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We present a systematic comparison of first-principles zero-temperature equations of state and elastic con-
stants of seven metals �aluminum, titanium, copper, tantalum, tungsten, platinum, and gold� with the most
recent diamond-anvil-cell �DAC� experimental data, for pressures up to 150 GPa. Our calculations were
performed within density functional theory, testing both the local density approximation �LDA� and the gen-
eralized gradient approximation �GGA� to the exchange-correlation term, and using several types of pseudo-
potentials. The obtained pressure-volume relationships show good agreement with DAC data: the difference
between ab initio pressure and experiment is at most 5 GPa at 100–150 GPa except for Au and Pt. The
equilibrium volumes V0 and bulk moduli K0 are determined within 1.5% and 6% of DAC data respectively.
Experimental results are better reproduced with GGA for Al, Ti, Cu, Ta and W, but with LDA for Pt and Au,
in agreement with previous theoretical studies. The predicted elastic constants are within 10% of experiment.
For tantalum we have also calculated phonon spectra under pressure. They are in excellent agreement with
experimental data: especially they accurately reproduced the inflexion on the longitudinal branch in the �-H
direction, which is typical of the VB column �V, Nb, Ta�.
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I. INTRODUCTION

An important challenge for electronic-structure calcula-
tions is to predict the thermodynamic properties of matter
�e.g., equations of state �EOS�� under extreme conditions
outside the experimental domain. Such a predictivity is
grounded on the ability of these calculations to reproduce all
the experimental data to a good precision. Until recently,
accurate experimental data were available from room pres-
sure up to moderate pressures. With the development of so-
phisticated diamond-anvil cells �DACs�, coupled to third-
generation synchrotron sources, and the refinement of the
corresponding pressure gauges, very accurate EOS data are
now becoming available up to the megabar, and beyond.1 We
thus found it interesting to perform systematic calculations
for a whole set of metals and to compare them to experimen-
tal data: not only EOS data, but also elastic constants at
ambient conditions which are second-order derivatives of en-
ergy, and thus more sensitive to the quality of the calcula-
tions.

Seven metals were chosen: face-centered-cubic �fcc� Al,
fcc Cu, body-centered-cubic �bcc� Ta, bcc W, fcc Pt and fcc
Au, which do not show any phase transition up to 150 GPa at
room temperature, and finally Ti which has a hexagonal-
close-packed �hcp� structure at ambient conditions. At room
temperature and under pressure �at 7.4 GPa,2 8 GPa,3 or 9
GPa4,5�, titanium is known to undergo a crystallographic
phase change from hcp ��� into the � phase, which is a
hexagonal lattice with three atoms per unit cell. The atomic
positions are at �0,0,0�, �1/3 ,2 /3 ,c /2a�, and
�2/3 ,1 /3 ,c /2a�, where the c /a ratio is around 0.62. X-ray
studies show that the � phase remains stable up to 87 GPa,3

and 124–130 GPa.2

In the case of tantalum, for which an extensive set of
theoretical calculations is available, we have also calculated
phonon dispersion curves and phonon density of states from
ambient pressure up to 1000 GPa.

We have chosen the plane-waves�pseudopotential �PP�
formalism which is now widely used; moreover, each first-
principles computer code usually provides built-in pseudopo-
tentials. In this study, which initially was accompanying new
experimental EOS measurements at high pressures, we have
chosen to test these “ready-made” pseudopotentials, in order
to evidence their possibilities, and also their limitations. For
completeness, we compare our values to all-electron calcu-
lations available in the literature. The paper is organized as
follows. In Sec. II the computational details are presented. In
Sec. III and in Sec. IV we describe the procedure to deter-
mine the equilibrium lattice parameters and the elastic con-
stants. In Sec. V we present briefly the calculation of phonon
spectra. We summarize and discuss our results in Sec. VI,
first for tantalum and then for the other six metals.

II. COMPUTATIONAL DETAILS

Density-functional theory �DFT�6 is a powerful tool for
electronic structure calculations. It is generally assumed that
in bulk solids, the local density approximation �LDA�7 to the
exchange-correlation term usually tends to underestimate the
equilibrium lattice constants and to overestimate the bulk
modulus, whereas the generalized gradient approximation
�GGA�8 overcompensates these errors and yields results
closer to experiment.9 But these are just general trends and as
we shall see reality may be more complex. We thus per-
formed total-energy calculations, both within LDA, using the
Ceperley-Alder functional10 as parametrized by Perdew and
Wang, and GGA with the PW91 �Ref. 11� and PBE96 �Ref.
8� parametrizations. The choice of the exchange-correlation
functional itself appears to be of second-order with respect to
the LDA/GGA alternative.

