
Longitudinal versus transverse spheroidal vibrational modes of an elastic sphere

Lucien Saviot1,* and Daniel B. Murray2,†

1Laboratoire de Recherche sur la Réactivité des Solides, UMR 5613 CNRS, Université de Bourgogne, 9 avenue A. Savary,
Boîte Postale 47870, 21078 Dijon, France

2Department of Physics and Astronomy, The University of British Columbia Okanagan, 3333 University Way, Kelowna,
British Columbia, Canada V1V 1V7

�Received 15 June 2005; revised manuscript received 21 July 2005; published 21 November 2005�

Analysis of the spheroidal modes of vibration of a free continuum elastic sphere show that they can be
qualitatively grouped into two categories: primarily longitudinal and primarily transverse. This is not a sharp
distinction. However, there is a relatively stark contrast between the two kinds of modes. Primarily transverse
modes have a small divergence and have frequencies that are almost functionally independent of the longitu-
dinal speed of sound. Analysis of inelastic light scattering intensity from confined acoustic phonons in nano-
particles requires an understanding of this qualitative distinction between different spheroidal modes. In addi-
tion, some common misconceptions about spheroidal modes are corrected.
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I. INTRODUCTION

With the explosion of interest in the optical properties of
nanoparticles, the classic elastic mechanical problem of the
vibrational modes of a free continuum sphere has found a
new context for application. The problem was formally and
numerically solved back in 1882.1 Nanoparticles, i.e., spheri-
cal clusters of atoms ranging in diameter from 1 to 100 nm,
have sufficiently few atoms that the continuum approxima-
tion can be questioned.2,3 Even so, it is acceptable to ignore
the effects of the discrete crystal lattice for the few vibra-
tional modes with lowest frequency as long as the nanopar-
ticle diameter exceeds several nanometers.

Inelastic light scattering of a continuous laser beam shin-
ing on the nanoparticle permits detection of the mechanical
vibrations since the changing size and shape of the nanopar-
ticle modulates the polarizability of the nanoparticle, so that
the monochromatic incident light turns into scattered light
with sidebands shifted up and down by the frequency of the
vibrations. This can be seen using experimental setups of the
Raman and Brillouin type.

For theoretical convenience the material is assumed to be
homogeneous, isotropic, and linear. The outer surface of the
sphere is free from externally imposed stresses and this situ-
ation will be referred to as the “free-sphere model” �FSM�.
The original paper by Lamb1 classified the FSM modes of
vibration into two classes, now called “torsional” �TOR� and
“spheroidal” �SPH�. The distinctive feature of torsional
modes is that the material density does not vary. In other
words, the divergence of the displacement field is zero. Fur-
thermore, the spherical symmetry permits classification of
the modes by angular momentum number ��0. �However,
later on we will show that there is value in considering � to
be a continuous variable.� There is no dependence of the
frequency on the z angular momentum m. Beyond this, the
modes are indexed by n�0. It is convenient to let p denote
either SPH or TOR, to indicate individual modes by
�p ,� ,m ,n�, and their frequencies by �p�n.

What we explore in this paper is an additional classifica-
tion of the SPH modes beyond that employed since Lamb. In

particular, SPH modes can be classified �albeit approxi-
mately and subjectively� as either being primarily longitudi-
nal �SPHL� or primarily transverse �SPHT� in nature. The
specific meaning of this will be explained further on. This is
not a sharp division, and actual modes fall somewhere in
between the two ideals. However, the contrast is sufficiently
sharp that this distinction among SPH FSM modes as SPHL
or SPHT is a very important tool.

In a recent theoretical paper, Bachelier and Mlayah4 pre-
dicted that �SPH, �=2,n� modes with differing values of n
contribute to the Raman spectrum in a highly nonuniform
way. In this paper we will show that this can be explained
using the previously mentioned distinction between SPH
modes. They pointed out that there are two separate mecha-
nisms that couple �SPH, �=2� acoustic vibrations to the sur-
face plasmon resonance and in turn lead to Raman scattering;
first, change of the particle shape and second, modulation of
the density leading to change of optical properties through
the deformation potential.

