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We have developed a two-band model of Fe-Cr, fitted to properties of the ferromagnetic alloy. Fitting
many-body functionals to the calculated mixing enthalpy of the alloy and the mixed interstitial binding energy
in iron, our potential reproduces changes in sign of the formation energy as a function of Cr concentration.
When applied in kinetic Monte Carlo simulations, the potential correctly predicts decomposition of initially
random Fe-Cr alloys into the �-prime phase as function of Cr concentration.
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I. INTRODUCTION

The embedded atom method and second-moment tight-
binding approximation many-body potentials have success-
fully been used to describe a number of physical properties
of pure elements, including formation energies and mobili-
ties of point defects.1–3 When applied to alloys, Foiles and
co-workers found that by fitting the ratio of s- and d-electron
density, one could reproduce mixing energies that change
sign as a function of alloy concentration, as is the case for
Ni-Pd.4 When including terms corresponding to d-electron
density only, a strictly positive or negative heat of mixing
results.5–7 Hence, it appears that the small contribution of the
s-band to the cohesive energy is essential for modeling of
certain alloys. In a physically consistent picture, one should,
however, consider that electronic structure calculations set
limits to the variation of s-electron density. For 3d transition
metals, one finds that the integrated density of s-states re-
mains approximately constant at a value of about 1.5, while
the d-band density increases with increasing average valence
number. Therefore, it is rather the strength of s-band interac-
tion that should be fitted, than the density per se.

In the original derivation of the second-moment tight-
binding approximation to the many-body interaction, the re-
pulsive force due to kinetic energy of s-band electrons was
neglected.8,9 Although the contribution to the total cohesive
energy of the s-electrons is small, the opposite is true for
pressure and especially elasticity.10

A better formulation of the embedded atom method is
therefore needed, especially in the case of application to the
Fe-Cr system, the basic component of ferritic-martensitic
stainless steel. Fe-Cr forms a perfect ferromagnetic alloy for
Cr concentrations up to 10% at T=750 K, but decomposes
into two isomorphous phases, iron-rich � and chromium-rich
�-prime, for Cr concentrations ranging from 10 to 90
at. %.11–14 The size of the chromium-rich precipitates is on
the nanometer scale, and the kinetics of the phase separation
is faster under irradiation than under thermal aging.15

In this paper we construct a two-band �s and d� second-
moment model that correctly describes the heat of mixing in
Fe-Cr. The predictive capability of our potential is under-

lined by simulation of thermal aging, showing explicitly how
the �-prime phase forms, either by spinodal decomposition
or by nucleation and growth.

II. TWO-BAND MODEL OF TRANSITION METAL
ALLOYS

A two-band model for Cs and other pure elements was
recently suggested by Ackland.16 Here, we apply the two-
band approach in the Fe-Cr system. Extending Ackland’s
second-moment expression for the total energy of binary al-
loys with contributions from s-band electrons, we write for
the energy of atom i �Refs. 5 and 17�:

Ei = 1
2�

j

V�rij� + Fd��d� + Fs��s� , �1�

where V�rij� is the pairwise �electrostatic� interaction be-
tween core electrons of the atoms at site i and j, and �b
=��b�rij� represents the density of s- and d-band electrons
yielding a many-body energy described by the functional
Fb��b�. Note that the embedding functions for Fe and Cr are
identical.

In line with Ackland, we write the band functional as

Fb��b� = A1
b��b + A2

b�b
2 + A3

b�b
4, �2�

where the coefficients Ai parametrize the relative strength of
cohesive and repulsive forces.

