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We have shown within quasistatic approximation that the giant fluctuations of a local electromagnetic field
in random fractal aggregates of silver nanospheres are strongly correlated with a local anisotropy factor S
which is defined in this paper. The latter is a purely geometrical parameter which characterizes the deviation of
local environment of a given nanosphere in an aggregate from spherical symmetry. Therefore, it is possible to
predict the sites with anomalously large local fields in an aggregate without explicitly solving the electromag-
netic problem. We have also demonstrated that the average �over nanospheres� value of S does not depend
noticeably on the fractal dimension D, except when D approaches the trivial limit D=3. In this case, as one can
expect, the average local environment becomes spherically symmetrical and S approaches zero. This corre-
sponds to the well-known fact that in trivial aggregates, fluctuations of local electromagnetic fields are much
weaker than in fractal aggregates. Thus, we find that, within the quasistatics, the large-scale geometry does not
have a significant impact on local electromagnetic responses in nanoaggregates in a wide range of fractal
dimensions. However, this prediction is expected not to be correct in aggregates which are sufficiently large for
the intermediate- and radiation-zone interaction of individual nanospheres to become important.

DOI: 10.1103/PhysRevB.72.205425 PACS number�s�: 78.67.�n

I. INTRODUCTION

Electromagnetic properties of fractal nanostructures have
continuously attracted attention since the late 1980s due to
their rather unusual physical properties and the possibility of
numerous applications, as described in several reviews of the
subject.1–6 Of special interest are aggregates of metal nano-
particles in hydrosols and percolation clusters �metal-
dielectric composites� which have, in particular, exhibited
the effects of giant enhancement of nonlinear-optical
responses,7–10 inhomogeneous localization of electromag-
netic eigenmodes,11,12 and optical memory.13–17

Theoretical description of the electromagnetic responses
of disordered fractal aggregates has been closely intercon-
nected with numerical simulations. This is due to the fact
that a fully analytic solution to the problem of interaction of
an electromagnetic field with a large random fractal aggre-
gate has not been devised. Some approximate theoretical ap-
proaches were based on the first Born18 and mean-field19

approximations, approximations based on few-body interac-
tion �binary20,21 or binary-ternary12 approximations�, and
various phenomenological scaling laws.8,20–24 The first Born
and the mean-field approximations are not, generally, useful
in the spectral regions where excitation is resonant. While
off-resonant electromagnetic properties of fractal aggregates
are of interest in atmospheric physics,25–27 the research in
electromagnetics of metal fractal aggregates is primarily fo-
cused on resonant interactions. The few-body approxima-
tions and the scaling laws proved to be very useful for quali-

tative theoretical description at the early stages of research.
However, increasingly more realistic simulations revealed
that these approaches do not provide quantitative results.
Currently, they are effectively obsolete. A brief overview of
the progression of numerical models used to simulate elec-
tromagnetic responses of fractal aggregates is given in the
next paragraph.

The theoretical and computational description has been
primarily based on a model of an aggregate of N touching
identical spherical nanoparticles. Each nanoparticle, and
sometimes the aggregate as a whole, is assumed to be much
smaller in size than the external wavelength. �Polydisperse
aggregates built from spheres of different size have also been
recently addressed.28–30� In order for an aggregate to be con-
sidered fractal, the number of primary spheres must be large,
typically �103. Initially, simulations were based on the di-
pole approximation. In this approximation, each sphere is
assigned a dipole moment located at its center. The spheres
then interact with each other and the external field via dipole
radiation fields as described by 3N coupled-dipole
equations.21 In the late 1980s and early 1990s, numerical
solution of dense linear systems of �103 equations was a
difficult computational task. Therefore, a model of diluted
aggregates was adopted and used, for example, in Refs. 8,
21, 22, and 31–34. According to this model, an aggregate of
N touching spheres �where N can be very large� is diluted,
i.e., spheres were randomly removed from the aggregate with
the probability 1− p, where p�1. Then the coordinates of
the remaining spheres are rescaled according to r→p1/Dr,
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where D is the fractal dimension. This procedure does not
change the density-density correlation function of the aggre-
gate in some intermediate region. However, it does change
the local structure of the aggregate substantially. The few-
body approximations and scaling laws were largely validated
with the model of diluted aggregates. However, when com-
putations with nondiluted clusters became feasible, it was
found that both the few-body approximations and the scaling
laws are inaccurate.35 The deviation from the scaling laws
has been explained by the phenomenon of inhomogeneous
localization;3 however, the theoretical relation of this phe-
nomenon to the aggregate geometry has not been clarified.
Additionally, it has been well known that account of excita-
tion of higher multipole modes is important for touching
nanoparticles, even when the size of each nanoparticle is
much smaller than the external wavelength.36–39 In particular,
the dipole approximation failed to properly describe experi-
mentally observed redshifts in extinction spectra of colloid
aggregates.35,40 To remediate this problem, a phenomenologi-
cal model of geometrical renormalization has been
introduced.35,41 A mathematically rigorous approach based
on the method of coupled multipoles was also
developed.37–39,42–45 However, the computational complexity
of this method proved to be very high. Practical computa-
tions were feasible only for nonresonance excitation of nano-
particles, in which case the maximum multipole order L suf-
ficient for convergence was found to be L�10.39 Note that
calculations with significantly larger values of L can be car-
ried out for aggregates with special symmetry, such as an
infinite cubic lattice of spheres.46,47 Recently, computations
beyond the dipole approximation have been performed for
aggregates of general geometry �with no special symmetry�
to the relatively high order L=64.48

