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In this paper we report on ab initio pseudopotential density-functional calculations of some possible high-
pressure phases of carbon. The total energies of several hybrid diamond-graphite structures were calculated as
a function of volume using density-functional theory and the local density approximation. The lowest calcu-
lated transition pressures between hexagonal-graphite and hybrid structures were 17 and 20 GPa, which com-
pare well with the experimental value of 14 GPa for the transition at low temperatures between graphite and a
still unidentified hard transparent phase. The electronic densities of states for the different structures are
presented. Also, the x-ray powder diffraction patterns for a few structures were simulated and qualitatively
compared to published experimental diffraction patterns.
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I. INTRODUCTION

At ambient conditions of pressure and temperature, the
most stable crystalline structure of carbon is
hexagonal-graphite.1 Without the use of catalysts, graphite
can be converted to diamond at pressures above 15 GPa and
high temperatures ��1000 °C�.1–4 Molecular dynamics
studies5 have shown that the graphite layers shift relative to
one another under pressure and that for high enough tem-
peratures, an abrupt buckling of the graphite sheets yields a
mixture of both cubic and hexagonal symmetric diamond
structures. The high temperatures required to induce the
phase transition is indicative of a strong activation barrier
between graphite and diamond.

On the other hand, if the temperature is kept low while
applying pressure to graphite, a transition still occurs to a
high-resistance, low-optical reflectivity transparent phase
distinct from diamond for pressures above 14 GPa.1,4,6–8 If
pressure is released, carbon reverts back to the graphite
structure unless the temperature is below 100 K.7 This means
that this transparent phase is metastable relative to graphite,
and the low temperature is indicative of a very low activation
barrier between the graphite and transparent phases. A re-
markable property of this transparent phase is its exceptional
hardness. This was revealed in recent experiments8 by the
broadening of ruby fluorescence lines and the ring crack in-
dentation left on the diamond anvil after decompression.
Other experiments on cold compression of carbon nanotubes
have also found a quenchable superhard phase.9 Although a
great deal of work has been done to identify this transparent
phase1,4,6–8 and many structures have been proposed, details
of the atomic structure remain elusive.

Here calculations of the electronic and structural proper-
ties of several possible carbon structures are discussed and
compared to experimental results. Cubic-diamond and
hexagonal-graphite have been studied earlier,10–14 and some
results are repeated here for comparison to new structures.

II. STRUCTURES

Diamond is present in nature in the cubic form, space

group Fd3̄m, where all the atoms are bound to each other
with tetrahedral �sp3� coordination. We will refer to this
phase of diamond as cubic-diamond. In 1967, Bundy and
Kasper4 synthesized a form of diamond with hexagonal sym-
metry by applying pressures in excess of 13 GPa at 1000 °C
to graphite. This hexagonal phase, also known as lonsdaleite,
has the space-group symmetry of P63/mmc, and all the elec-
tron orbitals are sp3 hybridized just as in cubic-diamond.

Graphite is composed of layers of carbon atoms stacked
on top of each other where the electron orbitals are sp2 hy-
bridized. The most stable stacking of these carbon layers
corresponds to the ABAB stacking shown in Fig. 1�a�. We
will refer to it as hexagonal-graphite. Because of the change
in symmetry, the transition from graphite to either cubic or
hexagonal-diamond requires that the graphite planes slide

FIG. 1. Top views of �a� hexagonal-graphite, �b� orthorhombic-
graphite, and �c� the layered-diamond structure obtained directly
from hexagonal-graphite through buckling and without any
graphene plane sliding.
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from their equilibrium positions.5 This breaks the hexagonal
symmetry and results in a structure referred to as
orthorhombic-graphite �see Fig. 1�b��. If no sliding is al-
lowed, one could imagine that the layers of hexagonal-
graphite could still buckle and form sp3-sp3 bonds in be-
tween graphite layers, giving rise to a layered diamondlike
structure as shown in Fig. 1�c�.