In order to highlight the importance of the s-band contri-
bution to the mixing enthalpy of the alloy, we present the
following instructive example. Consider the case of a poten-
tial where the d-band yields a positive mixing enthalpy with
a parabolic shape. For simplicity, assume equal density func-
tions �AB�r� of first nearest-neighbor range and no contribu-
tion from the kinetic energy. The d-band mixing enthalpy as
a function of solute concentration CB may then be written in
arbitrary units �a.u.� as

Hd
mix = 1 − �CB

2 + CB�1 − CB� + �1 − CB�2, �3�

which has a maximum of 0.125 a.u. at CB=50%. Assuming
that the impact of the s-band that we would like to catch is a
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perturbation in the mixing enthalpy, we may set �s
AA=�s

BB

=0. Adding a cohesive energy of the s-band equal to

Hs
mix = − �0.01CB�1 − CB� , �4�

one finds minima in the formation energy at 1.0% concen-
tration of solute atoms, having a magnitude of −0.005 a.u.,
comparing to the maximum at equal concentrations of 0.85
a.u. The relative magnitude of the extrema is in good agree-
ment with actual calculations of the formation energy in tran-
sition metal alloys.18 Hence, an increase in electron density
of merely 1% due to s-band mixed-pair interaction should be
sufficient to allow the present model to reproduce the con-
centration dependence of the formation energy calculated ab
initio.

III. POTENTIALS FOR Fe AND Cr

The pair interaction and the many-body functionals for Fe
were taken from the recent work of Ackland and Mendelev.17

This potential provides values for self-interstitial formation
energies in reasonable agreement with ab initio calculations
and has therefore been applied to simulations of defect
evolution.19 To the special features of this potential belong a
cohesive energy of 4.03 eV and a density function normal-
ized to the total electron number of iron, which is 26. Con-
sequently, the Cr potential previously developed by us,7,20

may not be directly coupled with the Ackland-Mendelev po-
tential for Fe. We have chosen to refit our Cr potential to
yield a cohesive energy of 3.84 eV in order to retain the
difference in cohesive energy between Fe and Cr. The den-
sity function for Cr has the same shape as the one used for Fe
by Ackland and Mendelev, but is normalized to a total elec-
tron density of 24 at equilibrium. The following parametric
form of the pair interaction is assumed:

V�r� = �
i

ai�r − ri�3H�ri − r� . �5�

Here, ri are cutoffs of the cubic splines used to represent the
potential, H is the Heaviside step function, and ai are spline
coefficients. Similarly, the density function of chromium is
represented by

�d
CrCr�r� = �

k

bk�r − rk�3H�rk − r� . �6�

The coefficients of the pair potential and the many-body
functional �2� were fitted to the experimental lattice param-
eter at 0 K, the elastic constants of paramagnetic chromium
extrapolated to 0 K and the relaxed formation energies for
vacancies and self-interstitials calculated with Vienna Ab-
initio Simulation Package �VASP� and the Projector Aug-
mented Wave �PAW� algorithm.21–23

In Table I, the coefficients and cutoffs for Cr used in the
present paper are given. Note that although the coefficient of
the squared electron density in the band functional is nega-
tive, as is the case for the Fe potential by Ackland and Men-
delev, our band functional has a second derivative that is
positive everywhere.

In Figs. 1 and 2, the resulting pair potential and band
functional are displayed. The properties of chromium calcu-
lated with the potential are compared to experimental and/or
ab initio data in Table II. We include values for nonrelaxed
�Evac

nr � as well as relaxed �Evac
rel � vacancy formation energies to

highlight the fact that the relaxation energy observed in the

TABLE I. Spline coefficients and cutoffs for the Cr pair poten-
tial, electron-density function and band functional here used. Cut-
offs are given in units of nearest-neighbor distance in Cr �2.4924
Å�. The unit for the spline coefficients is electron volts per cubic
angstroms.

i 1 2 3 4

ri 0.976 1.150 1.216 1.650

ai −165.0 −78.49908 −78.15495 +1.8679553

rk 0.963 1.284 1.685

bk −11.0828 +0.013905 −0.447541

Ai −0.56479 −8.8959�10−4 +9.0265�10−8

FIG. 1. �Color online� Pair interaction V�r� for pure Cr. The
vertical lines represent positions of first, second, and third nearest
neighbors.

FIG. 2. �Color online� D-band functional Fd��� for pure Cr. The
vertical line represents the equilibrium density.
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ab initio calculation is well reproduced by our potential.

