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We study nonequilibrium electronic transport through a quantum dot or an impurity weakly coupled to
ferromagnetic leads. Based on the rate equation formalism we derive the noise spectra for the transport current.
We show that, due to quantum interference between different spin components of the current, the spectrum
develops peaks or dips at frequencies corresponding to the Zeeman splitting in the quantum dot. A detailed
analysis of the spectral structure of the current is carried out for noninteracting electrons as well as for the
regime of Coulomb blockade.
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I. INTRODUCTION

Resonant transport through a quantum dot �or impurity�
has been investigated in numerous publications. However, no
special attention has been paid to quantum interference ef-
fects in this process. These effects can generate oscillations
in the resonant current through two �or more� levels of an
impurity. These oscillations are similar to the well-known
quantum interference effects in the two-slit experiment, and,
in turn, produce a peak or a dip in the current power spec-
trum, depending on the relative phase of the two levels car-
rying the current.1 This feature can be experimentally ob-
served in time-resolved measurements of transport
currents.2,3 It has been previously argued that the quantum
interference effect can explain modulation in the tunneling
current at the Larmor frequency in scanning tunneling micro-
scope �STM� experiments.4

In this paper we investigate the interference effects in
polarized magnetotransport. Conductance and I-V curves for
spin-dependent transport through quantum dots has recently
been studied in several publications.5–9 Here we study the
time-dependent properties of transport currents. In particular,
we study the effects related to the interference between dif-
ferent spin components of the currents.

These effects can be described schematically as follows.
Consider the polarized resonant current from the left reser-
voir �emitter� to the right reservoir �collector� through a
single level of a quantum dot �impurity� in the presence of an
external magnetic field. This field would split the resonant
level of the dot into a Zeeman doublet, Fig. 1. Let us assume
that the polarization axis of electrons in the emitter �n� is
different from that of the external magnetic field �n̄�. Then a
spin-polarized electron from the emitter enters into a super-
position of the “spin-up” and the “spin-down” states of the
Zeeman doublet, Fig. 1. As a result, the electron wave func-
tion in the collector has two components corresponding to
different energies of the doublet. Yet these components are
orthogonal since they correspond to different spin compo-
nents and therefore cannot interfere. If, however, there is an
additional spin-flip process in the transition between the dot
and the collector, the two spin components interfere in the

collector current. Again, this takes place if the polarization in
the collector �n�� is different from that in the quantum dot
�n̄�, Fig. 1. Thus the system operates as a two-path interfer-
ometer, where the phase difference between the two paths,
i.e., through the upper and the lower spin states in the dot,
contributes to the dynamical �or spectral� properties of the
collector current.

These interference effects can be realized experimentally
in a heterostructure with a quantum dot sandwiched between
the two ferromagnetic leads with easy axes different from
those in the dot. A similar set up can be implemented in other
systems, such as self-assembled quantum dots,10 ultrasmall
particles,11 carbon nanotubes,12 and single molecules.13

These systems are likely to find prominent technological ap-
plications, including random excess memory and magnetic
sensors due to the giant magnetoresistance effect.14 The
value of Zeeman splitting in the dot is controlled by the
external magnetic field. The leads are assumed to be thin
magnetic films, so that the magnetic field inside the leads is
pinned parallel to the films and, therefore, the magnetization
in the leads remains unaffected by the application of a rela-
tively small external magnetic field.

This paper is organized as follows. In Sec. II we introduce
the model and describe, in general, the rate equation ap-
proach for calculations of the resonant current and its noise
spectrum. This approach has been obtained directly from the

FIG. 1. �Color online� Resonant tunneling of a polarized elec-
tron through a quantum dot. Here the �’s denote the tunneling
transition amplitudes between the reservoir states and the Zeeman
doublets �E1,2� of the quantum dot. �L,R are the chemical potentials
in the left and right reservoirs. The unit vectors n, n̄, and n� show
the polarization axes in the emitter, quantum dot, and the collector,
respectively.
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many-body Schrödinger equation describing the entire
many-particle system15,16 and allows one to treat the magne-
totransport through quantum dot systems in the most simple
and precise way. In Sec. III we consider the case of nonin-
teracting �of weakly interacting� electrons. We explain in de-
tail how the rate equations are used to calculate the polarized
current and the noise spectrum both for ferromagnetic and
nonferromagnetic leads. The results for the time-dependent
polarized current are compared with the results of the single-
particle model, presented in the Appendix. We explicitly
demonstrate how the polarized current exhibits oscillations
due to interference effects. In Sec. IV we concentrate on the
interacting case. In particular, we derive the current spectra
in the presence of a Coulomb blockade in the dot. We con-
sider separately the collector and the emitter currents, as well
as the circuit current. In Sec. V we summarize our calcula-
tions and briefly discuss the potential implications of our
results on the noise spectroscopy of quantum dots.