Figures 2�a�–2�g� show a class of structures composed of
a mixture of sp2−sp2 and sp3−sp3 bonds. These structures,
due to their symmetry, will be referred to as honeycomb
structures. Each of the individual honeycombs can be viewed
as a very narrow zigzag carbon nanotube, and an index of the
form �m ,n� can be associated with it �see, for example, Ref.
15 for a description of nanotube indexing�. The �3,0� honey-

comb is, in fact, the hexagonal-diamond structure, which, as
discussed above, can be obtained by buckling orthorhombic-
graphite. All the other honeycombs, except the �6,0�, can also
be obtained from buckling orthorhombic-graphite. The �6,0�
honeycomb could potentially be synthesized by carbon depo-
sition on a carefully engineered substrate. The �3,0� / �4,0�
and the �3,0� / �4,0�ab are hybrid structures, where half the
honeycombs are �3,0� and the other half are �4,0� and
�4,0�ab, respectively. These hybrids are obtained by buckling
four out of five of the sp2-bonded atoms in a graphite layer.
The �4,0� honeycomb is characterized by a buckling of two
out of three of every sp2-bonded atom in each graphite layer,
and depending on the particular stacking, different structures
can be constructed, such as �4,0� and �4,0�ab. The �5,0� hon-
eycomb can be obtained from the buckling of half of the
sp2-bonded atoms in graphite, whereas, as mentioned above,
the �6,0� honeycomb cannot be obtained from buckling
graphite layers. One important common factor of all the hon-
eycomb structures is the pairing of sp2 hybridized atoms, so
that a � bond is established between the two, reinforcing the
overall stability of the crystal.

Hybrid graphite-diamond structures similar to the ones
studied here were suggested by Karfunkel and Dressler,16

Balaban et al.,17 and Umemoto et al.18 Previous ab initio
calculations for the strictly hexagonal �6,0�, �9,0�, and �12,0�
honeycombs have been performed by Park and Ihm.19

There are many other possible structures and possible
stackings of the different honeycombs studied here, includ-
ing amorphous ones, but an exhaustive study is beyond the
scope of this work.

III. COMPUTATIONAL DETAILS

For each crystal structure the total energy was calculated
using density-functional theory.20,21 The interaction between
the valence electrons and the core electrons and nucleus of
an atom was described by ab initio pseudopotentials.22 Spe-
cifically, separable,23 norm-conserving Troullier-Martins24

pseudopotentials were used. The valence electron wave func-
tions were expanded as linear combinations of plane waves
with an energy cutoff of 70 Ry. The Brillouin zone was
sampled on uniform k-point meshes.25 The exchange and
correlation energy was calculated using the local-density ap-
proximation to the energy functional.26,27 The lattice param-
eters were all optimized at each pressure with a quasi-
Newton method,28 using the forces and stresses obtained
through the Hellmann-Feynman theorem. From the calcu-
lated energies, the minimum of energy E0, the equilibrium
volume V0, and the zero pressure bulk modulus B0, were
obtained from a fit to the empirical function

E�V� = E0 +
B0

V0

�V − V0�2

2
+ E1F�V − V0

V1
� ,

where E1 and V1 are two extra free parameters, and F�x� is
the function

FIG. 2. The honeycomb structures: �a� all sp3 �3,0� honeycomb
structure �hexagonal-diamond�, �b� mixed �3,0� and �4,0� structure,
�c� mixed �3,0� and �4,0�ab structure, �d� �4,0� structure, �e� AB-
stacked �4,0�ab structure, �f� �5,0� structure, and �g� �6,0� hexagonal
structure. All except �6,0� can be obtained from buckling
orthorhombic-graphite.
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F�x� = e−x − �1 − x +
x2

2
� ,

which, by construction, satisfies

F�x = 0� = F��x = 0� = F��x = 0� = 0.

The electronic density of states was calculated using the
tetrahedron method,29 and the simulated x-ray powder dif-
fraction patterns were obtained from the squares of the struc-
ture factors. Molecular-dynamics simulations based on the
extended Tersoff-Brenner potential30 and using a time step of
0.4 fs were performed on the equilibrium configurations of
the proposed structures to investigate their dynamic stability.