IV. ALLOY POTENTIAL

In an alloy, one may expect that the electron density is
dependent on the local environment. For the mixed-pair den-
sity we choose the square of a 4s-type Slater function

�s
FeCr�r� = �Nsr

3e−�sr�2, �7�

where �s=1.323 is an average � from single � approxima-
tions of the 4s Hartree-Fock Fe and Cr orbitals,28 providing a
natural cutoff at 5.3 Å. Ns=5.0 is chosen to yield an
s-electron density at first nearest-neighbor distance equal to
2% of the corresponding d-electron density.

Our alloy potential should predict changes in the sign of
the mixing enthalpy. Ab initio calculations made with the
exact muffin-tin orbital method �EMTO�18,29 indicate that
this property is due to a minimum in the density of states at
the Fermi level for a chromium concentration of 10 %. Fur-
thermore, there is a small increase in the relative s-band den-
sity of the alloy as compared to that of a linear interpolation
between the pure elements. We may, hence, contain the en-
tire concentration dependence of this deviation in the mixed-
pair density function �s

FeCr, setting �s
FeFe and �s

CrCr equal to
zero.

First, we fit the mixed-pair potential to the lattice param-
eter of Fe-10Cr and a positive heat of mixing for equimolar
composition.

Then, the coefficients of the s-band functional are fitted to
the negative substition energy of a single Cr atom in bcc Fe
and the crossing point from negative to positive mixing en-
thalpy, while constraining the second derivative of the s-band
functional to be everywhere positive. For small concentra-

tions, the term dependent on the square root will have a
larger weight than terms quadratic and quartic in mixed den-
sity. The opposite is true for intermediate compositions.

Two sets of data were used for fitting of the substitution
and mixing energies. One set30 corresponds to data obtained
with EMTO using the coherent potential approximation
�CPA�.31,32 With this method, it is possible to perform calcu-
lations for arbitrary Cr concentrations, as the unit cell con-
tains just one effective atom. The other set23 is calculated
with VASP in the PAW formalism, at a number of discrete Cr
concentrations given by inserting an integer number of Cr
atoms in a unit cell of different size.

Finally, the mixed-pair potential was fitted to the binding
energy of the �110� mixed dumbbell in bulk iron, which was
calculated using VASP.

The molecular dynamics code DYMOKA33 was revised to
enable two-band functionals, and was extensively used dur-
ing the fitting procedure. Table III displays coefficients fitted
to the two sets of mixing enthalpy data. The mixing enthalpy
was calculated as a function of Cr concentration in boxes
with 16 000 randomly distributed atoms and is shown in Fig.
3. The interatomic potentials reproduce the unrelaxed mixing
energy previously calculated with EMTO up to about 50%
Cr concentration,18 as well as the relaxed mixing energy ob-

TABLE II. Properties of Cr calculated with the present potential.
Comparison is made to experimental data for paramagnetic Cr ex-
trapolated to 0 K and VASP calculations for paramagnetic Cr in the
PAW formalism.23

This work Experiment VASP-PAW

a0�Å� 2.878 2.878a 2.834

B�GPa� 208 208b

C��GPa� 152 152b

C44�GPa� 105 105b

Ecoh�eV� 3.84 4.10

Evac
nr �eV� 2.88 2.89

Evac
rel �eV� 2.56 2.0±0.2c 2.59

Evac
mig�eV� 0.99 0.95d

Efcc−Ebcc�eV� 0.03

E�110�
f �eV� 5.60 5.66

E�111�
f �eV� 5.62 5.68

E�100�
f �eV� 6.83 6.78

aReference 24.
bReference 25.
cReference 26.
dReference 27.

