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Collective modes involving the gap amplitude � and phase � in a multilayered superconducting junction are
considered. The junction is formed by a sequence of “clean” superconducting layers S separated by insulating
barriers I. Using the quasiclassical Green function method, we derive the self-consistent linear equations
describing the collective amplitude � and phase � oscillations. We find that the � and � modes in “clean”
multilayered Josephson junctions may be long lived for a range of magnitudes of the barrier transparency and
Cooper coupling strength. We find that the frequency of the resonances in a multilayered junction can be tuned
by applying a bias supercurrent across the adjacent subjunction.
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The collective modes �CM� of multilayered superconduct-
ors are of a fundamental interest. In a bulk BCS supercon-
ductor, with a complex energy gap given by �= �� �ei�, two
modes have been discussed, one involving a small oscillation
��t� of the phase, ��t�=�0+��t�, and the other an oscilla-
tion ��t� of the gap amplitude, ���t� � =�0+��t� near their
steady state values �0 and �0, where t is the time variable.
The first of these, which is referred to as the Anderson-
Bogoliubov �AB� mode,1,2 would occur at the electron
plasma frequency �p �typically in metal superconductors
�p /�F�10, � /�F�10−3–10−4, and the Fermi energy
�F�1 eV�: an oscillating phase necessarily produces an os-
cillating current which in turn creates an oscillating charge
density.3 The second mode, which was examined by Little-
wood and Varma4 �LV�, is found to lie at or above the ab-
sorption threshold 2�, and hence is strongly damped.5

In the SIS Josephson junction sketched in Fig. 1 �where S
and I denote superconductors and an insulator, respectively�
one expects symmetric �+� and antisymmetric �−� AB and
LV modes �AB

± and �LV
± . The branches �AB

+ and �LV
± lie near

�p and 2�, respectively. In low transparent junctions �LV
±

strongly decay,7 while the �AB
− mode is typically stable

�since �AB
− �2�� and actually coincides with the Josephson

plasma mode, i.e., �AB
− =�JP=�2eIc /	C, where Ic and C are

the junction critical current and capacitance, respectively.
The �JP mode arises due to ac Josephson supercurrent oscil-
lations, which are out of phase with the ac charge on the
junction’s electrodes. However, if the junction transparency
D is not low �D
1�, the situation may be dramatically dif-
ferent. The modes �LV

± can then be pushed down by a stron-
ger tunneling interaction and may become stable. All the
relevant modes �i.e., �LV

± and �AB
− � then interact with each

other, which means that the Josephson supercurrent oscilla-
tions are hybridized with oscillations involving elementary
Cooper pairing processes.

The Josephson supercurrent across a “clean” SIS junction
is transferred as follows �see Fig. 1�. A Cooper pair in the left
S layer can dissociate into a lone electron in S and an elec-
tron which enters the right S electrode. This electron then
joins the superfluid condensate, but to conserve charge, a
hole h is simultaneously created; momentum conservation
requires that this hole moves opposite to the incident electron

e. The hole �which has a negative energy −�� is reflected
back to the left S electrode, and, on entering the left elec-
trode, annihilates with the remaining electron of the original
Cooper pair, as shown in Fig. 1. The duration of the whole
process is 
min�	 /�JP ,	 /��, which ensures that a Cooper
pair is coherently transferred across the junction.

In a multijunction structure6–8 one expects additional
modes. Of particular interest may be a symmetric SISIS
structure, where, for example, we expect two Josephson
plasma modes �JP

± which are symmetric �+� and antisymmet-
ric �−� with respect to the central superconducting layer.

Many methodologies to calculate collective mode fre-
quencies are available. For a clean superconductor one can
use the time-dependent Bogoliubov equations,9 from which a
Green function of the system is computed. One assumes an
oscillating order parameter and perturbatively calculates the

change of the Bogoliubov wave function �̂=�̂0+�̂1. �̂0

and �̂1 are then used to calculate the change in the gap
function via a self-consistency condition.10

In this paper collective oscillations and a relationship be-
tween them in highly transparent SIS and SISIS supercon-
ducting junctions are considered. We analyze two kinds of
processes: �i� those involving creation and recombination of
Cooper pairs, which depend on the coupling constant �, and

FIG. 1. A Cooper pair transfer across an SIS junction.
U= �	 /2e��̇a is a small ac bias voltage due to the JP oscillations.
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�ii� those involving the junction capacitance C and ac super-
currents. The paper is organized as follows. First we deter-

mine the equilibrium Bogoliubov state �̂ of the system. For
the case of the SIS junction we then assume that the system
is disturbed by small nonstationary deviations ��1,2��t� and
��1,2��t� where the upper subscripts denote the two adjacent

electrodes. The steady state �̂0 and a nonstationary pertur-

bation �̂1�t� are then used to compute the quasiclassical re-
tarded one-point Green function ĝ of the junction.