The combination of findings contained in the above-cited
references strongly suggests that the local structure of aggre-
gates is of primary importance. However, the local structure
of random fractal nanoaggregates has so far not been the
focus of research. In this paper, we point to a strong corre-
lation between the anisotropy of local environment and en-
hancement of a local field in fractal aggregates within the
quasistatic approximation. In particular, we find that the cor-
relation coefficient of the local anisotropy factor S �intro-
duced below� and the value of a local squared dipole mo-
ment �d�2 can be as high as 0.75 and tends to grow with the
wavelength. We have found that the average local anisotropy
factor is almost independent of fractal dimension in the range
1.7�D�2.8. Note that this result is expected to change in
large aggregates where intermediate- and far-zone interaction
is important.

The paper is organized as follows. In Sec. II, the local
anisotropy factor is introduced. The dependence of the local
anisotropy factor on the fractal dimension of aggregates and
other parameters for computer-simulated fractals is discussed
in Sec. III. Section IV contains results concerning the corre-
lation of local electromagnetic fields and the local anisotropy
factor. The electromagnetic calculations in this section were
performed with the method of coupled multipoles,39,48 e.g.,
without the dipole approximation. Finally, Sec. V contains a
summary of obtained results.

II. DEFINITION OF THE LOCAL ANISOTROPY FACTOR

The definition of the local anisotropy factor introduced in
this paper is based on an analogy with ellipsoids. An ellip-
soid is a geometrical object that can exhibit either perfect
spherical symmetry or strong anisotropy, depending on its
eccentricity.

Consider a general ellipsoid excited by a linearly polar-
ized monochromatic external wave of amplitude E0. In the
quasistatic limit, the polarization P inside the ellipsoid is
independent of position and can be found from

4�� 1

� − 1
+ �1

3
− Q̂��P = E0, �1�

where the tensor Q̂ is given by

Q̂ = 	
V

Ĝ0�0,r��d3r�. �2�

Here Ĝ0�r ,r�� is the regular part of the quasistatic free-space
dyadic Green’s function for the electric field. The integral is
taken over the volume of the ellipsoid, V, and is independent
of position. Therefore, it is evaluated at the center of ellip-

soid, r=0. A unique property of ellipsoids is that Q̂ is diag-
onal in the reference frame whose axes are collinear to the
main axes of the ellipsoid. Correspondingly, if E0,� are the
Cartesian components of the external electric field in the
same reference frame, the solution to Eq. �1� is

P� =
E0,�

4�
1/�� − 1� + ���
, �3�

where �� are the depolarization factors related to the princi-

pal values of Q̂ by

�� = 1
3 − Q�. �4�

In the case of spherical symmetry �e=0�, Q�=0 and ��= 1
3 .

For an ellipsoid of nonzero eccentricity, the depolarization
factors become different from 1

3 . Thus, for example, if e=1,
we have �1=�2=0 , �3=1 for an oblate ellipsoid �infinitely
thin circular disk� or �1=�2= 1

2 , �3=0 for a prolate ellipsoid
�infinitely thin needle�. The anisotropy factor S can be de-
fined as the variance of depolarization factors,

S2 = ���
2
 − ���
2. �5�

Obviously, this parameter is zero for a sphere and positive
for any ellipsoid of nonzero eccentricity. In particular, for the
infinitely thin needle, S=1/ �3�2�, and for an infinitely thin
circular disk, S=�2/3. The latter is the maximum possible
value for S given the constraint ����=1.