Section II reprises the formalism necessary for the FSM
solution. In Sec. III, we show explicitly what we mean by
SPHL and SPHT. In Sec. IV, we illustrate the natural appear-
ance of SPHL and SPHT modes in the high-frequency limit.
Section V discusses these results and their connection with
inelastic light scattering experiments.

II. THE FREE-SPHERE MODEL

Vibrational modes of a free linear elastic continuum ho-
mogeneous isotropic sphere were found by Lamb in 1882.1

For a mode with angular frequency �, the displacement of
material point r� from its equilibrium position is u��r��cos��t�.
For an m=0 TOR mode, u� =A�� � �r�j��kTr�P��cos ���, where
j� are spherical Bessel functions of the first kind and P� are
Legendre polynomials. For an m=0 SPH mode, u� =u�L+u�T
where

u�L�r,�� = B�� j��kLr�P��cos �� �1�

and
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u�T�r,�� = C�� � �� � �r�j��kTr�P��cos ��� �2�

where A, B, and C are real coefficients, vLkL=vTkT=�, and
vT and vL are the transverse and longitudinal speeds of
sound.

Modes with z angular momentum m�0 have a different
functional form.

R is the nanoparticle radius. If �ij is the stress tensor, the
boundary conditions at r=R are �rr=�r�=0. It is convenient
to introduce dimensionless frequencies �=kTR and 	=kLR.
Following Eringen,5 application of these boundary condi-
tions determines the allowed SPH vibrational frequencies as
zeros of a 2�2 determinant for �
0.

�� = �T11 T13

T41 T43
� , �3�

where

T11 = ��2 − � −
�2

2
� j��	� + 2	j�+1�	� ,

T13 = ��� + 1���� − 1�j���� − �j�+1���� ,

T41 = �� − 1�j��	� − 	j�+1�	� ,

T43 = ��2 − 1 −
�2

2
� j���� + �j�+1��� .

For �=0, the allowed vibrational frequencies are the zeros
of T11.

Noting that the displacement fields are real valued, it is
appropriate to use the following inner product between two
displacement fields uA and uB:6

�uA�uB� =

	
r�R

u�A�r�� · u�B�r�� d3r�

	
r�R

 d3r�

. �4�

A normalization condition �such as �u �u�=1� would typi-
cally determine the final values of B and C. But the details of
the condition do not affect the results reported here. The
displacement fields u��r�� for some selected modes are de-
picted in Fig. 1.

III. SPHEROIDAL MODE LONGITUDINALITY

Isotropic elastic materials differ in their Poisson ratio �,
which is related to x=vT /vL through x=
�1−2�� / �2−2��.
Figure 2 shows how the dimensionless frequency, �, of the
SPH �=2 FSM modes varies with vT /vL. It is quite apparent
that some modes keep the same � as vT /vL is varied. How-
ever, other modes change frequency as vT /vL changes. There
are transition points where a given mode changes from being
constant to varying with vT /vL.

This pattern visible in Fig. 2 motivates the search for a
numerical criterion to permit this contrast among modes to

be quantified. We adopt the starting point that in some sense
some modes are more transverse in nature �SPHT� while oth-
ers are more longitudinal �SPHL�. We then coin the term
“longitudinality,” denoted by L, for a quantity that varies on
a scale from 0 to 1 with 0 being purely transverse and 1
being purely longitudinal. There is no single obvious way of
doing this. Rather, we have evaluated a number of quantities
as candidates for the best measure of longitudinality, of
which we present four which work well. These will be de-
noted L1, L2, L3, and L4.

Consider a particular SPH mode with indices � and n. Its
frequency is ��vL ,vT�. Define L1 by

FIG. 1. �Color online� Displacement fields u��r�� of selected SPH
�=2 modes. As explained in the text, the first three are primarly
transverse �i.e., SPHT�. �SPH,2,3� is primarily longitudinal �i.e.,
SPHL�. The equilibrium surface of the nanoparticle and the z axis
are shown as dotted lines. The solid �red online� line shows the
distorted surface. Note that the �SPH,2,1� mode does not change the
nanoparticle shape.