The Bogoliubov state �̂ of the system �which is a spinor
with two components u and v� is found using the quasiclas-

sical approach11–13 for envelope wave functions ̂. A small
nonstationary deviation of the envelope wave function

̂1= ̂− ̂0 is then described by the linearized matrix Andreev
equation,

i
�

�t
̂1 = H0̂1 + H1̂0, �1�

where we write ̂1 and ̂0 in spinor form as

̂0 = �u0

v0
	, ̂1 = �u1

v1
	 . �2�

Here H0 is the unperturbed Hamiltonian,

H0 = �− � + �vFq − i�0

i�0 − � − �vFq
	 , �3�

where �=vx /vF, vF is the Fermi velocity, vx is the x compo-
nent of the velocity, q=�� /vF is the envelope wave vector,
��= ���2−�0

2 sign �+ i�����2−�0
2�+ i��0

2−�2���0
2−�2�, ��x�

is the Heaviside step function; H1 is a small time-dependent
perturbation induced by the CM’s

H1 = � eU − i�� − i��0�
i�� + i��0� − eU

	 . �4�

The coupling between the two junction electrodes in Eqs.
�1�, �3�, and �4� is taken into account in two ways: �i� via
“special” boundary conditions12,13 for the envelope wave

function ̂ and �ii� via the Josephson relationship14

�̇�1�− �̇�2�= �2e /	�U, where U is a small oscillatory bias volt-
age induced by the CM. All the functions in �1�, �3�, and �4�
depend on the coordinate along the quasiclassical trajectory
x. The functions u1, v1, �, and � are also time dependent.
Equation �1� is valid under the assumption 	vFq�EF �which
actually defines quasiclassical motion11–13�; here q is the en-
velope wave vector characterizing “slow” variations of the
physical quantities along the quasiclassical trajectory �typi-
cally q
� /�S, where �S is the BCS coherence length in S�,
and EF is the Fermi energy. Equation �1� is completed by the
linearized equations for � and �, which follow from the self-
consistency condition for the energy gap and the continuity
condition for the electric current and at zero temperature take
the form,

�s�a� = ��Re f1
s�a���,n �5�

�0�̈s�a� = ��Im f̈1
s�a���,n + �J0

2 ��g1
s�a���,n, �6�

where � is the Cooper coupling constant, �. . .��,n

=d�nd��¯� / �4�� �with n=p / pF, where p is the electron
momentum�, �J0

2 =��0 / �RNC�, RN=1/ �e2vF�0D� �the nor-
mal state junction resistance�, �0 is the electron density of

states at the Fermi level, f1=Tr�P̂nĝ1�, and g1=Tr�P̂dĝ1�; P̂n

and P̂d are projection operators defined by P̂n= ��̂1+ i�̂2� /2

and P̂d= �1̂+ �̂3� /2, where the Pauli matrices are �̂i; i=1¯3
and g1 and f1 are discussed below. The indices s�a� in Eqs.
�5� and �6� denote symmetric �s� and antisymmetric �a� com-
binations of the form �s�a�= ���1�±��2�� /�2, etc. in the two
adjacent electrodes one and two. The two terms on the right-
hand-side of Eq. �6� have different physical origins. The first
term follows from the self-consistency condition for ��t� and
the second term is related to the Josephson plasma oscilla-
tions described by the continuity condition for the CM-
induced ac electric current. The functions g1 and f1 entering
Eqs. �5� and �6� are small corrections to the quasiclassical
Green function matrix, and are computed using the solutions
for u1 and v1 obtained from Eq. �1� which satisfy the bound-
ary conditions for a junction of a particular geometry. Fol-
lowing Refs. 11–13 we write

ĝ1 = �̄0
−0

+�−1�0
+̄1

− + 0
−̄1

+ + 1
+̄0

− + 1
−̄+

0� , �7�

where ̄=−iT��̂2� and the superscript “T” means transpose.
The envelope spinor wave functions 1

±�x� �as well as 0
±�x��,

which are solutions of Eq. �1�, satisfy the boundary condi-
tions 1

+�x�→0 at x→ +� and 1
−�x�→0 at x→−�. From

Eqs. �1�, �3�, and �4� one finds

̂1
�1,2��x,�� = Ŷ�1,2����̂0

�1,2��x,�� , �8�

where the upper indices 1 and 2 indicate, the left and right
electrodes, and

Ŷ�1,2� = ��1,2�Ĝ�1,2� + ��1,2�Ĥ�1,2� + ��2,1�K̂�1,2�. �9�

The intraelectrode dynamics arise from the auxiliary

functions Ĝ�2�=2(−i�̂1��−��+����̂2+�0�̂3) /D0, Ĝ�1�

=−�̂3Ĝ�2�, Ĥ�2�= �i(���−��+2�0
2)1̂+ i�����̂3−2�0����̂1

+�0��−2���i�̂2�� /D0, and Ĥ�1�=−�̂3Ĥ�2�, while the interelec-

trode coupling is due to the terms K̂�2�=�(i��−��1̂− i����̂3

+�0�i�̂2�) /D0 and K̂�1�=−�̂3K̂�2�; here D0=2��2�−�� and �
is the frequency variable; the expressions for these functions
are rather cumbersome and were obtained using computer
algebra.

