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We study the formation of molecular states in a two-electron quantum dot as a function of the barrier
potential dividing the dot. The increasing barrier potential drives the two electron system from an artificial
helium atom to an artificial hydrogen molecule. To study this strongly coupled regime, we introduce variational
wave functions which describe accurately two electrons in a single dot, and then study their mixing induced by
the barrier. The evolution of the singlet-triplet gap with the barrier potential and with an external magnetic field
is analyzed.
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I. INTRODUCTION

There is currently interest in developing means of isolat-
ing spins of individual electrons and coupling them in a con-
trolled way.1–9 This problem is equivalent to a formation and
controlled dissociation of an artificial hydrogen molecule.
This dissociation is not achieved by the increase of the sepa-
ration of the hydrogen atoms, but by the increase of the
tunneling barrier separating the dots. In such a process a
single two-electron dot breaks into two one-electron dots.
Hence the analogy to the break-up of the helium atom into
the hydrogen molecule, or to nuclear fission, rather than to a
chemical reaction. The description of the “artificial fission”
process cannot be accomplished by the weak coupling ap-
proaches, such as the Hund-Mulliken method, and requires
the treatment of a strongly coupled electron system. We de-
velop such an approach in this work.

The quantum-mechanical study of two electron atoms
dates back to the work of Born and Heisenberg10 on the
helium atom. �See Ref. 11 for a review on two-electron at-
oms.� Similar studies of artificial atoms followed the devel-
opment of quantum dots12–14—nanostructures in which the
number of electrons can be reduced to a desired value �ne

=0,1 ,2 , . . . � in a controllable manner. In contrast to atoms,
the confining potential of a quantum dot is, to a good ap-
proximation, quadratic, so a dot containing one electron pro-
vides a realization of the exactly soluble Fock-Darwin
model.12,15–17

The problem of two interacting electrons in a parabolic
potential also admits exact solutions, but only for specific
values of the oscillator frequency, as was shown by Taut.18–20

The general case was treated analytically by the oscillator
representation method21 and variational calculations,22 and
studied numerically by the following approaches: “exact” di-
agonalization using Fock-Darwin states,23,24 integration of
the radial motion Schrödinger equation after separating the
center-of-mass motion,25 and a combination of both.26 The
results were compared with experimental data24,26 and with
the Hartree and Hartree-Fock methods.23 The mean field ap-
proaches were applied to the two-electron system also in the
context of symmetry breaking they may induce and subse-

quent symmetry restoration by random phase approximation
�RPA� �Ref. 27� and projection techniques.28 This theoretical
problem, as well as the exact and numerical solutions men-
tioned above, proved relevant for a description of a Wigner
molecule consisting of two electrons in a quantum dot.29,30

The problem of two vertically31–35 or laterally coupled
dots1–5,8 containing one electron each is equivalent to the
problem of an artificial hydrogen molecule. A variety of
methods were applied here: The general case was studied by
local spin density approximation �LSDA�,5 molecular orbital
calculations,3,4 and the Hartree-Fock approach4,28,36,37 refined
subsequently by “exact” diagonalization38 and projection
techniques.28,36,37 The weakly coupled regime was studied
analytically by the Heitler-London and Hund-Mulliken
methods.2,3 While the analytical results by the molecular
Heitler-London and Hund-Mulliken approaches3 are very
useful, the weakly coupled regime does not quantitatively
describe the experimental situation. In molecular description
the starting point are two well separated quantum dots. Then,
as the distance between them is reduced, the electrons start
tunneling from one dot to another in analogy to a chemical
bond formation. However, in an actual experiment the
double lateral dot is defined electrostatically by metallic
gates located above the two-dimensional electron gas.6,7

Here the distance between the dots is held fixed and the
coupling between them is controlled by means of the interdot
barrier. When the barrier is zero the electrons move freely
and our system is a single dot, an artificial helium atom.
When the barrier increases, the single dot divides into two,
the electrons reconfigure so as to avoid the barrier and an
artificial hydrogen molecule forms. It is difficult to find an
analogue of the above procedure in the realm of atomic
physics. Nuclear physics, however, offers an obvious
example—fission of a nucleus. In this work we demonstrate
that viewing quantum dots as “artificial nuclei” rather than
“artificial atoms” also offers some computational advantages.