FIG. 2. �Color online� Dimensionless mode frequency � as a
function of vT /vL for �SPH, �=2� modes. Vertical lines �blue on-
line� mark vT /vL for Au, Ag, Si, and Ge from left to right.
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L1 =
vL

�

��

�vL
= −

x

�

d�

dx
= 1 −

vT

�

��

�vT
. �5�

Noting that u��r��=u�T�r��+u�L�r��, we define L2 as
�uL �uL� / �u �u�, and L3 as 1− ��uT �uT� / �u �u��. But note also
that �uL �uL�+ �uT �uT�� �u �u� since �uL �uT��0.

Given a fixed value of vT /vL and n, � may be considered
to be a continuous function of �, as in Fig. 3. In terms of this
����, we define

L4 =
vT

vL − vT
� 2

�

d�

d�
− 1� . �6�

Let �¯�V and �¯�S denote averages over the nanoparticle
volume and surface, respectively. In particular, �u �u�= �ur

2

+u�
2+u�

2 �V. Some other measures of interest are as follows:
URV= �ur

2�V / �u �u�, URS= �ur
2�S / �u �u�, UTS= �u�

2

+u�
2 �S / �u �u�, and U2S=URS+UTS.
Note that all of these quantities are defined in such a way

as to be independent of m.
Except at low �, Fig. 4 shows that L1 and L2 are in close

agreement. L3 and L4 are not plotted, but also agree closely
except at low � �see Table I�. Generally, a given mode either
has all of L1, L2, L3, and L4 low, or else all high. It is thus
possible to classify modes as SPHL or SPHT. Rarely, there
are cases where the values of L1, L2, L3, and L4 are in the
intermediate range, such as in Fig. 4 for �=3 for the two
modes near �=13. Such modes, which are neither clearly
SPHL nor SPHT, always occur in pairs. The reason for this is
explained in Sec. IV.

Table II provides additional information about the modes.
The dimensionless frequency � is provided for convenience,
as is the ratio of coefficients B and C.

In principle, C /B could be expected to provide useful
information about whether a mode is SPHL or SPHT. In the

extreme case that C=0, the mode is evidently SPHL, and
likewise when B=0 the mode is SPHT. But the C /B values
do not exhibit an informative pattern.

There is a strong contrast in the values of URS for differ-
ent modes. However, it does not correlate with whether the
mode is SPHL or SPHT except at high enough �. URS is an
interesting quantity because it is the one we have to monitor
for the surface deformation mechanism except for �=0
modes.

Group theoretical arguments7 show that only SPH modes
with �=0 and 2 are Raman active. This assumes that the
nanoparticle is perfectly spherical in shape and spherically
symmetric in all of its properties. The basic nature of the �
=0 modes is much more clear because of their simplicity and
symmetry. Consequently, the modes �SPH, �=2,n� are of pri-
mary interest when trying to understand Raman intensities.

From the value of L20.14 in Table II, the displacement
of �SPH,2,0� is mostly due to the uT term and not the uL
term. Its squared displacement due to the uL term alone is
just 14% of the total. The uT term has zero divergence.
Therefore, �SPH,2,0� does not have much divergence. So the
effect of changing density on the dielectric constant through
the deformation potential may not be significant to the over-
all Raman intensity.

On the other hand, based on its URS of 0.66 and UTS
of 0.20, the surface displacement of �SPH,2,0� is strongly
along r and only weakly along � as Fig. 1 illustrates. Note
that r surface displacement changes the nanoparticle shape,
while � displacement does not.

The �SPH,2,1� mode differs from �SPH,2,0� in several
ways. From the L1 value of 0.2281 in Fig. 4, we can see that
the frequency of �SPH,2,1� depends more on vL. Also, L2
0.416 in Fig. 4 shows that �SPH,2,1� has more of a uL
component, even if it is still weaker than the uT part. But this
means that �SPH,2,1� can have much more divergence than
�SPH,2,0�. So the deformation potential mechanism can
modulate the dielectric constant. But it is very interesting to
notice from the URS value of 0.00 in Table II �more pre-

FIG. 3. �Color online� Variation of the SPH mode frequency
with � for a material with vT /vL=0.5. Full circles are exact FSM
frequencies and are connected with curves calculated for noninteger
� �red online�. Lines with crosses are roots of T11 �blue online�
which approximate SPHL modes. Lines with empty squares are
roots of T43 �green online� which approximate SPHT modes.