Now we extend the definition of the depolarization tensor
to include particles of arbitrary shape. Namely, for an arbi-
trary system occupying some volume V, we define

�̂�r� =
1

3
Î − 	

V

Ĝ0�r,r��d3r�, �6�

where Î is the unity tensor. If V is of general shape, the result
of integration on the right-hand side of Eq. �6� is position-
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dependent. Therefore, the tensor �̂�r� depends on the point r
it is evaluated at and is referred to here as local. Similarly to
the case of ellipsoids, this tensor can be diagonalized. Then
we can use the principal values ���r� to calculate the aniso-
tropy factor according to Eq. �5�.

In this paper, we consider aggregates of �possibly polydis-
perse� spheres whose centers are located at points ri and radii
are denoted by ai. In this case, the expression for �̂�r� is
simplified. We use

	
�r�−ri��ai

Ĝ0�r,r��d3r� = �viĜ0�r,ri� if�r − ri� 	 ai

0 if�r − ri� � ai
�

�7�

to obtain

�̂i � �̂�ri� =
1

3
Î − �

j�i
v jĜ0�ri,r j� . �8�

Here vi=4�ai
3 /3 is the volume of the ith sphere and the

components of Ĝ0�ri ,r j� are given by


G0�ri,r j���
 =
��
 − 3n�

�ij�n

�ij�

rij
3 , �9�

where rij =ri−r j and n�ij�=rij /rij.
Diagonalization of the tensor �̂i and calculation of the

variance of its principal values gives the local anisotropy
factor Si. This parameter quantifies the degree of anisotropy
of the local environment of the ith sphere.

A few notes about the introduced definition must be made.
First, the principal values �� obtained as described above are
purely geometrical characteristics of an object. They are re-
lated to the Bergman-Milton spectral parameters49 only in
the special case of spheroidal �more generally, ellipsoidal�
shape of V. Obtaining the Bergman-Milton spectral param-
eters requires diagonalization of the integral operator W with
the kernel G0�r ,r�� ,r ,r��V. This is a much more compli-

cated task than diagonalization of the tensor Q̂�r�
=�VG0�r ,r��d3r� at a given point r. In particular, Q̂�r� is
three-dimensional while W is infinite-dimensional. Corre-
spondingly, the number of Bergman-Milton parameters is in-
finite �although only three of them have nonzero oscillator
strengths in the case of spheroids�, while the tensor �̂�r� has
only three principal values. Second, the principal values
���r� are not constrained, in general, by the conditions 0
����1 and ����=1. This also distinguishes them from the
Bergman-Milton spectral parameters. Next, the parameter Si
depends on the coordinates of all nanoparticles in the aggre-
gate with j� i. However, due to the fast cubic decay of the
near-field component of the dipole radiation field, the neigh-
bors within few coordinate spheres of the ith site give the
largest input to Si. This justifies the locality of Si, as it only
weakly depends on the large-scale structure. This statement
needs to be qualified in aggregates large enough so that in-
teraction in the far zone becomes important. Even without
account of retardation, the locality of Si can be violated in
aggregates with the fractal dimension close to 3 �or in ran-
dom nonfractal composites�, due to the logarithmic diver-

gence of the integral �r−3d3r at infinity. We do not expect
these effects to be important in most aggregates of practical
interest with the fractal dimension in the range D�2.7 and
do not consider them in this paper.

Finally, the introduced parameter is not sensitive to the
wavelength and electromagnetic properties of the scattering
material. Therefore, we do not expect it to be a good indica-
tor of local electromagnetic response at all wavelengths. It is
also independent of the incident polarization. A possible defi-
nition of a polarization-sensitive anisotropy factor is

Si�E0� =
E0

* · �̂iE0

�E0�2
. �10�

Another possible definition is

Si
2�E0� =

��̂iE0�2

�E0�2
. �11�

Note that the definitions �10� and �11� are not used in this
paper.