Our paper is organized as follows. Section II describes
our model consisting of a two-dimensional parabolic poten-
tial perturbed by a Gaussian barrier running along its diam-
eter. In Sec. II A we briefly discuss the exact eigenvectors of
the single dot problem, found by Taut,20 which are, however,
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correct only for specific values of the magnetic field, differ-
ent for each state. In Sec. II B we introduce variational wave
functions which reduce to the exact eigenvectors at these
specific magnetic fields. We calculate corresponding varia-
tional energies and compare them with exact and numerical
values. In Sec. III we switch on the barrier and describe the
formation of molecular states localized in the two potential
minima, and the effect of the magnetic field on the singlet-
triplet gap.

II. THE MODEL HAMILTONIAN

Our model Hamiltonian describes two electrons moving
in the �x ,y� plane, confined by a parabolic potential with
frequency �0, perturbed by a Gaussian barrier of width �

and hight V0, and subject to a perpendicular magnetic field B� :

H = − ��� 1 + iA� �r�1��2 − ��� 2 + iA� �r�2��2 +
1

4
�0

2�r�1
2 + r�2

2�

+
2

�r�1 − r�2�
+ V0�e−x1

2/�2
+ e−x2

2/�2
� . �1�

Here A� �r�i�= ��cyi /4 ,−�cxi /4 ,0�, �c=eB /m* is the cyclotron
frequency of an electron with effective mass m* and charge
−e placed in an external magnetic field B. The lengths are
expressed in effective Bohr radii aB=4���2 /m*e2 �where �
is the electric permeability�, whereas �0, �c, and V0 in effec-
tive rydbergs �1 Ry=�2 /2m*aB

2�. The magnetic field points
in the negative direction of the z axis.

A. Special exact solutions of the single dot problem

In this and the following subsection we set V0=0 and

address the single dot problem. Change of variables R� = �r�1

+r�2� /2, r�=r�2−r�1 separates the relative and center of mass
motion in the Hamiltonian H=HR+Hr, where HR is the
Fock-Darwin one-particle Hamiltonian. The detailed study of
the radial Hamiltonian Hr is presented in Ref. 20. Here we
only summarize the results which we will need in the sequel:
The relative motion eigenfunction with angular momentum
m can be expressed as follows:

��r�� = �4 �
um���
��

eim	

�2�
, �2�

where �= 1
4
��0

2+�c
2 /4, �=��r. Aiming at the lowest excita-

tions of the radial motion one obtains

um��� = Cm�1/2+�m��1 +� 2

1 + 2�m�
��e−�2/2, �3�

�where Cm are the normalization constants� and the corre-
sponding eigenenergy:

Em = −
�cm

2
+ 2

�2 + �m��
1 + 2�m�

. �4�

However, the two expressions above are valid only if

� =
1

2�1 + 2�m��
. �5�

In particular, for m=0 we get E0=4 Ry provided that �= 1
2 ,

and consequently �c=�c0=2�4−�0
2. The corresponding

wave function reads

u0��� = C0�1/2�1 + �2��e−�2/2. �6�

At zero magnetic field this is the ground state wave function,
as it is nodeless. For m= ±1 the energy equals E±1

= 
�cm /2+2 Ry, on condition that �= 1
6 . This implies that

�c=�c1=2�4
9 −�0

2. The triplet radial wave function follows:

u1��� = C1�3/2�1 +�2

3
��e−�2/2. �7�

For example, if �0= 2
3 Ry then the triplets have the energy

2 Ry at zero magnetic field, whereas the lowest singlet has
the energy 4 Ry at �c=8�2/3	3.77 Ry. But we are not able
to get the exact energies at intermediate values of �c. The
subject of the next section will be a derivation of accurate
upper bounds for these energies.