A key issue in a pseudopotential is the number of so-
called valence electrons, i.e., the electronic states which are
explicitly taken into account in the calculation: even if this
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separation appears quite naturally �the core states being usu-
ally well separated, both energetically and spatially from the
valence states�, in some cases, one has to take into account
semicore states, in addition to the usual valence states. Once
the valence states are chosen, several well-known math-
ematical formalisms can be used to generate the actual
pseudopotential. In this study, we have used the separable
“dual-space” Gaussian pseudopotentials of Hartwigsen,
Goedecker and Hutter �HGH�,12 the norm-conserving
Troullier-Martins �TM� pseudopotentials13 from ABINIT
package,14 and projector augmented wave �PAW� potentials
constructed by G. Kresse15 and provided with the Vienna Ab
initio Simulation Package �VASP�.16 Due to the poor quality
of the existing pseudopotentials for platinum, we have gen-
erated a relativistic, norm-conserving TM pseudopotential
for this element. It was constructed from a 5d96s0.956p0.05

atomic configuration with cutoff radii of 2, 2.6, and 1.2 a.u
respectively.

Energy convergence tests were performed to determine
the cutoff energy, the number of k points, and the smearing
for the Brillouin zone integration for each metal. The total
energy was converged to 1 mRy per atom. Integration over
the Brillouin zone was done using the special k-point scheme
of Monkhorst and Pack,17 the k-point sets were generated
automatically. The determination of the elastic constants ap-
pears to require a stronger convergence in k points, than the
EOS calculation.18 For example a 12�12�12 grid �which
gives 112 k points in the irreducible Brillouin zone �IBZ� for
a bcc lattice� leads to a convergence of 2�10−6 Ry for the
energy in the EOS calculation. To calculate the C44 modulus
of a cubic crystal a 20�20�20 grid �4200 k points in the
IBZ� is needed to obtain the same convergence criterion. The
electronic levels were populated according to the Methfessel
and Paxton scheme.19 All the technical data are listed in
Table I.

III. CALCULATION OF THE 0 K ISOTHERM

First we calculated the total energy for several values of
the volume. Then the equations of state were determined by
a least-squares fit of the total energy versus volume to the
third-order Birch-Murnaghan equation,

E�V� = �
n=0

3

anV−2n/3, �1�

where V is the volume of the unit cell. The minimum-energy
volume is found by minimizing �1�, the bulk modulus

K0=−V0�dP /dV�0 is computed from the definition K�V�
=V�d2E /dV2�, and its pressure derivative is defined by
K0�= �dK /dP�P=0. Pressure is written as in Ref. 20,

P =
3

2
K0��V0

V
�7/3

− �V0

V
�5/3	

�
1 +
3

4
�K0� − 4���V0

V
�2/3

− 1	� . �2�

For hcp structures, the c /a ratio has to be optimized at
each volume. The optimization of the c /a ratio seems to
have a small effect on the bulk modulus values.18 This is the
case here for hcp Ti: the optimized c /a value is 1.583 at the
equilibrium volume, the experimental one is 1.588. The dif-
ference between these two values is less than 0.5%. The
equilibrium volumes are the same and the bulk moduli differ
by less than 1 GPa, which is within the error bar of the fitting
procedure.

IV. CALCULATION OF ELASTIC CONSTANTS

The elastic constants are obtained by straining the equi-
librium lattice at fixed volumes, using volume-conserving
strains and then computing the free energy as a function of
strain. The lattice distortion transforms the primitive vectors
a into the new vectors a�

a�
↔

= � I
↔

+ �
↔

�a
↔

, �3�

where I
↔

is the 3�3 identity matrix and �
↔

is a matrix con-
taining the strain components

� = ��11 �12 �13

�12 �22 �23

�13 �23 �33

 . �4�

A. Cubic crystals

The elastic behaviour of a cubic crystal is completely de-
scribed by three independent constants C11, C12, and C44.
The bulk modulus K is defined by a linear combination of the
elastic constants

TABLE I. Numerical parameters used for PP calculations. All pseudopotentials are HGH but PAW potentials for Al, Ti, and Cu �numbers
in parentheses� and TM pseudopotentials for Pt �numbers in square brackets�. Cutoff and smearing are given in Ry.