FIG. 4. �Color online� Dimensionless mode frequency � as a
function of longitudinality measures L1 �circles �red online�� and
L2 �crosses �green online�� for SPH modes of a material with
vT /vL=0.5. �=1,…, 4 from left to right. SPHT modes have L1 and
L2 near zero, while for SPHL modes they are close to 1.
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cisely, 0.0003� that �SPH,2,1� causes negligible radial move-
ment of the surface. So �SPH,2,1� barely changes the shape
of the nanoparticle, as Fig. 1 shows.

�SPH,2,3� has strong vL dependence �L10.8475� in Fig.
4 as well as a strong uL component �L20.766�. So it is
clear that it is SPHL. Its surface displacement is mostly along
r and not � from its URS value of 0.71 and UTS0.04. So
�SPH,2,3� will strongly affect the shape of the nanoparticle
surface, as shown in Fig. 1.

uL and uT take on simpler forms as � becomes larger. For
large �, the uL term has primarily radial displacement, while
the uT term corresponds to displacement in the � direction.

For the lowest modes, the situation is qualitatively differ-
ent. Consider �SPH,2,0� with vT /vL=0.5. Suppose to sim-
plify this discussion we normalize the displacement field so
that �u �u�=1. Then �uL �uL�0.14. However, �uT �uT�1.85.
So L3 for �SPH,2,0� is actually −0.85, making it “ul-
tratransverse” by that measure. It seems quite odd that the uT

term alone has a magnitude much greater than that of the
overall motion. The resolution of this puzzle is that uL and uT
are not mutually orthogonal with respect to the inner product
of Eq. �4�. In fact, �uT �uL�−0.50. According to the usual

vector relation, a� ·b� = �a���b��cos�ab, the “angle” between uL
and uT is 165° for the �SPH,2,0� mode. This angle is nearly
unchanged as vT /vL varies. Thus, uL and uT are nearly anti-
parallel vectors in the function space of vector fields within
the nanoparticle interior. It can be said, then, that the func-
tional forms of uL and uT are actually relatively similar. This
is a bit of a surprise since one is curl-free while the other is
divergence-free. This angle between uL and uT rapidly ap-
proaches 90° as � increases �i.e., for modes with higher n�.

As Fig. 2 shows, the starkness of the contrast between
SPHL and SPHT modes is at its best when vT /vL is lower. For
materials with high vT /vL such as Si and Ge, FSM modes
tend more to be mixtures of SPHL and SPHT, especially at
low �. But the concept of longitudinality is quite applicable
to materials such as Au and Ag.

IV. HIGH-FREQUENCY MODE CLASSIFICATION

The reason for the dichotomy of SPH modes as SPHT and
SPHL can be simply explained in the high-frequency limit.
Consider ��, the 2�2 determinant in Eq. �3�, and its four

TABLE I. Longitudinality measures for a material with vT /vL

=0.5.

� n � L1 L2 L3 L4

0 0 5.49 1.36 1.00 1.00 0.86

0 1 12.23 1.06 1.00 1.00 0.84

0 2 18.63 1.02 1.00 1.00 0.89

1 0 3.60 0.24 0.32 −0.27 −0.12

1 1 7.24 0.19 0.13 0.10 −0.09

1 2 8.55 0.94 0.84 0.84 0.66

1 3 10.73 0.02 0.03 0.02 −0.03

1 4 13.89 0.03 0.03 0.03 −0.06

1 5 15.19 0.99 0.96 0.96 0.79

1 6 17.11 0.01 0.01 0.01 −0.03

2 0 2.65 0.02 0.14 −0.85 −0.06

2 1 5.10 0.23 0.41 0.02 0.01

2 2 8.63 0.13 0.09 0.04 −0.13

2 3 10.99 0.85 0.77 0.75 0.42

2 4 12.29 0.14 0.15 0.15 0.05

2 5 15.35 0.03 0.03 0.02 −0.07

2 6 17.85 0.87 0.84 0.84 0.57

2 7 18.68 0.13 0.14 0.14 0.07

3 0 3.95 0.04 0.27 −1.15 −0.25

3 1 6.71 0.19 0.37 0.24 0.03

3 2 9.98 0.12 0.10 0.04 −0.14

3 3 12.95 0.48 0.41 0.38 0.08

3 4 14.12 0.50 0.51 0.51 0.28

3 5 16.80 0.04 0.04 0.04 −0.07

3 6 19.84 0.20 0.19 0.18 0.01

4 0 5.07 0.06 0.36 −1.30 −0.31

4 1 8.31 0.14 0.29 0.33 0.01

4 2 11.33 0.12 0.12 0.06 −0.14

4 3 14.49 0.24 0.19 0.16 −0.07

4 4 16.21 0.71 0.69 0.69 0.33

4 5 18.26 0.08 0.09 0.09 −0.05

TABLE II. Other features of SPH modes for a material with
vT /vL=0.5.