B. Variational analysis

To describe the lowest lying states of radial motion with
arbitrary angular momentum we suggest variational wave
functions inspired by the form of the eigenfunction �3�. It
does not seem reasonable to change the factors �1/2+�m� or
e−�2/2 as it would spoil the behavior of the function at zero or
at infinity. The only remaining parameter is the one that mul-
tiplies � in the bracket. Therefore, we introduce the follow-
ing family of variational wave functions, labeled by the pa-
rameter �:

um,���� = Cm,��1/2+�m��1 + ���e−�2/2. �8�

The corresponding variational energies follow:

Em��� = −
�cm

2
+ 2�

am + bm� + cm�2

dm + em� + fm�2 , �9�

where dm= 1
2��1+ �m��, em=�� 3

2 + �m��, fm= 1
2��2+ �m��,

am =
em

�2�m� + 1���
+ 2fm,

bm =
2dm

��
+ 2��m� + 1�em,

cm =
em

2��
+ �2m2 + 4�m� + 3�dm.

The minimum �m of this simple function is found to be at
one of the roots of the quadratic equation

�bmdm − amem� + 2�cmdm − amfm�� + �cmem − bmfm��2 = 0.

�10�

There arises a question of accuracy of our method. To study
this problem let us return to the example presented in the end
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of the previous subsection where �0= 2
3 Ry	4 meV in

GaAs. Clearly, our variational energies reproduce the exact
eigenenergies at the specific values of �c. �In this respect
they improve upon the interpolation formula of Taut.20� To
evaluate accuracy at intermediate values of �c we solve the
radial eigenvalue problem numerically, by the Numerov
method, and compare the results with our variational ener-
gies �Fig. 1�. The picture shows that variational and numeri-
cal calculations are in very good agreement in a wide range
of the magnetic field. The m�0 energies calculated by both
methods give almost identical results and are represented by
single solid lines. The variational m=0 energy is even more
accurate than the numerical result, as it is below the numeri-
cal value for large magnetic fields. Lower accuracy of the
Numerov method is probably due to the fact that the m=0
state is the only one which is nonzero in the singular point
�=0.

In Fig. 1 we note the familiar singlet-triplet oscillations of
the ground state.13,24,25,37,40 They are caused by a combina-
tion of two mechanisms: First, because of the orbital Zeeman
term −�cLz /2 it is energetically favorable for the system to
rotate. Nonetheless, it is clear that without interaction the
ground state would be a singlet in any magnetic field. Sec-
ond, Coulomb interaction acts stronger on singlets than on
triplets, as in the latter the electrons are kept apart by the
Pauli principle. Thereby, the gap between a singlet and a
consecutive triplet is reduced below its noninteracting value.
Nonetheless, without the Zeeman term the ground state is
always a singlet no matter how strong is the interaction or
the term quadratic in �c.

39 We conclude that, in the presence
of interaction, the increase of the magnetic field results in an
increase of ground state angular momentum. As states with
even m are singlets, whereas states with odd m are triplets, it
causes singlet-triplet oscillations.

III. DOUBLE DOT FORMATION OF MOLECULAR
STATES

In this section we study the ground state and the first
excited state energies and densities of two electrons in a
double dot and their evolution with a magnetic field. For this
purpose we go back to our model Hamiltonian �1� and set
V00. Clearly, the potential of the barrier

Vb = V0�e−x1
2/�2

+ e−x2
2/�2

� �11�

couples the motion of the center of mass and the relative
motion. Nevertheless, we choose variational wave functions
as products

Um��,	,R� � = um��,	��0�R� � , �12�

um��,	� = um,�m
���

eim	

�2�
, �13�

where the center-of-mass wave function is just the Fock-
Darwin ground state:

�0�R� � = 2��

�
e−2�R2

. �14�

The corresponding energy of the center-of-mass motion is
Ec.m.=��0

2+�c
2 /4. This choice is justified by the fact that the

barrier couples only every second center-of-mass wave func-
tion as a result of parity conservation.