IV. RESULTS

For all of the honeycombs, layered-diamond, hexagonal
and orthorhombic-graphite, and cubic-diamond, Fig. 3�a� and
3�b� show the energy versus volume and enthalpy versus
pressure curves, respectively, where the lines are numerical
fits to the calculated points. In Fig. 3�b�, the enthalpy lines of
the �3,0� / �4,0�, �3,0� / �4,0�ab, �4,0�, �4,0�ab, and layered-
diamond cross the enthalpy line of hexagonal-graphite at 17,
20, 34, 40, and 120 GPa, respectively. These intersections
indicate the pressure at which one phase becomes thermody-
namically more stable than the other at zero temperature.

Molecular-dynamics simulations of lengths of tens of pi-
coseconds using supercells of dimension 5�5�5 times the
unit cell dimensions and at temperatures exceeding 1000 K
at zero pressure suggest that all of the proposed structures—
except layered-diamond and orthorhombic-graphite—are dy-
namically stable. This is not surprising given that all valence
orbitals are essentially hybridized sp2 or sp3.

Layered-diamond is only metastable at high pressures. At-
tempts to relax the layered-diamond structure for pressures
below 50 GPa resulted in a spontaneous phase transition to
hexagonal-graphite, which is indicative of a very low or non-
existent activation barrier for the reverse transition. This in-
stability could be related to the lack of a forth bond for half
of the atoms on each buckled layer �see Fig. 1�c��. Given that
the activation energy for sliding of graphite planes is very
small and the very high transition pressure between graphite
and layered-diamond compared to all the other transition
pressures, it is very unlikely that the layered-diamond phase
can ever be observed experimentally.

Figure 3�c� shows the bulk modulus as a function of pres-
sure for selected structures. The low-density honeycombs,
such as �5,0� and �6,0�, have a low bulk moduli �276 and
255 GPa at zero pressure, respectively� compared to the
higher density ones �3,0� / �4,0�, �3,0� / �4,0�ab, �4,0� and
�4,0�ab, with bulk moduli of 397, 411, 356, and 361 GPa at
zero pressure, respectively. When applying pressure to a
solid, the reaction pressure from the solid depends on the
strength of each atomic bond and on the number of bonds per
unit volume. The more bonds per unit volume a solid has, the
lower its compressibility, which explains the increase in bulk
modulus with density in the honeycombs. It is noteworthy
that, within our model fit, �3,0� / �4,0� is expected to be less
compressible than diamond for pressures above 120 GPa
�see Fig. 3�c��.

FIG. 3. Calculated �a� energy versus volume, �b� enthalpy ver-
sus pressure, and �c� bulk modulus versus pressure for the honey-
comb structures and layered-diamond compared to graphite and dia-
mond. In �a� and �b�, the symbols represent calculated data points
and the lines are numerical fits, and in �c� the bulk modulus is
obtained from the second derivative of the numerical fit to the en-
ergy and the pressure from the first derivative of the same fit. In �b�
the enthalpy is plotted relative to the enthalpy at the graphite to
diamond transition and the line defined by H=40a0

3� p has been
subtracted for clarity.
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Table I shows the values of zero pressure energy per
atom, volume per atom, and bulk modulus for several studied
structures, together with some experimental values. Experi-
mentally the cohesive energy per atom of graphite is 25 meV
larger than the cohesive energy of cubic-diamond.35 On the
other hand, in our calculation, graphite is metastable relative
to cubic-diamond with an energy difference of 12 meV.

Previous DFT-LDA calculations11–13 also show that the
equilibrium energy of graphite is slightly higher than the
equilibrium energy of diamond. This discrepancy is caused
by the LDA’s inaccurate description of the van der Waals
interaction. Other approaches, like variational quantum
Monte Carlo,35,36 have been used to try to clarify this issue,
but, because the energy difference is so small, the problem
remains unresolved. In this work, however, this inaccuracy is
not important for the relative stabilities of the high-pressure
phases since, as the pressure is raised, the magnitude of the
van der Waals interaction becomes small compared to the
dominant electrostatic repulsion. Although some uncertainty
on the transition pressures is present, in relative terms it is
small in the high-pressure regime and the relative stabilities
of the different high-pressure phases are well described. An-
other consequence of the underestimation of the van der
Waals interaction is that at zero pressure, the energies of both
hexagonal- and orthorhombic-graphite are essentially the
same within the precision of our calculation. As the pressure
increases, the enthalpy of orthorhombic-graphite is consis-
tently higher than that of hexagonal-graphite for the range of
pressures studied.