III. RESULTS: SIMULATIONS OF GEOMETRICAL
PROPERTIES

Since the unique electromagnetic properties of colloid ag-
gregates are often attributed to their fractal structure, we
have studied computer-generated aggregates with various
fractal dimensions. We have generated quasirandom off-
lattice aggregates with varying fractal dimension D using the
algorithm described in Ref. 48. This algorithm simulates the
stochastic dynamics of individual nanoparticles and subag-
gregates in a solution with the account of random �Brown-
ian� forces, as well as deterministic interparticle �the Van-
der-Waals and Coulomb� and external potentials. Discrete
Newtonian mechanics was implemented with a sufficiently
small time step, such that the spatial translation of any par-
ticle �sphere� at each step is much smaller than its diameter.
Rotation of aggregates was taken into account. We have used
both monodisperse �ai=const� and polydisperse nanospheres
�ai were randomly distributed according to the Poisson dis-
tribution�. The fractal dimension of obtained aggregates was
tuned in the interval 1.7�D�3.0 by varying the initial den-
sity of spheres prior to the aggregation process. The numeri-
cal value of D was calculated from the linear regression of
the pair density-density correlation function which, in the
intermediate asymptote region, has the scaling form g�r�

rD−3.

The aggregation was simulated in a cubic volume with
elastically reflecting boundaries. In the limit of low initial
concentration of particles and the size of the cubic cell of
�200a or more, the obtained aggregates have the typical
fractal dimension D�1.7. When the initial concentration in-
creases, D approaches the trivial limit D=3. As a graphical
illustration of generated fractals, we show in Fig. 1 a large
aggregate and values of the local anisotropy factor S at some
selected sites.

We start with a discussion of results for monodisperse
aggregates, i.e., for aggregates built of identical spheres. In
Fig. 2, we illustrate the dependence of the average �over
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individual nanoparticles in an aggregate� value of the S on
fractal dimension D. Aggregates with 1.70�D�2.45 are
characterized by moderate average values of local anisotropy
factor, almost independently of D. We can argue that such
aggregates differ only on large scale but have similar local
structure. In other words, the local environment of each par-
ticle is, on average, the same, independently of D, as long as
D is in the above interval. As D increases from D�1.70 to
D�2.45, the overall volume of large voids in an aggregate is
reduced, but the local structure �on scales of few nanosphere
diameters� is, on average, preserved. However, this tendency
changes for larger values of D. The potential for denser
packing by reducing the volume of large voids is at that point
exhausted. Consequently, local restructuring begins, which
leads eventually to more isotropic local environment. Indeed,
it can be seen that as D approaches the critical value D=3,
the average local anisotropy factor quickly drops. This cor-
responds to the fact that trivial �nonfractal� aggregates are
characterized by almost isotropic local environment and rela-
tively weak fluctuations of density. We have also calculated

the average S for two types of lattice aggregates traditionally
used in electrodynamic calculations. The results are shown
by centered symbols in Fig. 2.

Real colloid aggregates are strongly polydisperse. Typi-
cally, they contain nanoparticles of sizes ranging from 5 to
30 nm.1,50 We have investigated the dependence S�D� for
several ensembles of polydisperse aggregates with different
ratios of the maximum and minimum sphere radiuses, amax
and amin. We have used a discrete Poisson distribution of
particle sizes with the number of samples equal to 11 
the
discrete step in particle size was �a= �amax−amin� /10�. The
dependence of the local anisotropy factor on the fractal di-
mensions D is shown in Fig. 3. Note that no significant effect
due to the polydispersity was found.

It is interesting to note that the average local anisotropy
factor does not depend on the distance of a given site from
the center of mass of the aggregate. This is illustrated in Fig.
4. Here we plot the value of S averaged over all nanospheres
within a spherical shell drawn around the center of mass of
the aggregate as a function of the shell radius �see figure
captions for more detail�.

In Fig. 5, we also plot the fraction of nanoparticles in an
aggregate with local anisotropy factor exceeding 60% of the
maximum value for that aggregate as a function of fractal
dimension. It can be seen that in typical aggregates with

FIG. 1. �Color online� Local anisotropy factor S for selected
sites in a large aggregate with N=5000 and D�1.8.

FIG. 2. Average local anisotropy factor S vs fractal dimension D
for 121 random aggregates with N=800 in each. Numerical value of
D was computed separately for each aggregate from linear regres-
sion of the density-density correlation function in the intermediate
asymptote region. The open circle shows the average values of S for
lattice Meakin aggregates54 �D�1.8� and the open square shows
the same value for a set of Witten-Sander aggregates55 �D�2.5�.