It is our goal to find matrix elements Hm,nª 
Um�H�Un�.
To this end, we calculate the effective potential Veff�� ,	�
= 
�0�Vb��0� which acts only on the relative motion coordi-
nates:

Veff��,	� =
2V0�

��2 + 1
e−��2 cos2 	�/��2+1�, �15�

where �=2���. Now we evaluate the matrix elements of the
effective potential,


um�Veff�un�

= V0Cm,�m
Cn,�n

�

��2 + 1
�K��2 + 1,

2 + �m� + �n�
2

,n − m�
+ ��m + �n�K��2 + 1,

3 + �m� + �n�
2

,n − m�
+ �m�nK��2 + 1,

4 + �m� + �n�
2

,n − m� , �16�

where K�x ,k , l�=��k��1/2���0
2��eil	 / �1+ �1/x�cos2 	�k�d	.

For some values of k , l this integral can be expressed in
terms of elementary and elliptic functions. In practice, how-
ever, we evaluate it numerically. Finally, we have the desired
expression for matrix elements of H:

Hm,n = �Em��m� + Ec.m.��m,n + 
um�Veff�un� . �17�

We focus attention on the potential with parameters �0

= 2
3 Ry, V0=1 Ry, �=0.5aB. �The profile is shown in Fig. 2.�
In the two subsections that follow we study the behavior

of the lowest lying singlet and triplet energies and densities

FIG. 1. Comparison of the relative motion energies in a para-
bolic dot with �0= 2

3 Ry calculated variationally and by the Nu-
merov method. Solid lines: variational m=0,1 ,−1 ,2 ,−2 ,3 ,−3
states �increasing order at �c=0.1 Ry�. Dashed line: numerical m
=0 state. Other numerical states coincide with variational in this
figure.
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at 0��c�1. The third subsection describes the effect of the
barrier on the singlet-triplet gap.

A. Energies and wave functions of singlets

As a first approximation of the singlet energy we take
only the u0 state under consideration. The resulting energy

Ẽ0 = E0��0� + Ec.m. + 
u0�Veff�u0� �18�

is plotted as a function of the magnetic field in Fig. 3 and
compared with numerical calculations performed using the
configuration-interaction method.

Our variational energy is about 0.08 Ry higher than the
numerical one at �c=0 and the discrepancy increases to
0.15 Ry at �c=1 Ry. The reason for that is clear from Fig. 1:
about �c=1 Ry the m=0 state is close to degeneracy with

m=2, therefore the latter should also be taken into account.
On the other hand, m=2 state is degenerate with m=−2 at
�c=0 so, in fact, we should consider both of them. We diag-
onalize the resulting 3�3 matrix and note that its lowest

eigenvalue Ẽ0,±2 differs from the numerical result by about
0.05 Ry at zero magnetic field �see Fig. 3� and this discrep-
ancy becomes even smaller at larger �c. We recall that m
�0 states vanish when the distance between the electrons is
zero. Consequently, this increase in accuracy is the first
manifestation of the formation of molecular states: contribu-
tion of m= ±2 states pushes the electrons apart and, by a
nontrivial angular dependence, locates them in the dots. To
support this statement we calculate the two-electron density
� in this approximation. Let us denote by ��r�1 ,r�2� the two-
electron wave function. Then

��r�1� = 2� ���r�1,r�2��2dr�2. �19�

We have calculated the wave function as a linear combi-
nation of functions Um�� ,	�, with the coefficients Am found
by numerical diagonalization. Recalling that �=��r, r�
= �x ,y�=r�2−r�1 we obtain