TABLE III. Spline coefficients, cutoffs, and band coefficients
for the Fe-Cr potentials are presented here. Cutoffs are given in
units of 2.861 Å for Fe-Cr. The unit for the spline coefficients is
electron volts per cubic angstrom.

i 1 2 3 4

ri 0.970 1.15 1.40 2.14

ai �VASP� −47.3 −8.10 −7.82 +0.15

ai �EMTO� −67.0 −5.60 −8.40 +0.14

Ai
s �VASP� −0.503 −0.60 +0.50

Ai
s �EMTO� −0.800 −1.00 +0.80

FIG. 3. �Color online� Mixing energy in random Fe-Cr alloys.
Red circles: VASP mixing energy.30 Blue circles: EMTO mixing
energy.30 Red solid line: relaxed MD mixing energy obtained with
the potential fitted to VASP data. Dashed blue line: unrelaxed MD
mixing energy obtained with the potential fitted to EMTO data.
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tained with VASP-PAW.
For higher concentrations, existing discrete Fourier trans-

form �DFT� methods do not provide the negative substitution
energy of Fe in Cr that may be expected from the existence
of �-prime precipitates. This is most likely due to the alloy
being spin-density wave antiferromagnetic for Fe concentra-
tions up to 16% at 0 K,34 a configuration that has not yet
been successfully modeled within density-functional
theory.35 At room temperature, a Fe concentration of just 2%
is sufficient to make the alloy paramagnetic. In order to be
consistent with experiment, we have not made any effort to
adjust the negative substitution energy of Fe in Cr resulting
from our fitting procedure.

Table IV displays substitutional and interstitial properties
of Cr in a Fe crystal obtained using the potentials fitted to the
mixing enthalpy calculated with VASP �potential A� and
EMTO �potential B�. VASP ab initio data are provided as a
reference. In the VASP calculation, PAW pseudopotentials
with 300 eV cutoff energies were used within the general
gradient approximation. The supercell size was 128 lattice
sites, the number of k points was 27, and atoms of different
configurations were relaxed at constant volume. It was found
that the most stable interstitial configuration was the mixed
�110� dumbbell with a binding energy of 0.12 eV relative to
the pure iron dumbbell.23 Note that the mixed-pair potential
was fitted to the binding energy of the mixed �110� dumb-
bell, but not to the other configurations. We observe that the
potential fitted to a smaller substitution energy �potential A�
yields interstitial binding energies in better agreement with
ab initio data. Potential B, which was fitted to EMTO mixing
enthalpy, performs less well for Cr-Cr dumbbell binding en-
ergies.

V. SIMULATION OF THERMAL AGING

Using atomic kinetic Monte Carlo �AKMC� techniques,
the time evolution of vacancy-driven thermal aging can be
simulated in the alloy.

The AKMC simulation was performed with the
LAKIMOCA code, based on the residence time algorithm.36 A
vacancy is introduced into the simulation box, and the ki-
netic Monte Carlo step consists of choosing one of the eight
possible first-nearest vacancy jumps for a configuration ac-
cording to their jump frequency �k defined by

�k
X = �e−

Emig
X +�E/2

kT , �8�

where X is the the atom that jumps to the vacancy site and �
is the attempt frequency. The migration energies Emig given
by the presently used potentials are 0.65 eV for Fe and 0.52
eV for a single Cr atom in iron. �E is the energy difference
of the system due to the vacancy jump, calculated using the
potentials on on a rigid lattice �without relaxation�. The av-
erage time step associated to the kinetic Monte Carlo step in
a BCC lattice is

dt =
1

�
k=1,8

�k

. �9�

As the vacancy concentration in the simulation box is much
larger than under experimental conditions, the simulated time
has to be rescaled in order to obtain the aging time. The
scaling factor is the ratio between the vacancy concentration
in the simulation box and the thermal equilibrium concentra-
tion Cvac

eq �T�=e−Gf/kT, where Gf is Gibbs energy for the for-
mation of a vacancy.