� n � C /B URV URS UTS U2S Class nL nT

0 0 5.49 0.00 1.00 0.91 0.00 0.91 SPHL 0

0 1 12.23 0.00 1.00 0.71 0.00 0.71 SPHL 1

0 2 18.63 0.00 1.00 0.68 0.00 0.68 SPHL 2

1 0 3.60 −0.99 0.37 0.05 1.26 1.31 SPHT 0

1 1 7.24 1.65 0.43 0.14 0.66 0.81 SPHT 1

1 2 8.55 −0.29 0.43 0.70 0.03 0.72 SPHL 0

1 3 10.73 4.37 0.21 0.00 0.69 0.69 SPHT 2

1 4 13.89 −3.93 0.14 0.02 0.68 0.69 SPHT 3

2 0 2.65 −0.44 0.59 0.66 0.20 0.86 SPHT 0

2 1 5.10 −0.38 0.26 0.00 1.78 1.78 SPHT 1

2 2 8.63 1.09 0.50 0.08 0.85 0.92 SPHT 2

2 3 10.99 −0.22 0.35 0.71 0.04 0.75 SPHL 0

2 4 12.29 0.96 0.34 0.07 0.64 0.71 SPHT 3

3 0 3.95 −0.17 0.74 0.89 0.03 0.91 SPHT 0

3 1 6.71 −0.21 0.22 0.04 1.91 1.95 SPHT 1

3 2 9.98 0.70 0.53 0.04 1.05 1.09 SPHT 2

3 3 12.95 −0.33 0.35 0.43 0.41 0.84 mix 0 3

3 4 14.12 0.27 0.37 0.39 0.29 0.68 mix 0 3

4 0 5.07 −0.08 0.81 1.05 0.00 1.05 SPHT 0

4 1 8.31 −0.15 0.23 0.14 1.78 1.92 SPHT 1

4 2 11.33 0.46 0.54 0.01 1.25 1.27 SPHT 2

4 3 14.49 −0.41 0.41 0.21 0.75 0.95 SPHT 3

4 4 16.21 0.14 0.35 0.65 0.03 0.68 SPHL 0
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matrix elements. Note that 	 /�=vT /vL. So at high frequency,
both � and 	 are large. In that case, T11 and T43 will be much
larger than T13 and T41 because of their terms including fac-
tors of �2. Consequently, �� is very well approximated by
T11T43. Since normal modes correspond to zeros of ��, it is
clear that there will be two sets of modes: those which are
approximately zeros of T11 and T43, respectively. The first
group are SPHL and the second group are SPHT.

The roots of T11 and T43 are plotted versus � in Fig. 3 with
lines with crosses for SPHL modes and lines with empty
squares for SPHT modes. The lines with full circles are the
exact FSM mode frequencies.

There are three kinds of situations where we do not expect
this approximation to be valid: �1� for low �, �2� when it is
not true that ���, and �3� where longitudinal �T11� and
transverse �T43� modes for a given � are close—i.e., when
the associated curves cross. Except in the previously men-
tioned places, the agreement between FSM and our approxi-
mation is quite good. The low-� situation corresponds spe-
cifically to similar prefactors of j� for T11 and T43 not being
large. It is apparent that T11 and T43 can only be useful as
estimators of SPHL and SPHT mode frequencies when �
��. This is confirmed from inspection of the lower right
portion of Fig. 3.