��r�1,r�2� = �
m

AmCm,�m

�2

�
���m�+2�/2�x + iy�m

� �1 + ���r�e−��r�1
2+r�2

2�. �20�

The integral �19� is evaluated numerically at �c=0 and 1 Ry.
The results are compared with densities obtained by the
configuration-interaction method �see Figs. 4 and 5�. We note
that the configuration-interaction calculations give a signifi-
cantly lower density in the center of the dot than our varia-
tional method, especially at �c=0. This can partly be attrib-
uted to the fact that we neglected the radial motion and
center of mass excitations. The first excited state of radial
motion with m=0 is close in energy to the m= ±2 states �see
Fig. 10� and, in fact, lowers the density in the center of the
dot as we show in the Appendix �see Fig. 11�. On the other
hand, the center of mass excitations which couple to the
lowest singlet are separated by about 0.5 Ry from m= ±2
states and we will not discuss them further.

Both methods predict that the electron density in the cen-
ter of the double dot decreases with the magnetic field. Simi-
larly, in the Heitler-London approach3 one observes that the
overlap between the left and right dot wave function de-
creases as a function of �c. From our perspective the expla-
nation of this effect starts from the situation in a single dot.
There, as the magnetic field increases, the lowest singlet has
larger and larger angular momentum. Consequently, the den-
sity has a circular ringlike shape, with a minimum in the
center, caused by the centrifugal barrier. Now, when the in-
terdot barrier is switched on, the ring shrinks into two peaks
as a result of mixing of angular momenta and radial excita-
tions.

Summarizing our discussion in physical terms, the two-
electron droplet in the lowest singlet state acquires rotating
and vibrating components, when the barrier is increased and
a magnetic field applied. The vibrations have to be included

FIG. 2. The profile of the double dot potential with �0= 2
3 Ry,

V0=1 Ry, �=0.5aB.

FIG. 3. The lowest lying singlet and triplet energies in a double

dot with �0= 2
3 Ry, V0=1 Ry, �=0.5aB. Dashed lines: Ẽ0—singlet,

Ẽ±1—triplet. Solid lines: Ẽ0,±2—singlet, Ẽ±1,±3—triplet. Dotted
lines: numerical singlet and triplet energies calculated by the
configuration-interaction method. �In increasing order of energy at
�c=0.�
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at low magnetic fields to obtain qualitatively correct two-
electron density. They counterbalance the nonrotating �m
=0�, peaked in the barrier, component of the droplet.

B. Energies and wave functions of triplets

Let us now describe the lowest lying triplet. First, we
remark that the triplet energy, as a function of the magnetic
field, will have a vanishing slope at �c=0. In fact, breaking
of circular symmetry will eliminate the degeneracy of m
= ±1 states at �c=0, making the wave function � of the
lowest triplet real �up to a constant complex phase�. Linear
dependence of triplet energy could originate only from the
orbital Zeeman term. But 
��Lz � I+ I � Lz���=0 for any real
�. Now we illustrate this general argument with a calcula-
tion of actual triplet energies taking only m= ±1 states under
consideration. In this approximation the matrix elements of
the Hamiltonian �17� read

H1,1 = E1��1� + Ec.m. + 
u1�Veff�u1� , �21�

H−1,−1 = E−1��1� + Ec.m. + 
u−1�Veff�u−1� , �22�

H1,−1 = 
u1�Veff�u−1� . �23�

We recall from Sec. II B that E1���=−�c /2+F��� and
E−1���=�c /2+F���, where F���=2��a1+b1�+c1�2� / �d1

+e1�+ f1�2�. They are both minimal for the same value of
the variational parameter �=�1 which solves Eq. �10�. The

eigenvalues of the hermitian matrix defined by Eqs.
�21�–�23� are readily obtained:

Ẽ± = F + Ec.m. + 
u1�Veff�u1� ±��c
2

4
+ �
u1�Veff�u−1��2.