FIG. 3. Local anisotropy factor S vs fractal dimensions D for
polydisperse aggregates with N=800 and Poisson particle size dis-
tribution. The ratio of the maximum and minimum particle radii is
amax/amin=2 �153 random aggregates� for curve �a� and amax/amin

=3 �297 random aggregates� for curve �b�. Numerical value of D
was computed separately for each aggregate from linear regression
of the density-density correlation function in the intermediate as-
ymptote region.

FIG. 4. Local anisotropy factor S vs the relative distance to the
center of mass of an aggregate, r /a. The histogram is built with the
step Rg /10, where Rg is the gyration radius of the aggregate, and S
was averaged over all nanoparticles located within 10 spherical
shells drawn around the aggregate’s center of mass for N=10000 �a�
and N=3000 �b�.
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fractal dimensions of practical interest, only a small fraction
of nanoparticles is placed in a highly anisotropic environ-
ment. In Fig. 6, an example of an aggregate is shown with
the sites of relatively high local anisotropy emphasized by
different color �shades of gray�.

Finally, we compare the local anisotropy factors for all
nanoparticles of monodisperse fractal aggregate and nonfrac-
tal random gas of hard spheres �N=800 in both cases�. In
Fig. 7�a�, we plot these quantities for a fractal aggregate with
D�1.8. All local anisotropy factors Si are shown for i=1,…,
800. In Figs. 7�b� and 7�c�, the same quantities are plotted
for a random gas of identical hard spheres of radius a dis-
tributed in a volume with the density corresponding to the
average distance between the centers of nearest-neighbor
spheres equal to Rnn; values of the ratio Rnn/a are indicated
in the figure caption. It can be seen that the fractal aggregate
contains sites with much higher values of local anisotropy
factor than random gas. As one could expect, the local an-
isotropy factors become smaller when the density of random
gas decreases. However, a fractal aggregate, although it has
zero asymptotic density in the limit N→�, always retains an
approximately constant fraction of sites with relatively high
local anisotropy.

IV. COMPARISON OF STRUCTURAL
AND ELECTRODYNAMIC PROPERTIES

OF FRACTAL NANOAGGREGATES

The main idea of this paper is that there is a certain cor-
relation between local structure and local electromagnetic

fields in fractal nanoaggregates. This assumption is con-
firmed by numerical simulations presented in this section.

We have computed optical responses of aggregates of
nanospheres using the method of coupled multipoles.39,48

Calculations were performed for monodisperse aggregates
built of N=150 silver nanospheres of constant radius a
=5 nm and placed in vacuum. To facilitate convergence with
the maximum order of multipoles included, we have intro-
duced a surface layer of thickness h=0.05a. The dielectric
constant of the layer was chosen to be the same as that of the
vacuum, �=1. We have used experimental values of the op-
tical constants of silver51 with finite-size corrections accord-
ing to Ref. 35. The maximum order of the �quasistatic� vec-
tor spherical harmonics utilized in the results shown below
was L=8. The convergence was verified by control calcula-
tions with L=16. We note that much larger values of L are
required for nanospheres in exact contact �h=0� and that the
number of the coupled-multipole equations �with complex
coefficients� which must be solved to compute the optical
responses is equal to NL�L+2�.

In Fig. 8, we plot the quantities Si and ��di�2
 / �a3E0�2 for
three aggregates with fractal dimensions D�1.70, D�1.79,
and D�1.85, computed at �=703 nm. Here ��di�2
 is the
square of the dipole moment of the ith nanosphere averaged

FIG. 5. Dependence of the fraction �N /N of sites in a mono-
disperse aggregate with the value of local anisotropy factor exceed-
ing 60% of its maximum value for the same aggregate; N=800.

FIG. 6. �Color online� Sites in a fractal aggregate �D�1.8, N
=800� with relative values of the local anisotropy factor exceeding
80% of the maximum value for the same aggregate, Smax=2.29.

FIG. 7. Local anisotropy factor S for different nanoparticles in a
fractal aggregate with N=800 and D�1.8 �a� compared to those in
random gas of identical hard spheres. Average distance between
centers of two nearest-neighbor spheres Rnn/a=2.12 �b� and
Rnn/a=2.90 �c�.
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over three orthogonal polarizations of the external field. Note
that, although we display results only for dipole moments,
we must employ higher multipoles in the calculations in or-
der to obtain accurate results. This is because multipoles of
different order are all coupled to each other. The local dipole
moments of nanoparticles are used to characterize the
strength of electromagnetic fluctuations in the sample. We
also note that some physically measurable quantities, such as
extinction, can be expressed only in terms of dipole mo-
ments. However, higher multipole moments are needed, for
example, to compute nonlinear susceptibilities.