In our previous works, the alloy potential did not provide
any change in sign of the formation energy, and hence, the
decomposition at Cr concentrations above 10% was driven to
complete segregation of the elements.7 With the present po-
tentials, however, we would expect that the segregation
should remain incomplete. Hence, we performed AKMC cal-
culations in 40�40�40 lattice unit boxes for initially ran-
dom distributions of Cr atoms in Fe-6Cr, Fe-8Cr, Fe-10Cr,
and Fe-32Cr at T=740 K. In the case of Fe-32C, experimen-
tal information about the time dependence of the Cr distri-
bution at this temperature exists.12

In the simulations with an initial Cr concentration of 6%,
the alloy remained random up to a simulated time of one
week. For 8% initial chromium content, the alloy remained
random up to one week of simulated time using potential B
�having a negative mixing enthalpy at this concentration�.
Applying potential A, having a positive mixing enthalpy at
this concentration, weak clustering tendencies were ob-
served.

In Fig. 4, the spatial Cr distributions in initially random
Fe-10Cr and Fe-32Cr are exemplified in 40�40�10 slices
of the original box after 2�109 and 1010 vacancy jumps,
corresponding to one week and one month of simulated ag-
ing, respectively. Potential A was used for the simulation
displayed, but no qualitative difference is observed when
switching to potential B in this range of concentration. One
may compare these results to the experimental solubility
limit at T=670 K, being 8.3%.15

Note that precipitate boundaries in Fe-10Cr are well de-
fined, even for clusters located close to each other. Such
geometries are typical for precipitate formation by nucle-
ation, expected to occur where Gibbs’ energy of formation
has a positive curvature. Indeed, we observe that precipitates
forming in Fe-10Cr are found at locations where the initial
Cr concentration was slightly higher than the average due to
random fluctuations. Furthermore, the size of the precipitates
increase with time. In Fe-32Cr, the diffuse boundaries and

TABLE IV. Substitutional and interstital energies of Cr atom�s�
in an iron lattice. Potential A is fitted to the mixing enthalpy calcu-
lated with VASP, potential B to the mixing enthalpy calculated with
EMTO. Comparison is made with 128 and 129 atom VASP-PAW

calculations.23 Energies are given in electron volts.

Pot A Pot B VASP23

Esub
Cr −0.02 −0.27 −0.02

E�110�
Fe−Cr−E�110�

Fe−Fe−Esub
Cr −0.12 −0.13 −0.12

E�111�
Fe−Cr−E�111�

Fe−Fe−Esub
Cr −0.32 −0.38 −0.42

E�110�
Cr−Cr−E�110�

Fe−Fe−2Esub
Cr +0.32 +0.46 +0.30

E�111�
Cr−Cr−E�111�

Fe−Fe−2Esub
Cr +0.04 +0.24 −0.34
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interconnected precipitates result from spinodal decomposi-
tion, corresponding to a negative curvature of Gibbs’ energy.

Local Cr concentrations were calculated by taking the
mean concentration in boxes with, on average, 45 atoms. The
boxes were constructed analogously to the experimental
method12 and were sampled along the �110� direction. Figure
5 shows concentration profiles in Fe-10Cr and Fe-32Cr. Be-
cause of the method of sampling, the Cr concentration in the
precipitates varies between 50 and 90%, consistent with the
observation by Brenner et al.12 For Fe-32Cr, we may com-
pare the average size and distance of the precipitates in Fig.
4 to experimental data taken at 740 K, being 2 and 6 nm after
670 h of aging.12 The cluster sizes and distances observed in
our simulation are compatible with these data. To make a
definite conclusion, a larger number of AKMC simulations
would have to be done in order to provide statistical
evidence.

VI. CONCLUSIONS

We conclude that the two-band second-moment model of
Fe-Cr here developed is able to reproduce thermodynamic
properties of the alloy over the whole range of Cr concentra-
tion, including solubility limits and formation of the �-prime
phase under thermal aging. For this purpose, it was found
sufficient to fit the mixed s-electron density functional to the
mixing enthalpy. Our method enables one to model transition
metal alloys with finite miscibility gaps in a quantitative
manner. It will be instrumental in further studies of micro-

structure evolution in ferritic steels under thermal aging and
irradiation conditions.
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