�24�

The degeneracy of the states m= ±1 at zero field has been
eliminated: there is a gap of 2�
u1�Veff�u−1��. Moreover, the
linear term ±�c /2 is no longer present. Instead, there is a
term ��c

2 /4+ �
u1�Veff�u−1��2 quadratic for small �c. The low-

est triplet energy Ẽ−= Ẽ±1 is plotted in Fig. 3. At zero field it
is only about 0.4 Ry higher than the numerical value. As the
densities of m= ±1 states are not peaked in the barrier, it is
not a surprise that the accuracy of our calculations is better
than in the previous case. The discrepancy increases, how-
ever, with the magnetic field. To improve upon our approxi-
mation we take also m= ±3 states into account. The resulting

energy Ẽ±1,±3 does not differ much from the previous one at
�c=0, but a remarkable accuracy was achieved at higher
fields �see Fig. 3�. As before, we plot electronic densities at
�c=0 and 1 Ry �see Figs. 6 and 7�. The low triplet density in
the center of the double dot is inherited from the single dot.
Loosely speaking, the two electron droplet in the lowest trip-
let state consists, from the outset, only of rotating compo-
nents. After increasing the barrier and applying a magnetic
field it will acquire components which rotate faster. As con-
trasted to the lowest singlet state, one can obtain a qualita-
tively valid description neglecting vibrations. This distinc-
tion between the lowest singlet and triplet states is likely to

FIG. 4. �Color online� The two-electron density of the lowest
singlet calculated by diagonalization using m=0, ±2 states at �c

=0 Ry �upper�, 1 Ry �lower�.

FIG. 5. �Color online� The two-electron density of the lowest
singlet calculated by the configuration-interaction method, at �c

=0 Ry �upper�, 1 Ry �lower�.
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remain valid in more realistic double dots. It may find appli-
cations in spectroscopic measurements sensitive to charge
distribution �e.g., in quantum point contact measurements�.

C. Singlet-triplet transition

We define the singlet-triplet gap JªEt−Es, where Et �Es�
denotes the energy of the lowest lying triplet �singlet� and
plot the J��c� dependence for a single dot ��0= 2

3 Ry, V0

=0� in Fig. 8. Next, we move to the case of a double dot
setting the parameters as in the previous subsections: �0

= 2
3 Ry, V0=1 Ry, �=0.5aB and choose Et= Ẽ±1,±3, Es

= Ẽ0,±2. The respective J��c� function, plotted in Fig. 9, com-
pares well with numerical results which are also presented.

In Sec. II we argued that the increase of the magnetic field
results in an increase of ground-state angular momentum
leading to singlet-triplet oscillations of two electrons in a
single dot. Although in a double dot the eigenstates do not
have a definite angular momentum, the orbital Zeeman term
and Coulomb interaction are still responsible for singlet-
triplet transitions. In view of this fact and the discussion
from the previous subsection on mixing of angular momenta,
it is not a surprise that the barrier only smoothed out the
sharp edges of the J��c� function which were a direct con-
sequence of angular momentum conservation. In particular,
the positions of the first crossing and minimum are similar as
without the barrier.

Since the precise shape of the dot does not play a role in
the above discussion it seems to us possible that these quali-
tative features of the J��c� dependence �the crossing, the

minimum and the signature of the angular momentum con-
servation� are independent of the confining potential �see,
e.g., Ref. 24 on elliptical dots�. This claim is also reinforced
by a recent analysis by Scarola and Das Sarma40 who related
the singlet-triplet transitions to changes in vorticity of the
two-electron wave function. Although their model potential
and variational wave functions differ from ours, their results
reflect the features mentioned above. Consequently, we ex-
pect that also realistic quantum dots of irregular shape will
exhibit these properties. On the other hand, more detailed
features, like the value of J��c�, the number of crossings or
their precise positions will certainly depend on the shape of
the dot.

FIG. 6. �Color online� The two-electron density of the lowest
triplet calculated by diagonalization using m= ±1, ±3 states at �c

=0 Ry �upper�, 1 Ry �lower�.