Visual correlation of the two curves in Fig. 8 is quite
apparent. For a more quantitative estimate, we have com-
puted the correlation coefficient rc�S , ��d�2
�. Here the corre-
lation coefficient of two variables, x and y, is defined as

rc�x,y� =
�xy
 − �x
�y


���x2
 − �x
2���y2
 − �y
2�
. �12�

In the case of rc�S , ��d�2
�, the averaging �¯
 must be under-
stood as the average over the nanoparticles in an aggregate.
That is, for example, �S��d�2

=N−1�i=1

N Si��di�2
; note that the
innermost average is over polarizations of the incident field.

The dependence of rc on the wavelength is shown in Fig. 9
for three values of fractal dimension and different wave-
lengths. We note that the wavelength dependence or rc is due
to the wavelength dependence of the dipole moments di; the
quantities Si are purely geometrical and, as such, are
wavelength- and material-independent. The maximum de-
gree of correlation is achieved for �=703 nm �0.69�rc

�0.76�. The value of rc decreases monotonically for smaller
wavelengths and is in the interval 0.49�rc�0.54 when �
=505 nm. Note that the correlation coefficient is expected to
increase toward unity in the spectral region �	700 nm.
Also, even stronger correlation is expected if a polarization-
dependent definition of the local anisotropy factor is used,
such as Eq. �10� or Eq. �11�. Validating these hypotheses will
be the subject of future work.

V. SUMMARY

In this paper, we have investigated the statistical correla-
tion between the local geometrical structure and local elec-
tromagnetic responses in fractal aggregates of nanoparticles.
We have used a realistic aggregation model which allows
computer generation of quasirandom aggregates of variable
fractal dimension in the interval 1.7�D�3.0. Electromag-
netic calculations were carried out using the method of
coupled multipoles, i.e., beyond the dipole approximation.

We have found that the local anisotropy factor S intro-
duced in Sec. II is strongly correlated with the local electro-
magnetic response. For aggregates built of high-quality plas-
monic materials, the degree of such correlation tends to
increase with the wavelength. The correlation coefficient be-
tween the squared dipole moment of a given nanoparticle in
an aggregate and a purely geometrical parameter �local an-
isotropy factor� reaches the value of �0.75 for �=700 nm.
We expect that this correlation can become even larger if a
properly defined polarization-dependent local anisotropy fac-
tor is used and at larger wavelengths.

The introduced parameter S is a universal geometrical
characteristic which can be used for analyzing various com-
plicated aggregates and composites without explicit solution
of the electromagnetic problem. The discovered strong cor-
relation suggests that, at least in aggregates which are small
compared to the wavelength, the large-scale geometry does

FIG. 8. Local anisotropy factor �Si� �thick line� and local dipole
moments squared �di�2 �thin line� for different nanoparticles in a
monodisperse aggregate with N=150 and fractal dimension D
=1.70, D=1.79, and D=1.85, computed at the wavelength �
=703 nm.

FIG. 9. Correlation between Si and �di�2 as a function of wave-
length for monodisperse aggregates with N=150 and fractal dimen-
sion D=1.70, D=1.79, and D=1.85.
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not play a significant role. Note that in the IR spectral region,
subwavelength aggregates can still be built of hundreds or
even thousands of nanospheres. The IR spectral region is of
special interest because of the very low Ohmic losses in sil-
ver and other noble metals. Correspondingly, heterogeneous
nanostructures are known to exhibit optical resonances of
very high quality. This, in turn, results in giant amplification
of local optical responses. The latter phenomenon is cur-
rently being actively researched in ordered nanostructures,
including self-similar chains of nanospheres �nanolenses�52

and long chains of similar nanoparticles.53 Rigorous numeri-
cal simulations in random nanoaggregates are still difficult
due to the high computational complexity of the associated
electromagnetic problem. The introduced parameter S and

the discovered correlation of this parameter with local elec-
tromagnetic field allow one to make qualitative predictions
about the sites where the electromagnetic energy is localized
by very simple means, e.g., without solving the electromag-
netic problem.
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