Figure 4 shows the density of states at zero pressure for
all the metastable structures and at 120 GPa for graphite and
layered-diamond. Hexagonal-graphite is a semi-metal,
whereas cubic-diamond exhibits semiconducting behavior
with a LDA energy gap of 4.2 eV �LDA tends to systemati-
cally underestimate the energy gap of semiconductors�. The

�3,0� / �4,0�, �4,0�, and �6,0� honeycombs are metallic, and
the �3,0� / �4,0�ab, �4,0�ab, and �5,0� are semiconducting
with LDA energy gaps of 2.3, 2.3, and 1.6 eV, respectively.
Because layered-diamond is not metastable at zero pressure,
we compare the density of states of layered-diamond and
hexagonal-graphite at the transition pressure of 120 GPa.
Both layered-diamond and hexagonal-graphite at 120 GPa
are metallic. For hexagonal-graphite, the DOS changes con-
siderably from 0 to 120 GPa, with increased dispersion due
to the reduction in volume. It is interesting to note that the
very high bulk modulus systems �3,0� / �4,0�, �4,0�, and �6,0�
are metallic.

The simulated x-ray-diffraction patterns of graphite at
several pressures, cubic and hexagonal-diamond,
�3,0� / �4,0�ab, and �3,0� / �4,0� honeycombs at 20 GPa are
compared in Fig. 5 to the experimental x-ray-diffraction pat-
tern of graphite powder under pressure adapted from Ref. 8.
The simulated x-ray powder diffraction patterns are obtained
by a simple model involving the squares of the structure
factors. The calculated and experimental positions of the
main graphite peaks for the different pressures agree quite
well for pressures below the transition to the transparent
phase. Above the transition pressure, the experimental dif-
fraction peaks broaden significantly, and this broadening
could be a result of buckling of the graphitic planes. No
direct match is possible between the experimental peaks at
high pressures and the simulated peaks for any of the five
test structures. However, the strongest peaks for �3,0� / �4,0�
and �3,0� / �4,0�ab honeycombs are located essentially in the
region between 8 and 10.5 deg and 15 and 17 deg, which are

TABLE I. Calculated zero pressure energy per atom, volume per
atom, and bulk modulus values for several structures. Total energies
are shown relative to the energy of cubic-diamond. Other available
experimental and numerical values are also given for comparison.

Structure
E0 /atom
�meV�

V0 /atom �Å3� B0 �GPa�

�calc.� �other� �calc.� �other�

Cubic-diamond 0.0 5.55 5.67a 460 443b

Hex-graphite 12.0 8.61 8.80c 30 34d

Orth-graphite 12.8 8.64 40

�3,0� / �4,0� 202.2 5.86 397

�3,0� / �4,0�ab 238.6 5.84 411

�4,0� 298.5 6.08 356

�4,0�ab 318.6 6.13 361

�5,0� 338.0 6.87 276

�6,0� 530.3 8.21 255 252e

aExperiment, Reference 31.
bExperiment, Reference 32.
cExperiment, Reference 33.
dExperiment, Reference 34.
eCalculation, Reference 19.

FIG. 4. Calculated electronic density of states for all the studied
carbon structures. The top two plots show the density of states of
hexagonal-graphite and layered-diamond at the transition pressure,
120 GPa, while all the other plots are at zero pressure. The Fermi
level is at 0 eV.

RIBEIRO et al. PHYSICAL REVIEW B 72, 214109 �2005�

214109-4



exactly the extents of the broad experimental peaks. Also, the
x-ray pattern might be consistent with a combination of sev-
eral structures if one assumes that not all of the sample has
undergone a transition or that the final phase is a combina-
tion of several phases.

