate of the density of states is given by the flatness of A(E),
i.e., h(E) > €(h) for every energy E, where (h) is the average
of h(E) and 0<e<1 determines the accuracy; typically,
€=~0.95. Once the flatness condition is satisfied, the scale
factor is set closer to 1 by the rule y— 'y, h(E) is reset to
zero, and the algorithm is repeated. In all cases, we ran 20
iterations with vy starting at e and ending at 1.000 001 9, and
n(E) was normalized such that 2 n(E)=2".

The dipolar interaction is nearly continuous so each en-
ergy bin may contain multiple states. We choose the bins to
be as small as possible while maintaining reasonable compu-
tational times. The bin sizes depend on concentration and
system size. The bins are about 0.01 in units of energy per
particle for 20% filling and 0.001 for 4.5% and 12%. The
lowest temperature studied (7=0.05) must be larger than the
largest bin (0.02). We try to keep the bins small enough so
that n(E,)~2, where E, is the energy of the (degenerate)
ground state. In all cases except one, n(E;) = 3.5. The excep-
tion (8% at 20%) has n(E,)~10, so we discard the low-
temperature values of this system.

We average over disorder by having different runs corre-
spond to different quenched placements of dipoles with ran-
dom initial orientations. The dipoles are fixed in position but
not in orientation. There are about 1000 runs for each x and
L. As a check of our Wang-Landau procedure, we were able
to enumerate all the states for 1000 different configurations
for concentrations of 4.5% (L=6 and 8), 12% (L=4), and
20% (L=4) and determine the exact density of states. We
found very good agreement with our WL results.

Since we are looking for a spin glass phase, we define a
generalized Edwards-Anderson overlap order parameter
g=1/NZ,p¢-p!, where p} is a dipole in the state of the cur-
rent system, and p? is a dipole in a low-energy state found in
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FIG. 1. P(q) at x=4.5%, L=10 (46 dipoles). T=5, 1.6, 1.1, 0.9,
and 0.5. The lines transition from a Gaussian (7=5) to a bimodal
distribution (7=0.5).

a short, initial simulation.2*® Then, to find the distribution
P(q,E), q(E) is sampled and stored in a histogram during the
simulation at the smallest scale factor where the estimate of
the density of states is quite good. P(g,T) is calculated as

P(q,T) = C1(1/2) 2, n(E)P(q,E)exp(- EIKT),  (2)
E

where the sum is over all the energy bins and
Z(T)=2gn(E)exp(-E/kT). C; enforces normalization such
that X, P(q,T)=1 for every T. This method has been seen to
give a reasonable order parameter distribution in the case of
a Potts model.?

It has often been convenient to find the spin glass transi-
tion temperature using Binder’s g=[3-{(¢*)/{(¢?*)*)]/2, and
(¢")=Z,4"P(q.T).?® Since the ground state estimate is not
the true ground state, we eliminate all runs in which
£<0.8 at the lowest temperature. If there is a second-order
phase transition, plots of g vs T for different size systems
will cross at the transition temperature.24 However, we find
that these curves do not cross, so there is no second-order
spin glass phase transition.

To investigate this further, we can look at how P(q,T)
changes with temperature. For a system undergoing a phase
transition, we expect P(g,T) to change from being a Gauss-
ian centered at g=0 at high temperatures to a bimodal distri-
bution with peaks at g=+1 at low temperatures. A typical
example is shown in Fig. 1 for x=4.5%, L=10. We define a
characteristic “glass” temperature T, as the temperature
where the distribution P(g,T) is flattest. We define the de-
viation D(T) from flatness in terms of the variance of P(q,T)
as

D(T) = LX(P(¢,T) = {P(q" . 1))y))qs 3)

where (...), indicates an average over all N+1 possible val-
ues of g. D(T) is at a minimum when a plot of P(q,T) vs g
is the flattest, defining T,. D(T) is plotted in Fig. 2. For a
given dilute concentration, T, is tending to smaller tempera-
tures as the system size increases which is consistent with
T,—0 as L— . To find the dependence of 7, on the number
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FIG. 2. The deviation from flatness for P(gq,T). Part A shows the
results for x=4.5% with sizes L=6, 8, 10, and 12. Part B shows
results for x=20% with sizes L=4, 6, and 8. In both cases the
minima moves left with increasing size. The dip defines a glass
transition temperature. The minima are more rounded as the system
size increases because the transition is going away.

N of dipoles for a fixed concentration, we plot the minimum
of D(T) vs N in Fig. 3. The best fit for dilute cases reveals
that Tg~N‘” 2. In contrast, D(T) for the ordered case
(x=100%) yields a nonzero transition temperature, indepen-
dent of N.

