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High-T, superconductivity due to coexisting wide and narrow bands: A fluctuation exchange
study of the Hubbard ladder as a test case
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We propose that when the Fermi level lies within a wide band and also lies close to but not within a

coexisting narrow band, high-7, superconductivity may take place due to the large number of interband pair
scattering channels and the small renormalization of the quasiparticles. We show using the fluctuation ex-
change method that this mechanism works for the Hubbard model on a ladder lattice with diagonal hoppings.
From this viewpoint, we give a possible explanation for the low T for the actual hole-doped ladder compound,
and further predict a higher 7, for the case of electron doping.
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The discovery of high-T, superconductivity in the
cuprates,' followed by discoveries of various unconventional
superconductors, has brought up renewed fascination for the
search for high-T,. superconductors, for which a theoretical
guiding principle is highly desired. One way to attack this
problem is to theoretically search for lattice structures that
provide good conditions for Cooper pairing. Ladderlike
structures may be considered as candidates for this,> but up
to now, the 7, in the actual hole-doped ladder compound
Sry4_,Ca,Cu, 0y, (14-24-41) remains around =12 K,3 which
is low compared to the layered cuprates. In this context, we
have previously proposed a high-7,. mechanism due to dis-
connected Fermi surfaces, which can in fact be realized with
a ladderlike lattice structure with a larger hopping integral in
the rung direction than in the leg direction,* but up to now
there exist no actual materials (or methods) to realize the
situation we have proposed. In the present study, we propose
a different mechanism for high-7,. superconductivity in sys-
tems with coexisting narrow and wide bands, which may be
realized in actual ladder compounds with electron doping.

Our idea is as follows. Let us consider a system where the
Fermi level E lies within a band with a moderate width (we
call this “the wide band A”) and also lies close to, but not
within, a narrow band (“band B”). If the amplitude of the
pair scattering processes from band A to band B is strong
enough, the pairing instability may become very large be-
cause (i) a sign change of the gap, necessary for repulsive
pairing interactions, occurs between the bands, so that there
are no gap nodes on the Fermi surface, and (ii) there is a
huge number of interband pair scattering channels due to the
narrow character of band B (see the bottom of the right panel
in Fig. 1). Another point to be stressed here is that the Fermi
level is not within the narrow band, so that the renormaliza-
tion of the quasiparticles at the Fermi level is not so large as
to strongly suppress superconductivity. Systems with coex-
isting wide and narrow bands may be reminiscent of models
consisting of wide s,p bands and narrow d, f bands, or mod-
els for MgB, comprising p,. and p, orbitals, but in those
cases, the amplitude of the interband (interorbital) pair scat-
tering processes may not be so large because of the different
character of the orbitals. Here we consider systems with one
orbital per site, where the multiplicity of the bands originates
from the lattice structure rather than the multiplicity of the
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orbitals at each site, so that the amplitude of the interband
pair scattering can be strong, originating from the large on-
site repulsion.

The above condition for the energy bands can most sim-
ply be satisfied in a tight-binding model on a ladder lattice
with diagonal hoppings as shown in Fig. 1. The Hamiltonian
of this model is given in momentum space as

B R —2f;cosk =2t cosk—t,)(ckg>
Hiyin = % (ck”’d’“’)<— 2t' cosk—t, —2t;cosk diy)’
where ¢, and d,, annihilate an electron with spin o at wave
number k on the left and right legs, respectively, and 7, ¢,,
and ¢’ are the hopping integrals in the leg, rung, and diagonal
directions, respectively. The dispersion of the two bands is
given as e,(k)=-2(t;=1")cos k +t,. When ¢'=0 (Fig. 1, top
of the right panel), the two bands have identical dispersions
with a level offset of 2¢,, while one of the bands (band B) is
narrower than the other (band A) in the presence of ¢/, and
becomes perfectly flat for ¢’ = +¢; (Fig. 1, bottom of the right
panel).

Here, we consider the on-site interaction (U) term in ad-
dition to the above kinetic energy terms, and also take into
account the trellislike lattice structure of the actual cuprate
ladder compounds,>® where the ladders are weakly coupled
by diagonal hoppings #; (Fig. 2). We estimate the supercon-
ducting transition temperature of this Hubbard model using a
combination of the fluctuation exchange (FLEX) method and
the Eliashberg equation, which has been applied to the prob-
lem of layered high-T.. cuprates.” The values of U, t,, and ;
will be fixed at U=61,, t,=t;, and t;=0.25¢, throughout the
study. We define the band filling n as n=(number of
electrons)/(number of sites), so when the bands are both
fully filled, the band filling is n=2.

In the two-band version of the FLEX method,? the
Green’s function G, the susceptibility y, the self-energy 2,
and the superconducting gap function ¢ all become 2 X2
matrices, e.g., G,,(k,ie,), where [, m specify the two sites in
a unit cell. The orbital-indexed matrices for the Green’s func-
tion and the gap functions can be converted into band-
indexed ones with a unitary transformation. As for the spin
susceptibility, we diagonalize the spin susceptibility matrix
and concentrate on the larger eigenvalue, denoted as y.
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FIG. 1. (Color online) Left panel: The hopping integrals in the
ladder lattice are shown. Right panel: the energy dispersion for the
ladder lattice with t'=0 (top) and with —z; (bottom). The curved
arrows show the pair scattering processes that give rise to
superconductivity.