Al Ti Cu Ta W Pt Au

Structure fcc hcp fcc bcc bcc fcc fcc

Energy cutoff �33� �40� 200; �44� 40; 120a 40; 100a �44�; 120 110

Irreducible k points �56� �252� 408; �120� 40 40 �60�; 60 28

Smearing �0.01� �0.01� 0.04; �0.01� 0.04 0.06 �0.04�; 0.04 0.04

Number of electrons �3� �12� 11; �17� 5; 13 6; 14 �10�; 18 11

Electronic states 3s23p1 3s23p63d24s2 3p63d104s1 5s25p65d36s2 5s25p65d46s2 �5d96s0.956p0.05�; 5s25p65d10 5d106s1

aEnergy cutoff when semicore states are introduced.
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K =
C11 + 2C12

3
, �5�

and was determined previously from the EOS using the
Birch-Murnaghan fit, which allows us to compare both meth-
ods. The mechanical stability of the crystal implies that B,
C44, and �C11−C12� are all positive constants. To calculate
C11−C12, we apply a tetragonal strain

� = �� 0 0

0 � 0

0 0 �1 + ��−2 − 1

 , �6�

where � is the magnitude of the strain. The corresponding
strain energy is

F��� = F�0� + 3�C11 − C12�V�2 + O��3� , �7�

where F�0� is the free energy of the unstrained lattice and V
its volume. C44 was obtained from a volume-conserving
monoclinic strain21

� = �0 � 0

� 0 0

0 0 �2/�1 − �2�

 . �8�

The corresponding strain energy is

F��� = F�0� + 2C44V�2 + O��4� . �9�

We calculate the free energy for different strains, then we fit
the points by a parabola, and the elastic constants are calcu-
lated from the quadratic coefficients.

B. Hexagonal crystals

Hexagonal structures have five independent elastic con-
stants: C11, C12, C13, C33, and C44. A sixth nonindependent

constant C66 is equal to �C11−C12� /2. The bulk modulus K,
unlike the elastic constants Cij, is given by a second deriva-
tive of the total energy per atom, but with respect to volume
rather than strain. The bulk modulus is defined as18,22

K =
2

9
�C11 + C12 + 2C13 + C33/2� . �10�

The mechanical stability conditions are C12, C33, C44,
�C11−C12� /2, and �C11+C12−2C13

2 /C33�, all positive. The
procedure to determine the elastic constants is the same as
for cubic crystals. The complication with hcp crystals is that
the unit cell is nonprimitive. The second basis atom �or extra
atom� is free to move away from the position imposed by the
homogeneous strain, so it must be relaxed independently.
The five strains which are required can be found elsewhere.18

The calculations were done at the calculated equilibrium
volume, which was constrained to be constant during the
distortion, the c /a ratio being fixed at its experimental value.
We only report unrelaxed constants for Ti, since relaxation,
at room pressure, did not induce any noticeable variation of
the elastic constants.

V. PHONON CALCULATION

The calculation of full phonon dispersion curves and den-
sity of states under pressure is the next step towards a fully

TABLE II. EOS parameters for bcc Ta when the spin-orbit �SO�
coupling is included or not. V0 are in Å3/atom, K0 in GPa. The
calculations are done with HGH pseudopotentials.

LDA LDA+SO GGA GGA+SO

V0 17.27 17.25 18.04 17.99

K0 217.44 215.45 195.58 196.84

FIG. 1. Theoretical 0 K isotherm for bcc Ta compared with
room temperature diamond-anvil-cell measurements �diamonds�
�Ref. 1�. Pseudopotentials used here are HGH with 5 �PP� or 13
�PPsc� valence electrons. In tantalum the “natural” five valence
states are 5d36s2. The introduction of the semicore states 5s25p6

�see Table I� improves the results.

FIG. 2. Theoretical pressure versus relative volume for Ta
�GGA�. The white diamonds represent the DAC data from Ref. 1,
the black circles are GGA results of Ref. 29 using the full-potential
linearized augmented plane wave �FP-LAPW� method. The solid
lines are present PP calculations.
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ab initio thermal equation of state. In the framework of den-
sity functional perturbation theory �DFPT�, the lattice distor-
tion associated to a phonon is modeled as a perturbation to
the electron density, which is calculated selfconsistently.23,24

In practice, we calculate the full dynamical matrix on a mesh
which spans the first Brillouin zone; all other frequencies are
then deduced by a Fourier interpolation from this grid.24 As
for elastic constants, these calculations require an extremely
strong convergence in k-point sampling and are still CPU
demanding. Yet they provide extremely rich information,
which can be used for example to calculate a phonon Grü-
neisen coefficient, defined as the weighted average on all
normal modes k ,s, of the negative logarithmic derivative of
the frequency �s�k� of the mode with respect to volume.
Following Ashcroft25 we calculate, for a given volume V, the
phonon Grüneisen parameter as

� =

�
k,s

�kscvs�k�

�
k,s

cvs�k�
, �11�

where

cvs�k� =
��s�k�

V

��e	��s�k� − 1�−1

�T
�12�

is the contribution of the normal mode k ,s to the specific
heat and

�ks = −
��ln �s�k��

� ln V
. �13�

The summation spans the whole Brillouin zone. From our
calculations of �s�k� for discrete values of V, we perform a
polynomial fit which we use to calculate �ks.