FIG. 7. �Color online� The two-electron density of the lowest
triplet calculated by the configuration-interaction method at �c

=0 Ry �upper�, 1 Ry �lower�.

FIG. 8. The singlet-triplet gap as a function of the magnetic field
in a single dot with �0= 2

3 Ry. Variational calculations.
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IV. CONCLUSION

In this paper we discussed the problem of the transition
from an artificial helium atom to a hydrogen molecule as a
function of the barrier potential. We illustrated it with a
simple calculation of the lowest-lying singlet and triplet
states in the strong coupling limit, where the Heitler-London
approach is not valid. To achieve this goal we introduced
variational wave functions which describe accurately two
Coulomb interacting electrons in a parabolic quantum dot.
The singlet and triplet energies, and the singlet-triplet gap J,
were calculated as a function of the barrier potential and the
magnetic field. The origin of the singlet-triplet transition was
discussed. We hope that these variational functions will also
be useful in developing methods of isolating spins of indi-
vidual electrons and coupling them in a controllable manner
in lateral quantum dots, as well as in other areas of research,
e.g., to study with analytical expressions the formation of
Wigner molecules.29,30

We add two remarks of a technical nature: First, in the
case of a double quantum dot we were using the parameters
� optimized in a single circular dot. One could as well opti-
mize them in the potential under study without much addi-
tional effort. It turns out, however, that the gain in accuracy
is very small �at least in the case of the double dot presented
here� so we did not pursue this approach. Second, a more
realistic model of a double dot would be a single elliptical
dot perturbed by a barrier. It is not difficult to adapt our
method to this case, but quantitative agreement with numeri-
cal results would require more effort as our variational wave
functions are optimized in a circular dot. On the other hand,
our approach works well in the case of a single elliptical dot
�no barrier� or a quantum ring �a single circular dot with a
circular barrier�.

ACKNOWLEDGMENTS

The authors acknowledge support by the Institute for Mi-
crostructural Sciences, NRC, by the National Science and
Engineering Research Council, and by the Canadian Institute
for Advanced Research. One of the authors �W.D.� also ac-
knowledges support from the EC Research Training Network
“Quantum Spaces–Non-commutative Geometry.” The au-
thors thank M. Pioro-Ladriere, A. S. Sachrajda, M. Abolfath,
C. Dharma-wardana, and W. Jakobiec for stimulating discus-
sions during the course of this work.

APPENDIX: THE EFFECT OF RADIAL EXCITATIONS ON
THE DENSITY IN A DOUBLE DOT

In this Appendix we calculate the two-electron density of
the lowest singlet in a double dot taking into account the first
excited state of the radial motion with m=0. To this end, we
proceed as follows: We start from a certain exact solution of
the single dot problem. Then we construct a variational wave
function of a similar functional form and orthogonalize it to
the ground-state variational wave function. Finally, we diag-
onalize the double dot Hamiltonian using the excited state
m=0* together with the previously studied m=0, m=2, m
=−2 states.

From the analysis by Taut20 we obtain that at �= 1
12 there

is an eigenstate of energy E=1 Ry given by

FIG. 9. The singlet-triplet gap as a function of the magnetic field
in a double quantum dot with �0= 2

3 Ry, V0=1 Ry, �=0.5aB. Solid
line: variational results. Dotted line: numerical calculations by the
configuration-interaction method.

FIG. 10. The energy of the first excited state in a single para-
bolic dot with �0= 2

3 Ry. Solid line: variational calculation. Dotted
line: numerical calculations by the Numerov method.

FIG. 11. �Color online� The two-electron density at �c=0 Ry
calculated using m=0, m=0*, m=2, m=−2 states.
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ũ0��� = C̃0�1/2�1 + �12� + 2�2�e−�2/2. �A1�

As a matter of fact, at zero magnetic field it is the ground
state, since it is positive. But the binding potential corre-
sponding to this eigenstate is much weaker than the one we
have under study. We expect that at a stronger binding po-
tential the first excited state with m=0 will have such func-
tional form so we describe it by a variational wave function

ũ0,�̃��� = C̃0,�̃�1/2�1 + �̃� + �̃�2�e−�2/2, �A2�

where C̃0,�̃ is a normalization constant, �̃, �̃ are variational
parameters. First of all, we have to make sure that the state is
orthogonal to u0,�0

:

0 = �
0

�

ũ0,�̃���u0,�0
���d�

=
1

2
�1 +

1

2
����0 + �̃� + ��̃ + �0�̃� +

3

4
���̃�0� .