For large x, j��x�sin�x−�� /2� /x. Therefore, for large 	
and �, the roots of T11 can be approximated by 	�� /2
+ �1+nL�� and the roots of T43 by ��� /2+nT� where
nL�0 and nT�0 are integers. These lead to remarkably
compact approximate expressions for SPHL and SPHT FSM
frequencies in hertz, respectively:

f 
vL

d
��

2
+ nL + 1� , �7�

f 
vT

d
��

2
+ nT� , �8�

where d=2R. These expressions are very suggestive of the
formula for acoustic standing waves in a one-dimensional
system of length d. Table II shows the value of either nL or
nT for each mode.

The behavior observed in Fig. 2 becomes simple to ex-
plain. To a good approximation, SPH FSM modes are either
SPHL or SPHT. This approximation is considered here to be
good because it gives the right number of vibrational modes
and it predicts their frequency with a reasonable accuracy.

“Anticrossing” is observed in Fig. 2 each time the varia-
tion of the frequency of a SPHL mode crosses the one of a
SPHT mode. In Fig. 2 there are two kinds of curves: horizon-
tal lines for SPHT modes and descending curves for SPHL
ones. Then, each time these curves come together, an anti-
crossing pattern appears for the FSM solutions. In Fig. 3,
FSM frequencies � are plotted versus � for a sphere made of
a material that has vT /vL=0.5. Because the SPHL and SPHT
approximation curves are plotted, the anticrossing patterns
are clearly revealed. The continuation of Bessel functions to
noninteger � permits relationships among modes for different

integer � to be clearly seen. This is preferable to the common
practice of joining modes on such a graph with hand-drawn
straight lines.

V. DISCUSSION

Normal elastic waves in a solid have a longitudinal acous-
tic �LA� branch and two transverse acoustic �TA� branches.
However, for the FSM it seemed there are just two kinds:
SPH and TOR. By classifying SPH modes into two kinds
�i.e., SPHL and SPHT�, there are now three categories of
modes, as we would expect.

We plot in Fig. 5 the mean squared radial surface dis-
placement �URS� at the surface of a 5-nm-diameter silver
nanoparticle for all SPH �=2 modes. The magnitude of URS
is in good agreement with the calculated Raman intensities.4

�These calculations took into account the nonlinear disper-
sion of acoustic phonons in silver. As a result, the calculated
vibration wave numbers do not match.� As discussed before,
the �SPH,2,0� mode is quite special even if we class it as a
SPHT mode. It changes the surface shape and therefore con-
tributes significantly to inelastic light scattering. Other har-
monics contribute significantly only when their URS is large
and this in turn is very well correlated with their SPHL nature
as can be seen in Fig. 2.

Many experiments have observed peaks in Raman spectra
attributed to acoustic phonon vibrations of silver,8–14

silicon,15,16 and CdSxSe1−x.
17–21 These studies have regularly

succeeded in observing the �SPH,2,0� mode and the
�SPH,0,0� mode. A number of studies have seen �SPH,0,n�
with n up to 4.14 However, there has never been a clear
indication of Raman scattering from �SPH,2,1� even though
there have been determined efforts to see it.

At the same time, �SPHL,2,nL=0� seems like a strong can-
didate to have noticeable Raman scattering, since it has
strong radial surface motion as well as a strong uL compo-
nent that will give it stronger divergence in its interior.

It should be noted that �=0 modes are always SPHL. That
is why no full circles are plotted in Fig. 3 on the T43 root
curves at �=0. This has been the source of many erroneous
calculations in the past.22

FIG. 5. Mean squared radial surface displacement �URS� as a
function of wave number for �SPH,�=2� modes of a 5-nm-diameter
silver nanoparticle �vT /vL=0.464�.
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It is often claimed23–26 that modes with n=0 are “surface
modes” while modes with n
0 are “inner modes.” The val-
ues of U2S in Table II show that this is a misconception.
While this is true for �=0 and 1, for �=2, 3, and 4 it can be
seen that �SPH,�,1� has the strongest surface motion relative
to all �SPH,�,n�.

Although Table II shows URS to be zero for �SPH,2,1�,
the more precise value of vT /vL where URS is zero is 0.488.
URS for �SPH,2,1� is only near zero for vT /vL close to 0.488.
However, URS remains small for �SPH,2,1� for materials
whose Poisson ratio is close to 1

3 , which is true of many

common materials. This contradicts a widespread
misconception27–29 that SPH FSM modes always have a ra-
dial displacement component at the surface.
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