VI. RESULTS AND DISCUSSIONS

A. Tantalum

1. Calculated equation of state

We present here the results of the full study performed for
tantalum: 0 K isotherm, elastic constants, and phonon spec-
tra. We compare our PP calculations with recent DAC data,
where the maximal experimental pressures were 105 GPa for
Ta.1 The first-principles calculations were done at 0 K
whereas DAC data were obtained for a temperature of 293
K. Yet, in this pressure range, the so-called thermal pressure
is, according to our phonon calculations, between 0.5 and 1.5
GPa, and so it will be neglected.

In Fig. 1 we present all the results we obtained with dif-
ferent pseudopotentials where the number of valence elec-
trons �with or without semicore states�, the exchange-
correlation functional �LDA or GGA�, and the inclusion of
spin-orbit coupling were tested. If we use the “natural” 5
valence electrons �5d36s2�, the equilibrium volume is wrong
by 5%, both for LDA and GGA. If we include the 5s and 5p
semicore states in the valence, then V0 within LDA is slightly
better, whereas within GGA, the agreement with experiment
is perfect.

Spin-orbit coupling is found to have a small effect on the
values of V0 and K0, both within LDA and GGA. The values
obtained for V0 and K0 with and without spin-orbit coupling
are listed in Table II, for a given class of pseudopotentials
�i.e., HGH�.

Introducing spin-orbit coupling leads to 
V0�0.2% and

K0�1% for Ta. It is in agreement with previous studies26,27

and in slight contradiction with Söderlind et al.28 We thus did
not include spin-orbit coupling in further calculations.

EOS results for Ta are summarized in Table III. GGA
appears to give the best results, which agrees with all-

TABLE III. Zero-pressure properties of tantalum obtained with pseudopotential calculations from a Birch-
Murnaghan fit. Lattice parameters a0 are given in Å, equilibrium volumes V0 in Å3/atom, bulk moduli K0 in
GPa. DAC data are from Dewaele et al. �Ref. 1� and previous all-electron studies are from Boettger �Ref. 26�.
The best results are in bold.

Present work DAC data Previous all-electron works

PP a0 V0 K0 K0� V0 K0 K0� V0 K0

HGH LDA 3.26 17.27 217.44 3.71 18.04 194 3.52 LCGTO-FF LDA 17.35 209

HGH GGA 3.3 18.04 195.58 3.67 LCGTO-FF GGA 18.35 190

FIG. 3. Pressure difference between ab initio results and
diamond-anvil-cell measurements versus experimental pressure for
Ta. DAC data are from Dewaele et al. �Ref. 1�. Filled black sym-
bols are present pseudopotential calculations in GGA. Stars repre-
sent all-electron calculations in FP-LAPW, GGA performed by
Wang et al. �Ref. 29�.
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electron studies of Boettger.26 Equilibrium volumes obtained
with pseudopotentials are globally lower than all-electron re-
sults by 0.5% to 1.7%, for LDA and GGA respectively. Bulk
moduli determined by PP calculations are rather greater than
those deduced from all-electron methods by 3–4%. The equi-
librium volume and the bulk modulus obtained from PP cal-
culations agree very well with the DAC results.

We have plotted in Fig. 2 pressure versus volume com-
pression V /V0, where V0 is the theoretical equilibrium vol-
ume for first-principles calculations and the experimental one
for DAC data. We can see that there is a very good repro-
duction of the DAC data up to �100 GPa. This trend is
evidenced on Fig. 3 where we have plotted the pressure dif-
ference between ab initio results and DAC data versus the
experimental pressure for PP calculations. The difference be-
tween theoretical and experimental pressures does not ex-
ceed 6 GPa for Ta, at 100 GPa. It is in agreement with
LAPW calculations of Wang et al.29

2. Calculated elastic constants

In Table IV the calculated and experimental values of the
elastic constants for tantalum are listed. They were calcu-
lated at the theoretical equilibrium volumes, using our best
pseudopotential. When comparing the theoretical and experi-
mental elastic constants, we see that the deviations vary be-
tween 3% and 22%, the worst agreement being found for
C44. Gülseren and Cohen30 found that thermal effects at con-
stant volume are quite small except at pressures greater than
200 GPa, and that C44 tends to soften at zero pressure with
increasing temperature. So our results should not be im-
proved by adding temperature effects.

3. Phonon spectra in tantalum under pressure

The calculations were performed using the HGH pseudo-
potential within GGA and without spin-orbit coupling �we
checked that the influence of spin-orbit coupling was negli-

gible�. We calculated the full dynamical matrix on an
8�8�8 grid in the full Brillouin zone, which amounts to 29
inequivalent q vectors in the irreducible BZ. The dispersion
curves along symmetry directions and the phonon density of
states were then calculated by a Fourier interpolation on this
grid. The whole process was iterated for six values of the
atomic volume, corresponding to pressures from 0 to 1000
GPa.