V. CONCLUSIONS

In this work, the results of total energy calculations of
several possible diamond-graphite hybrid structures of car-
bon were presented. One of these structures, layered-
diamond, results from the direct buckling of hexagonal-
graphite without plane sliding, and the pressure at which the
enthalpies of both phases are the same—the transition
pressure—is 120 GPa. Because of this very high pressure
and the fact that the activation energy for plane sliding in
graphite is very small, the experimental observation of this
phase is very unlikely. Our calculations show that at pres-
sures of 17, 20, 34, and 40 GPa graphite can transition to the
honeycomb phases �3,0� / �4,0�, �3,0� / �4,0�ab, �4,0�, and
�4,0�ab, respectively. As with the transitions to either cubic-
or hexagonal-diamond the transitions to the honeycombs re-
quire sliding of the graphite planes, which transforms
hexagonal-graphite into orthorhombic-graphite. Our calcula-
tions show that the energy difference between these two
stackings of graphite is very small, and that the enthalpy of
orthorhombic-graphite is always higher than that of
hexagonal-graphite, which means that finite temperature is
necessary for plane sliding. Experimentally, to transform
graphite into diamond, temperatures above 1000 °C are nec-
essary because of the large activation energy between the
two phases. Although the activation barriers were not calcu-
lated in this work, it is plausible that the activation barriers
for the transitions between graphite and the four honeycomb
structures mentioned above are comparable to that of the
transition between graphite and diamond because all the
transitions considered involve the buckling of sp2 hybridized
orbitals into sp3. Experimentally, a transparent phase is
achieved by compression of graphite above 14 GPa at room
temperature. Below 100 K, this phase is metastable relative
to graphite. This means that there is a lower activation bar-
rier than that for the transition to diamond, and the activation
barrier for the reverse transition is very low. A detailed study
of the activation barrier would clarify this issue, but this is
left for future work. If we disregard the activation barrier
issue, the most promising candidates for the transparent
phase are the hybrid �3,0� / �4,0� and �3,0� / �4,0�ab struc-
tures, with transition pressures of 17 and 20 GPa, respec-
tively. Both pressures are higher than the experimental pres-
sure of 14 GPa. However, because of the inaccurate
description of the van der Waals interaction within the LDA,
there is a small uncertainty associated with the values of the
transition pressures. The very low compressibility of these
phases may explain the ring cracks observed in the diamond
anvils.8 Electronically, the �3,0� / �4,0�ab honeycomb was
shown to be an insulator, which is in agreement with experi-
mental evidence,1,8 whereas �3,0� / �4,0� is a metal. The cal-
culated x-ray-diffraction patterns of the possible candidates
show similarities with the experimental pattern, but there is
no clear agreement.

The activation energy discrepancy, the high-transition
pressures for the honeycombs, and the x-ray mismatch sug-
gest the possible existence of yet another structure. Other
hybrid structures with higher ratios of �3,0� honeycombs
relative to the wider �4,0�’s, would likely have lower equi-

FIG. 5. Comparison between �a� calculated graphite,
�3,0� / �4,0�ab, �3,0� / �4,0�, hexagon and cubic-diamond, and �b�
experimental graphite powder X-ray diffraction patterns adapted
from Ref. 8 �x-ray energy of 37.45 KeV� for different pressures.
The calculated patterns are based on a simple model, and therefore,
only the position of the peaks should be trusted, not the amplitude.
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librium energies, lower transition pressures, and lower vol-
umes per atom. But as the density of �3,0� honeycombs is
increased, the system gets closer to a hexagonal-diamond
phase with some sp2-sp2 bonded stacking defects. In addi-
tion, the activation energy is likely to be very high. There-
fore, hybrid �3,0� / �4,0� structures with a high proportion of
�3,0� honeycombs would probably be amorphous.

In conclusion, although we have studied likely candidates
for the high-pressure, low-temperature transparent phase of
carbon, its structural details remain unknown and further
work is necessary.
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