�A3�

This implies that �̃=−�1−�2�̃, where

�1 =

1 +
1

2
���0

1 +
3

4
���0

, �A4�

�2 =

1

2
�� + �0

1 +
3

4
���0

. �A5�

Next, we evaluate the normalization constant

C̃
0,�̃

−2
= d̃ + ẽ�̃ + f̃�̃2, �A6�

d̃ = �1
2 − �1 +

1

2
, �A7�

ẽ =
1

2
�� −

3

4
���1 + 2�1�2 − �2, �A8�

f̃ =
1

2
−

3

4
���2 + �2

2. �A9�

Now we are ready to calculate the variational energy

Ẽ0��̃� = 2��
0

�

ũ0,�̃����− ��
2 + � 1

���
+ �2 −

1

4�2�ũ0,�̃���d� ,

�A10�

Ẽ0��̃� = 2�
ã + b̃�̃ + c̃�̃2

d̃ + ẽ�̃ + f̃�̃2
, �A11�

ã = �1

2
��

�
+ 1� − 2�1�1

4
��

�
+ 1� + �1

2�3

8
��

�
+ 4� ,

�A12�

b̃ = � 1
��

+ ��� − 2�2�1 +
1

4
��

�
� − �1�5

2
�� +

1
��

�
+ 2�1�2�4 +

3

8
��

�
� , �A13�

c̃ = �1

4
��

�
+

3

2
� − �2�5

2
�� +

1
��

� + �2
2�4 +

3

8
��

�
� .

�A14�

The optimal variational parameter �̃0 can be found by solv-
ing a quadratic equation analogous to Eq. �10�. The energy is
then obtained substituting it back to Eq. �A11�. At this stage
a comparison can be made between our variational approach
and a numerical solution of the single dot problem by the
Numerov method. The results are plotted in Fig. 10. Simi-
larly as in Sec. II, we note very good agreement between the
two methods. Finally, we arrive at a task of computing ma-
trix elements of the effective potential Veff:


ũ0,�̃0
�Veff�ũ0,�̃0

�

=
V0�C̃

0,�̃0

2

��2 + 1
�K��2 + 1,1,0� + ��̃0

2 + 2�̃�

�K��2 + 1,2,0� + �̃2K��2 + 1,3,0�

+ 2�̃0K��2 + 1,
3

2
,0� + 2�̃�̃K��2 + 1,

5

2
,0� ,

�A15�


ũ0,�̃0
�Veff�um� =

V0�C̃0,�̃0
Cm,�m

��2 + 1
�K��2 + 1,

2 + �m�
2

,m�
+ ��m + �̃0�K��2 + 1,

3 + �m�
2

,m�
+ ��̃0�m + �̃�K��2 + 1,

4 + �m�
2

,m�
+ �̃�mK��2 + 1,

5 + �m�
2

,m� . �A16�

�The function K was defined in Sec. III.� Together with
matrix elements from Sec. III we have all input necessary to
diagonalize the double dot Hamiltonian in the subspace
spanned by the m=0, m=0*, m=2, m=−2 states �where 0*

denotes the first excited state with m=0, determined in this
Appendix�. Having obtained the wave function, we calculate
the density at �c=0 and plot it in Fig. 11. Comparison with
the density at �c=0 calculated previously �Fig. 4� indicates
that the radial motion excitation lowers the density in the
center of the double dot.
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