On Fig. 4 we plot the phonon dispersion curves that we
have calculated at ambient pressure along high symmetry
directions in reciprocal space. They are in excellent agree-
ment with the inelastic neutron diffraction data of Woods.33

Especially, the inflexion on the longitudinal branch in the
�-H direction, which is typical of the VB column �V, Nb, Ta�
is accurately reproduced. These anomalies tend to disappear
under pressure, giving dispersion curves typical of normal
bcc elements, as can be seen on Fig. 5. From the calculated
phonon density of states at various atomic volumes, it is
possible, by an averaging procedure, to calculate the evolu-
tion of the phonon Grüneisen parameter under pressure.

In Fig. 6 we can see that our calculations are consistent
with other theoretical approaches, even if we predict a
slightly different decrease with increasing pressure.28,34 Yet it
can be noticed that there is a wide dispersion of the calcu-
lated values.

TABLE IV. Elastic constants at 0 K �in GPa� for bcc Ta.
�C11−C12� /2 and K are added for comparison. K is calculated by
Eq. �5�.

C11 C12 C44
C11−C12

2 K

Present 258.7 168.8 67.8 45 198.8

exp.a 266.3 158.2 87.4 54.1 194.2

exp.b 266 161 82.5 52.5 196

aReference 31.
bReference 32.

FIG. 4. P=0 phonon dispersion curves for Ta and phonon density of states �extreme right�, compared to the inelastic neutron diffraction
data of Woods �Ref. 33�.
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B. Al, Ti, Cu, W, Pt, Au

1. Equations of state

Given our accurate results concerning EOS and elastic
constants for Ta, we chose to test pseudopotentials and the
exchange-correlation functional on six other metals: Al, Ti,
Cu, W, Pt, and Au. For each metal we calculated equation of
state up to 150 GPa and elastic constants, and systematically
compared our PP calculations with recent DAC data. The
maximal experimental pressures were 94 GPa for Au and Pt,
and 153 GPa for Cu, Al, and W.1 The thermal pressures were
estimated according to 0 K and 293 K isotherms, in Refs.
35–37 to be less than 1.7 GPa for the six metals, and as for
Ta was neglected.

The general trend that V0 within GGA is slightly better
than within LDA was also observed for Al, Ti, Cu, and W,
yet it does not seem to be true for platinum. However, if one
only includes 5d and 6s electrons in the valence, the equilib-
rium properties are slightly improved. This could be related
to the fact that, at the atomic level, the 4f states are very
close in energy to the 5s states; so, if one includes the 5s and
5p states in the valence, one should also treat the 4f states on
an equal footing.

Spin-orbit coupling is found to have a small effect on the
values of V0 and K0, both within LDA and GGA. We tested
its effect on the EOS for the other three heavy metals, W, Pt,
and Au. The values obtained for V0 and K0 with and without
spin-orbit coupling are listed in Table V, for HGH pseudo-
potentials.

Introducing spin-orbit coupling leads to 
V0�0.2%,

K0�2% for W, and 
V0�1%, 
K0�5% for Pt and Au. It
is in agreement with previous studies on gold.43 We thus did
not include spin-orbit coupling in further calculations, except
for the TM pseudopotential for platinum. Maybe a full treat-
ment of relativistic effects would be necessary to unambigu-
ously quantify this effect.

All our EOS results are summarized in Table VI. GGA
appears to be the best exchange-correlation approximation
for Al, Ti, Cu, and W, which agrees with all-electron studies

of Ostanin et al.40 and Jona et al.41 on titanium and copper
respectively. On the contrary, LDA is found to give better
results for Pt and Au. Boettger43 has already found that LDA
predicts V0 and K0 correctly for gold. Equilibrium volumes
obtained with pseudopotentials are globally lower than all-
electron results by less than 1.5%. On the contrary, bulk
moduli determined by PP calculations are greater than those
deduced from all-electron methods by less than 9%. Such a
dispersion appears to be normal, as bulk moduli are deduced
from analytical fits of raw ab initio data. The equilibrium
volume is determined within less than 1.5% of experiment
except for Ti, the error on bulk modulus is within 6% except
for Ti and Au. So our global results compare well with ex-
perimental and all-electron data, showing the good accuracy
of the pseudopotentials used here.

FIG. 5. P=1000 GPa phonon dispersion curves for Ta and phonon density of states �extreme right�.