As noted above, the envelope wave function is obtained
by applying special boundary conditions at the interface bar-
rier matching ±

�1,2��xB� �where xB is the coordinate of the
interface barrier� in adjacent electrodes. Using ±

�1,2��x�, one
computes the steady-state retarded Green function ĝ0�� ,x�,
which determines the static properties of the junction.

Using Eqs. �7�, �8�, and �9�, we can reduce Eqs. �5� and
�6� to a linear matrix equation,
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��̂��� − 1̂��̂ = 0; �10�

here �̂ is a 4�n-component vector �n being the number

of interfaces� and �̂T= ��a ,�a ,�s ,�s�. The condition

det� �̂�� ,D�−1̂ � =0 yields the characteristic equation for the
CM frequencies �AB

− and �LV
± .

The coupling between different �AB
− and �LV

± modes is
proportional to � and �J0

2 . As follows from Eqs. �5� and �6�,
a strong renormalization of the Josephson plasma frequency
by the superconducting order parameter oscillations occurs if
the symmetric �LV

+ mode decays and �� /�0��a�1 �where
�a=��Im�f1

a��,n� /��a, and f1
a= f1

�1�− f1
�2��. The decay of the

�AB
− and �LV

± modes is determined by a balance between the
ac quasiparticle tunneling current and the cos � component
of the ac supercurrent.

The modes �AB
− and �LV

± are obtained as numerical solu-
tions of Eq. �10� and are calculated versus the barrier trans-
mission coefficient t=�D, Cooper coupling constant �, and
�J0 �this latter quantity coincides with the usual Josephson
plasma frequency �JP of a low-transparency SIS junction at
zero temperature�. In Fig. 2 we plot the results calculated for
the SIS junction for �=0.3 and �J0=0.5 versus the barrier
transmission coefficient t=�D. The stable branches are
shown as solid lines �along which the dissipation vanishes�
while a strongly decaying mode is indicated by a thick gray
line. The main part of Fig. 2 shows the �LV

± modes. A stable
branch �LV

− exists for t�0.3 and is located slightly below
2�. The �LV

− width is �LV
− =0.003�. Another branch �LV

+ ,
with the width �LV

+ =0.015, is less stable and is strongly fre-
quency dependent. The Josephson plasma �JP� mode origi-
nating from the ac Cooper pair transfer across the junction15

is shown schematically in inset to Fig. 2. The corresponding
CM spectral density computed for t=0.4 �see the other inset
to Fig. 2� shows two sharp peaks at �=0.12 and �=1.98 in
units of �.

The �AB
− and �LV

± modes have a more complicated struc-
ture in multilayered junctions consisting of several barriers.
In Fig. 3 we show a double barrier SISIS junction, where we
assume that the bias across each SIS subjunction may be
applied independently.16,17 Since the middle S electrode in

the SISIS junction is common to both SIS subjunctions, the
two junctions couple to each other. A particular effect of such
a coupling is manifested as the splitting of the � and � modes
belonging to each subjunction. In Fig. 4 we show the calcu-
lated results for the eigenfrequencies �AB

− and �LV
± versus the

middle-layer thickness d �in units of the BCS coherence
length ��. One can see six branches. For the case t=0.8,
�=0.3, all the branches �indicated by solid lines� are stable
with width �=0.005. The eigenfrequencies �AB

− and �LV
± of

the mode localized near the left barrier depend on the steady
state phase difference �0

R applied across the right barrier as
shown in inset to Fig. 3. One can see that the position of CM
branches versus �0

R can be shifted by 
30%. If the transpar-
ency of interface barriers I1 and I2 in an SI1SI2S junction is
different, the junction asymmetry results in additional split-
ting which remains finite, though the middle S layer is very
thick �see dotted lines in Fig. 4 plotted for t1=0.75 and
t2=0.85�.

The CM discussed in this paper may be observed experi-
mentally in highly transparent SIS and SISIS tunneling junc-
tions as resonances in the real and imaginary parts of the
complex ac impedance Yac��� versus frequency �. The func-

FIG. 2. Josephson plasma oscillation �JP� and �-mode branches
in an SIS junction. The solid lines show stable branches while a
gray thick line corresponds to an unstable branch. The inset shows
a detailed view of the JP branch.

FIG. 3. The Cooper pair transfer across the SISIS junction. �0
R

is the steady state phase difference across the right SIS subjunction.
The inset shows the CM branches versus �0

R.

FIG. 4. The CM branches in the SISIS junction �solid lines�.
Dotted lines show the CM branches in an asymmetric SI1SI2S
junction.
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tions Re�Yac���� and Im�Yac���� are out of phase with each
other and are determined by the ac Josephson and quasipar-
ticle currents. The � and � modes can be distinguished fur-
ther by applying a dc magnetic field in parallel to the junc-
tion. We conclude that the collective oscillations of the
superconducting gap amplitude and phase in “clean” multi-
layered Josephson junctions may be long lived for appropri-

ate magnitudes of the barrier transparency D and Cooper
coupling constant �. The frequencies of these sharp reso-
nances in a multilayered junction may be tuned by applying
a bias supercurrent across the adjacent subjunction.
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