The actual calculation proceeds as follows: (i) Dyson’s
equation is solved to obtain the renormalized Green’s func-
tion G(k), where k=(k,ie,) denotes the two-dimensional
(2D) wave vectors and the Matsubara frequencies; (ii) the
effective electron-electron interaction V(V(g) is calculated by
collecting random-phase-approximation-(RPA-) type bubbles
and ladder diagrams consisting of the renormalized Green’s
function, namely, by summing up powers of the irreducible
susceptibility xi.(q) =—(1/N)Z,G(k+¢)G(k) (N is the num-
ber of k-point meshes); (iii) the self-energy is obtained as
S(k)=(1/N)=2,G(k-q)VV(g), which is substituted into
Dyson’s equation in (i), and these procedures are repeated
until convergence is attained.

We determine 7. as the temperature at which the eigen-
value N\ of the linearized Eliashberg equation,

N ==+ S V= R)G k)G (= K)o (),
K'1'm'

reaches unity. Here the pairing interaction V® for singlet

pairing is given by V(g)=U+3Uxin(q)/[1-Uxin(9)]

= 3UXin(@)/[1+ Uxin(@)]:

Throughout the study, we take up to 64X 64 k-point
meshes and the Matsubara frequencies €, from —(2N,
—1)@T to (2N,.—1)#@T with N, up to 8192 in order to ensure
convergence at low temperatures.

FIG. 2. (Color online) The trellis lattice adopted in the present
study.
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FIG. 3. T, plotted as a function of (a) —¢' for n=1.25, and (b) n
for —t'=0.95t,. (c) The eigenvalue of the Eliashberg equation \
plotted as a function of —¢' for n=0.9 and 7=0.057,.

We now move on to the results. We first show the ¢’
dependence of T, for n=1.25. We consider the case of ¢’
<0 since this is the realistic choice of sign for the cuprates.'?
In Fig. 3(a), we plot T, as a function of —¢’ for n=1.25. It can
be seen that 7. takes its maximum around —t¢'=¢, where
band B is flat. There, 7. almost reaches 0.08¢;, which is ex-
tremely high if #; is assumed to be of the order of a few
hundred meV as in the cuprates.

To trace back the origin of this high 7, we look into the
Green’s functions, spin susceptibility, and gap functions for
—1'=0.951; and n=1.25. In Fig. 4, we plot |G, (k. k,,i7T)[?,
X(ky.k,,0), and ¢, (k,k,,i7T) viewed from the direction of
the k, axis. Here, we display the results for G and ¢ in the
band representation, where u and / denote the upper and
lower portions of the bands as shown in the inset of Fig. 4(a).
Since bands A and B intersect with each other, the wide band
A (the narrow band B) consists of the upper (lower) band
around k,=+ and the lower (upper) band around k,=0. In
the Green’s functions, the two peaklike structures seen
around k,==+7/4 are due to the Fermi level crossing, while
the narrow structure (noted as N.B.) is owing to the flatness
of band B. Since the volume of the Fermi surface (the length
2kp) is =m/2, the wide band A is nearly quarter filled, and
thus the narrow band is fully filled, i.e., the Fermi level lies
above the narrow band. The spin susceptibility has a broad
structure again due to the flatness of band B, which enhances
the number of pair scattering channels due to spin fluctua-
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FIG. 4. (Color online) (a) |G,(ky,k,.imkgT)|%, (b) x(k,.k,.0),
and (c) @ulk,ky,imhkgT) for n=1.25, t'=-0.951, and T=0.08¢
viewed from the direction of the k, axis. The thickness of the curves
represents the dispersion in the k, direction. In (a) and (c), quanti-
ties for a=u (upper band) and ! (lower band) are shown by dark
green and red (dark and light in print) curves, respectively, while
N.B. (W.B.) denotes the portions corresponding to those for the
narrow band B (wide band A). The relation between the narrow

/wide bands and the lower /upper bands is shown in the inset of (a).

tions. The gap function changes sign between band A and
band B, but there is no sign change within each band, as
expected in our intuitive picture.

In Fig. 3(b), we fix —¢' at 0.957; and show the band filling
dependence of 7., which takes its maximum around
n=1.25. This result shows that 7. becomes low when 7 is too
large, that is, when the Fermi level lies too far above the
narrow band, since this will make the system close to a
purely single-band model. T also goes down when the Fermi
level comes too close to or is within the narrow band B.