FIG. 6. Calculated evolution of the Grüneisen parameter with
density for Ta and comparison with other approaches. The corre-
sponding pressures can be found on the upper horizontal axis.
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We have plotted in Figs. 7 and 8 pressure versus the vol-
ume compression V /V0. We can see that for Al, Cu, and W
there is a very good reproduction of the DAC data up to 150
GPa. This trend is evidenced on Fig. 9 where the difference
between theoretical and experimental pressures does not ex-
ceed 6 GPa for these three metals. It is in agreement with
LAPW calculations of Wang et al.29

As for Au and Pt, not only do we obtain poor equilibrium
properties, but we also find a systematic increase with pres-
sure, the deviation between theory and experiment reaching
8 GPa near 100 GPa. It confirms the fact that in our calcu-
lations, we miss part of the physics specific to these two

elements.The same trend should also occur for �-Ti.

2. Elastic constants

Given the poor quality of our EOS results for Au and Pt,
it was useless to calculate their elastic constants. So we re-
stricted ourselves to the four other metals �Al, Cu, Ti, and W�
and in the case of Ti we consider only the hcp phase. In

TABLE V. EOS parameters for W, Pt, and Au when the spin-
orbit �SO� coupling is included or not. V0 are in Å3/atom, K0 in
GPa. The calculations are done with HGH pseudopotentials.

LDA LDA+SO GGA GGA+SO

W bcc

V0 15.45 15.48 15.95 15.99

K0 338.01 330.28 309.96 304.06

Pt fcc

V0 14.82 14.9 15.59 15.74

K0 305.99 297.01 250.85 241.81

Au fcc

V0 17.06 16.91 18.13 17.9

K0 181.98 188.95 135.13 142.25

TABLE VI. Zero-pressure properties of all the studied metals �for Ta see Table III� obtained with pseudopotential calculations from a
Birch-Murnaghan fit. Lattice parameters a0 are given in Å, equilibrium volumes V0 in Å3/atom, bulk moduli K0 in GPa. DAC data are from
Dewaele et al. �Ref. 1� except for Ti �see Ref. 38�. The best results are in bold.

Present work DAC data Previous all-electron works

Metal PP a0 V0 K0 K0� V0 K0 K0� V0 K0 Ref.

Al LDA PAW 3.98 15.81 83.5 4.59 16.57 73 4.54 GTOa LDA 15.85 82.85 39

GGA PAW 4.05 16.58 77.36 4.23 GTO GGA 16.51 74.12 39

Ti hcp LDA PAW 2.86 16.09 130.04 3.01

GGA PAW 2.93 17.31 112.47 3.59 17.7 117 3.9 FP-LMTOb GGA 17.36 114 40

Ti � GGA PAW 3.71 17.08 114.23 3.46 17.4 138 3.8

Cu LDA HGH 3.54 11.09 178.62 4.95 11.81 133 5.3 FP-LAPWc LDA 11.26 177.7 41

GGA HGH 3.64 12.05 134.19 4.94 FP-LAPW GGA 12 148.7 41

GGA PAW 3.63 11.99 138.47 4.97

W LDA HGH 3.14 15.45 338.01 4.35 15.86 296 4.3 LAPWd LDA 15.51 337 9

GGA HGH 3.17 15.95 309.96 4 LAPW GGA 16.15 307 9

Pt LDA HGH 3.9 14.82 305.99 5.32 15.1 277 5.08 FP-LMTO LDA 14.9 280.8 42

GGA HGH 3.97 15.59 250.85 5.65

LDA+SO TM 3.93 15.2 291.18 5.35

Au LDA HGH 4.09 17.06 181.98 5.77 16.96 167 6 LCGTO-FFe LDA 16.48 190 43

GGA HGH 4.17 18.13 135.13 6 LCGTO-FF GGA 17.89 142 43

aGTO: Gaussian-type orbitals.
bFP-LMTO: Full-potential linear muffin-tin orbital.
cFP-LAPW: Full-potential linearized augmented plane wave.
dLAPW: Linearized augmented plane wave.
eLCGTO-FF: Linear combinations of Gaussian-type orbitals fitting function.

FIG. 7. Theoretical pressure versus relative volume for Al, Cu,
and W �GGA�. The white diamonds represent the DAC data from
Ref. 1, the black circles are FP-LAPW �GGA� results of Ref. 29.
The solid lines are present PP calculations.
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Table VII the calculated values of the elastic constants are
listed and compared to experiment. They were calculated at
the theoretical equilibrium volumes, using our best pseudo-
potential for each element. When comparing the theoretical
and experimental elastic constants, we see that generally the

discrepancy is less than 10% but can reach −23% and +16%
in the worst cases �C44 and C13 for Ti�. This range is com-
parable with previous studies.

VII. CONCLUSION

We have performed extensive calculations of equations of
state under pressure on seven metals using various available
pseudopotentials. In most cases, we obtain a fair agreement
with recent high pressure DAC measurements, usually better
than 5 GPa up to 150 GPa. The present calculations compare
also well with previous all-electron studies, and give the
same trend with respect to experiment as for LDA/GGA ap-
proximations. The generalized gradient approximation ap-
pears to give best equilibrium properties for all metals except
for Au and Pt where local density approximation is better,
which remains to be explained, beyond error compensations.