The absence of a transition is consistent with the experi-
mental finding that for very dilute systems (x=4.5%)
LiHo,Y,_,F, shows no sign of a transition.'” However, the
absence of a transition in dilute dipolar systems is unex-
pected since three-dimensional (3D) Ising spin glasses with
1/7 interactions undergo a phase transition.®® P(q) for a
spin glass and for a dilute dipolar system are different; in the
thermodynamic limit as T—0, P(g) for a spin glass has a
few sharp peaks corresponding to ground state configurations
separated by high barriers, while P(g) for the dilute dipolar
system is flat, indicating numerous accessible low-energy
states separated by insignificant barriers. With very low bar-
riers, states at both the top and bottom of the barrier contrib-
ute low-energy states. The difference in barrier heights may
be due to every site in a model spin glass being occupied so
that in a spin glass with power law interactions nearby spins
will tend to have stronger interactions than distant spins and
produce large barrier heights. In a dilute dipole system
nearby sites are empty and so the low-energy configurations
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FIG. 3. Log-log plot of the maximum flatness for P(g) versus
the number of dipoles at various concentrations. Open circles are
4.5%, squares are 12%, triangles are 20%, and upside down tri-
angles are 100%. The left solid line has a slope of —1/2 correspond-
ing to Tg~N‘”2. The right solid line has a slope of zero. Fits to
T,~N“ yield a=049(1) for 4.5%, a=0.6(1) for 12%,
a=0.45(3) for 20%, and a=0.02(5) for 100%. The errors in the last
digit are in parentheses.

are determined by distant dipoles that interact weakly and
produce low barriers.

The presence of many nearly degenerate accessible
ground states is reflected in the finite entropy per dipole near
T=0. We find that the low-temperature entropy is larger for
the lower concentration. We can calculate the total entropy
S,o(T) directly from the density of states obtained by our
WL Monte Carlo simulations:

S0 = s 10g 20 @

where (E(T)) is the average energy of the system. S,,, is an
absolute entropy and is not defined relative to some reference
value. To compare different system sizes, we consider the
entropy per particle Sy=8,,,/N, where N is the number of
dipoles. The entropy is very smooth, corresponding to a
broad bump in the specific heat.

To determine the entropy in the thermodynamic limit, we
plot Sy(7) vs 1/N at a given temperature 7. We fit a line to
the data and then extrapolate to N— . Then, we plot the
extrapolated value versus temperature (see Fig. 4). From Fig-
ure 4, it is clear that the 4.5% and 12% cases have a nonzero
entropy at low temperatures, but the 20% case is approach-
ing zero. Finally, the extrapolated values are fit with a power
law of the form AT+S,, where A and \ are constants, and S,
is a constant representing the zero temperature value of the
entropy. The fit values are A=1.1+0.2, A=2.7+0.1, and
So=(7.9£0.3) X107 at 4.5%, A=12x03, A=2.9+0.2
and Sy=(5.6+£0.3)X102 at 12%, and A=0.37%0.05,
A=1.9+0.1 and Sy=(-0.5+0.5) X 1073 at 20%. Note that the
extrapolation at 20% gives a negative S, so it is zero; no
actual data points have negative entropy. A phase diagram of
the entropies at zero temperature is constructed in the inset of
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FIG. 4. Entropy per particle extrapolated to infinite size. From
top to bottom the fillings are 4.5%, 12%, and 20%. The curve on the
far right is for 100%. The error bars shown represent the standard
error (~1073) of the distribution of S(T). Inset: Entropy at T=0
phase diagram. The hashed area is classically not accessible. The
solid line is a guide to the eye. Above 20%, S(T=0) is zero.

Fig. 4. Notice that the low-temperature entropy increases as
the concentration decreases. This indicates that there are
more accessible low-energy states in systems with lower
concentrations where the dipoles interact more weakly. Hav-
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ing a finite value of S, implies that the zero temperature
entropy S(0) may be nonzero, but this is not unprecedented
for a classical system, e.g., noninteracting spins.

We do not think that the finite entropy near 7=0 is due to
the finite size of the energy bins. To test the effect of the bin
size, we halved the bin size (doubled the number of bins) for
the case of 6 at 20% and found an entropy change of about
5%, which is consistent with the error estimates. We also ran
the largest exact case (8* at 4.5%) through the WL algorithm
with bins of width 0.005, and found a change of 0.9% com-
pared to the exact result with zero bin width.

To summarize, we find the surprising result that at low
concentrations (x<20%) there is no spin glass-like phase
transition as the temperature is lowered. This is consistent
with having a large number of nearly degenerate accessible
low-energy states. Our result could explain the lack of ex-
perimental evidence for a transition in dilute dipolar systems
such as LiHo,Y,_,F, for small x and among two-level sys-
tems in glasses at low temperatures. Thus, contrary to widely
held notions, materials with dilute electric or magnetic di-
poles cannot necessarily be modeled with spin glass Hamil-
tonians with long-range interactions.
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