In fact, when the Fermi level is within the narrow band,
we find a t’ dependence that is completely the opposite of
what is seen in Fig. 3(a). In Fig. 3(c), we plot the eigenvalue
N\ of the Eliashberg equation for n=0.9 at T=0.05¢,. In this
case, a finite T, is not obtained for all of the ¢’ values, so we
plot \ for a fixed temperature instead of 7. As seen in the
figure, N takes its minimum around —t'=t,. In this case, the
Fermi level is within band B as can be seen from the Green’s
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FIG. 5. (Color online) Plots similar to Fig. 4 for n=0.9 and ¢’/
=-0.951,.

a

function shown in Fig. 5(a); namely, the length between the
two peaks is about 0.77r (which is in fact larger than the case
of n=1.25 meaning that the band is not rigid), so that both of
the bands have to be partially occupied.!" We can see in Fig.
5(a) that the Green’s functions are small (the quasiparticle
renormalization is strong) compared to those in Fig. 4(a), so
this should suppress T.. Moreover, the gap function [Fig.
5(c)] changes sign within the wide and the narrow bands near
the Fermi surface, and this also should be destructive for
superconductivity. The sign change in the gap means that
contributions from the pair scattering interactions within the
narrow (and the wide) band are large, which is a conse-
quence of the Fermi level crossing of the narrow band with a
large density of states. This means that the peak structure in
the susceptibility [Fig. 5(b)] originates from both interband
and intraband scattering processes.

The above results suggest that superconductivity with
high T, may be obtained in the ladder compounds for the
case of electron doping.'> The condition for the maximum
T., —t' =1, is of course unrealistic for the cuprate ladders,
but we notice in Fig. 3 that the enhancement of 7. remains
even if we deviate from —t'=7, and relatively high T,
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FIG. 6. T, plotted as a function of n for t'=—0.41,.

(~0.041,) is obtained even below —t'=0.57,. Note that ¢’
should be around ' =—0.4¢, in the actual cuprate ladder com-
pounds, assuming that ¢’ has values similar to those for the
layered cuprates such as YBa,Cu;0,.1°

To look in more detail into the possibility of high-7. su-
perconductivity for realistic values of the hopping integrals,
we plot in Fig. 6 the band filling dependence of T, for —t’
=0.4t,. T, is not calculated near n=1 because (i) antiferro-
magnetic fluctuations strongly develop at high temperatures
so that T, is not obtained, and in any case, (ii) FLEX loses its
validity in the vicinity of half filling, where a Mott transition
should take place. We find that a maximum 7. of ~0.05%,
which is still considerably high, is reached at around n=1.3,
namely, when a large amount of electrons is doped. By con-
trast, for hole doping (n<<1), T, turns out to be much
smaller, namely, of the order 0.0017,, which is of the same
order as the T, (=12 K) for the actual 14-24-41 compound.*
The origin of the difference between the electron- and hole-
doped cases can again be traced back to the Green’s func-
tions, the spin susceptibility, and the gap functions, in which
the characteristic features seen for '=-0.95¢; (Fig. 4) still
remain to some extent. The details on this point will be pub-
lished elsewhere.!?

We have seen that our high-7, mechanism due to coexist-
ing narrow and wide bands works for a ladder system. Now,
an interesting question is to ask how general this mechanism
is. We have in fact found similar results for the Hubbard
model on a lattice where a pair of square lattices with in-
plane nearest neighbor hoppings (7) is coupled by out-of-

PHYSICAL REVIEW B 72, 212509 (2005)

plane vertical (¢,) and diagonal (¢') hoppings.'® These results
seem to suggest that the present mechanism is likely to work
on two band lattices having the Hamiltonian of the form

ek)  as(k)+ B) (ck,(,)
Hyn % (ck»"" dkﬂ)(ag(k) + [‘3 S(k) dk,tr 7

where « and S are constants. Here, a flat band coexists with
a wide band for a==+1 [e(k)=-2¢, cos k for the ladder, and
—21(cos k,+cos k,) for the coupled planes]. It would be an
interesting future problem to investigate the validity of the
present superconducting mechanism in a wider class of mod-
els where wide and narrow bands coexist.

To summarize, we have proposed a mechanism for high-
T. superconductivity in a two-band system where wide and
narrow bands coexist. When the Fermi level lies close to but
not within the narrow band, 7. becomes higher as the flatness
of the narrow band increases, while completely the opposite
takes place when the Fermi level is within the narrow band.
From this viewpoint, we have given a possible explanation
for the rather low T, for the actual hole-doped 14-24-41 lad-
der compound, and have further predicted a higher T'. for the
case of electron doping. For the 14-24-41 compound, recent
NMR experiments have observed a coherence peak and an
unchanged Knight shift across 7,.."* As for the presence of
the coherence peak, the singlet gap function obtained in our
study can be consistent with the experiments since the gap
does not change its sign on the Fermi surface. As for the
unchanged Knight shift, we believe further investigation is
necessary, but even if this is due to spin-triplet pairing origi-
nating from effects not included in the present study (e.g.,
phonons), we have to explain why the T, of singlet pairing is
even lower than 12 K. The present viewpoint can still be
relevant for answering this question, and we believe that the
prediction for a higher 7. in the case of electron doping
remains valid.
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