The elastic constants are determined within 10–20% of
experiment. This deviation range corresponds to a typical
order of magnitude for the precision obtained in other studies
on these quantities, which are extremely sensitive to the con-
vergence of the calculation, apart from the quality of the
pseudopotential itself.

So this work gives a wide range of data of static and
elastic properties for different metals, which reproduce the
experimental data quite well. It encourages further studies
with pseudopotential methods for the prediction of properties
where no experimental data are available.

However, the true challenge now for first-principles cal-
culations is to predict temperature properties with good ac-
curacy, in order to calculate fully ab initio equations of state.
One first step towards this goal is to calculate ab initio pho-
non spectra. In this paper we have presented our results for

TABLE VII. Elastic constants at 0 K �in GPa� for cubic �Al, Cu,
W� and hexagonal �Ti� metals. The elastic constants of Ti are unre-
laxed. K is calculated by Eq. �5� for cubic structures and Eq. �10�
for hcp ones. �C11−C12� /2 and K are added for comparison.

C11 C12 C44
C11−C12

2
K C13 C33

Al Present 108.2 56.6 30.5 25.8 73.8 - -

exp.a 123 70.8 30.9 26.1 88.2 - -

exp.b 114.3 61.9 31.6 26.2 79.4 - -

exp.c 106.8 60.4 28.3 23.2 75.9 - -

Cu Present 171.1 122.2 75.3 24.5 138.5 - -

exp.d 176.2 124.9 81.8 25.7 142 - -

exp.e 166.1 119.9 75.6 23.1 135.3 - -

W Present 502.6 213.6 145.9 144.5 309.9 - -

exp.f 532.6 205 163.1 163.8 314.2 - -

Ti Present 171.6 85 39 43.3 112.8 78.6 187.5

exp.g 176.1 86.9 50.8 44.6 110 68.3 190.5

aReference 44.
bReference 45.
cReference 46
dReference 47.
eReference 48.
fReference 31.
gReference 49.

FIG. 8. Theoretical pressure versus relative volume for Au, Pt
�LDA�, and Ti �GGA�. The diamonds represent the DAC data from
Ref. 1. Other symbols correspond to experiments carried out under
different pressure media as in Fig. 7 of Ref. 38. The stars are LDA
calculations of Ref. 43, using linear combinations of Gaussian-type
orbitals fitting function �LCGTO-FF� method. The solid �Au, Pt,
�-Ti� and dashed lines �hcp Ti� are present work.

FIG. 9. Pressure difference between ab initio results and
diamond-anvil-cell measurements versus experimental pressure.
DAC data are from Dewaele et al. �Ref. 1�. Filled black symbols
are present pseudopotential calculations in LDA �Pt, Au� or GGA
�Al, Cu, W�.
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tantalum from ambient up to 1000 GPa pressures. From
these calculations, we have deduced a Grüneisen coefficient
versus density, which is a building block for full domain
equation of state construction.

ACKNOWLEDGMENTS

We acknowledge Pierre-Matthieu Anglade, Agnès Dew-
aele, and Paul Loubeyre for fruitful discussions.

1 A. Dewaele, P. Loubeyre, and M. Mezouar, Phys. Rev. B 70,
094112 �2004�. For all metals a Vinet formulation was used to fit
the P�V� data. In these experiments, helium was the pressure
transmitting medium, which leads to quasihydrostatic condi-
tions. The bulk modulus was fixed to its ultrasonic value during
the EOS fit.

2 Y. Akahama, H. Kawamura, and T. Le Bihan, Phys. Rev. Lett. 87,
275503 �2001�.

3 H. Xia, G. Parthasarathy, H. Luo, Y. K. Vohra, and A. L. Ruoff,
Phys. Rev. B 42, 6736 �1990�.

4 Y. K. Vohra and P. T. Spencer, Phys. Rev. Lett. 86, 3068 �2001�.
5 R. Ahuja, L. Dubrovinsky, N. Dubrovinskaia, J. M. Osorio

Guillen, M. Mattesini, B. Johansson, and T. Le Bihan, Phys.
Rev. B 69, 184102 �2004�.

6 P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 �1964�.
7 W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 �1965�.
8 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,

3865 �1996�.
9 A. Khein, D. J. Singh, and C. J. Umrigar, Phys. Rev. B 51, 4105

�1995�.
10 D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 �1980�.
11 J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R.

Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671
�1992�.

12 C. Hartwigsen, S. Goedecker, and J. Hutter, Phys. Rev. B 58,
3641 �1998�.

13 N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 �1991�.
14 X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M.

Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Tor-
rent, A. Roy, M. Mikani, Ph. Ghosez, J.-Y. Raty, and D. C.
Allan, Comput. Mater. Sci. 25, 478 �2002�, ABINIT is a com-
mon project of the Université Catholique de Louvain, Corning
Incorporated, and other contributors �http://www.abinit.org�.

15 G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 �1999�.
16 G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 �1996�.
17 H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 �1976�.
18 L. Fast, J. M. Wills, B. Johansson, and O. Eriksson, Phys. Rev. B

51, 17431 �1995�.
19 M. Methfessel and A. T. Paxton, Phys. Rev. B 40, 3616 �1989�.
20 J.-P. Poirier, Introduction to the Physics of the Earth’s Interior

�Cambridge University Press, Cambridge, 1991�, p. 64.
21 M. J. Mehl, B. M. Klein, and D. A. Papaconstantopoulos, in

Intermetallic Compounds: Principles and Practice, edited by J.
H. Westbrook and R. L. Fleischer �Wiley, New York, 1993�, Vol.
I, Chap. 9, pp. 195–210.

22 S. L. Qiu and P. M. Marcus, Phys. Rev. B 68, 054103 �2003�.

Following Qiu and Marcus, if in the calculation the c /a ratio is
kept constant while the volume changes, a constrained bulk
modulus K�c� is defined as: K�c�= 2

9 �C11+C12+2C13+C33/2�. If
c /a is allowed to change with the volume, the bulk modulus
should be calculated as K= �C33�C11+C12�−2C13

2 ��C11+C12

+2C33−4C13�. It can be noticed that since C11+C12, C13, and
C33 are not affected by the internal relaxation, there is no inter-
nal relaxation effect on either K�c� or K.

23 X. Gonze, Phys. Rev. B 55, 10337 �1997�.
24 X. Gonze and C. Lee, Phys. Rev. B 55, 10355 �1997�.
25 N. W. Ashcroft and D. A. Mermin, Solid State Physics �HRW

International Editions, New York, 1976�, pp. 492–493.
26 J. C. Boettger, Phys. Rev. B 64, 035103 �2001�.
27 R. E. Cohen and O. Gülseren, Phys. Rev. B 63, 224101 �2001�.
28 P. Söderlind and J. A. Moriarty, Phys. Rev. B 57, 10340 �1998�.
29 Y. Wang, D. Chen, and X. Zhang, Phys. Rev. Lett. 84, 3220

�2000�.
30 O. Gülseren and R. E. Cohen, Phys. Rev. B 65, 064103 �2002�.
31 F. H. Featherston and J. R. Neighbours, Phys. Rev. 130, 1324

�1963�.
32 K. W. Katahara, M. H. Manghnani, and E. S. Fisher, J. Appl.

Phys. 47, 434 �1976�.
33 A. D. B. Woods, Phys. Rev. 136, A781 �1964�.
34 J. A. Moriarty, J. F. Belak, R. E. Rudd, P. Söderlind, F. H. Streitz,

and L. H. Yang, J. Phys.: Condens. Matter 14, 2825 �2002�.
35 R. McQueen, S. Marsh, J. Taylor, J. Fritz, and W. Carter, High

Velocity Impact Phenomena �Academic, New York, 1970�, pp.
531–543.

36 J. A. Morgan, High Temp. - High Press. 6, 195 �1974�.
37 O. L. Anderson, D. G. Isaak, and S. Yamamoto, J. Appl. Phys.

65, 1534 �1989�.
38 D. Errandonea, Y. Meng, M. Somayazulu, and D. Häusermann,

Physica B 355, 116 �2004�.
39 J. E. Jaffe, R. J. Kurtz, and M. Gutowski, Comput. Mater. Sci. 18,

199 �2000�.
40 S. A. Ostanin and V. Y. Trubitsin, J. Phys.: Condens. Matter 9,

L491 �1997�.
41 F. Jona and P. M. Marcus, Phys. Rev. B 63, 094113 �2001�.
42 T. Tsuchiya and K. Kawamura, Phys. Rev. B 66, 094115 �2002�.
43 J. C. Boettger, Phys. Rev. B 67, 174107 �2003�.
44 P. M. Sutton, Phys. Rev. 91, 816 �1953�.
45 G. N. Kamm and G. A. Alers, J. Appl. Phys. 35, 327 �1964�.
46 J. J. F. Thomas, Phys. Rev. 175, 955 �1968�.
47 J. W. C. Overton and J. Gaffney, Phys. Rev. 98, 969 �1955�.
48 Y. Hiki and A. V. Granato, Phys. Rev. 144, 411 �1966�.
49 E. S. Fisher and C. J. Renken, Phys. Rev. 135, A482 �1964�.

FIRST-PRINCIPLES EQUATIONS OF STATE AND … PHYSICAL REVIEW B 72, 214101 �2005�

214101-9