II. MANY-BODY DESCRIPTION

Consider the polarized transport of noninteracting elec-
trons through a quantum dot in the external magnetic field,
Fig. 1. The polarization axis of an electron inside the dot �n̄�
is different from those in the right and left reservoirs �n and
n��. The tunneling Hamiltonian describing this system can be
written as

H = �
l,s

Elsals
† als + �

d=1,2
Edad

†ad + �
r,s�

Ers�ars�
† ars�

+ ��
d,l,s

�dlsals
† ad + �

d,r,s�

�drs�ars�
† ad + H.c.� + UCa1

†a1a2
†a2,

�1�

where the spin indices, s ,s�= ± 1
2 are related to different

quantization axes �n and n�, Fig. 1�, and Els ,Ers� denote the
energy levels in the reservoirs. The Zeeman splitting of the
dot is denoted by Ed, where d=1,2. The last two terms de-
scribe the tunneling transitions between the reservoirs and
the dot states generated by both the tunneling couplings �
and the Coulomb repulsion of two electrons inside the dot.

All parameters of the tunneling Hamiltonian �1� are re-
lated to the initial microscopic description of the system in
the configuration space �x�. For instance, the coupling �dls is
given by the Bardeen formula17

�dls = −
1

2m
�

x��l

�d�x��J�ls�x�d� , �2�

where �d�x� and �ls�x� are the electron wave functions inside
the dot and the reservoir, respectively, and �l is a surface
inside the potential barrier that separates the dot from the left
reservoir. Since the spin quantization axes in the dot and in
the leads differ from each other, the transition matrix ele-
ments ��� in Eq. �2� depend on the relative angles between
the dot and the lead polarization axes �	L and 	R for left and

right leads, respectively�. The simplest form of the couplings
that respects SU�2� symmetry is

�dls = �lds,sd

�1/2��	L�

and

�drs� = �rdsd,s�
�1/2��	R� , �3�

where sd= ± 1
2 denotes the electron spin inside the dot, Fig. 1,

d�1/2��	� is spin rotation matrix,

d1/2�	� =� cos
	

2
sin

	

2

− sin
	

2
cos

	

2
� , �4�

and �l/r is spin-independent part of the couplings. Neglect-
ing the energy dependence of these couplings, �l,r=�L,R,
one can relate them to the partial widths �tunneling rates� as

L,R=2��L,R

2 �L,R, where �L,R is density of the states in the
left �right� reservoir.

In the case of large bias, 	E1,2−�L,R 	 

L,R, the many-
body Coulomb repulsion effects in the magnetotransport can
be accounted for in the most simple and precise way by
using the modified Bloch-type equations for the reduced den-
sity matrix.15,16 These equations can be derived from the
many-body Schrödinger equation by integrating out the res-
ervoir states in the limit of weak or strong Coulomb repul-
sion, UC
�L−E1 or UC��L−E1, without any stochastic or
other approximations. In addition these equations are very
useful for evaluating the shot-noise power spectrum.

In order to apply our method we first redefine the vacuum
state 	0
 by identifying it with the initial state of the entire
system. For instance, we can identify it with an empty dot,
with the emitter and collector filled up to the chemical po-
tentials �L,R, respectively. We also assume that the electrons
in the emitter are polarized along the n direction, Fig. 1. The
many-body wave function, describing the entire system can
be written in the most general way as

	��t�
 = �b0�t� + �
d,l,s

bdls�t�ad
†als + �

l,s,r,s�

brs�ls�t�ars�
† als

+ �
l,s,l̄,s̄

b12lsl̄s̄�t�a1
†a2

†alsal̄s̄

+ �
d,l,s,l̄,s̄,r,s�

bdrs�lsl̄s̄r�t�ad
†ars�

† alsal̄s̄ + ¯ �	0
 , �5�

where d= �1,2� denotes a state with one electron in the dot
and ls �rs�� denote the electron level in the emitter �collec-
tor�. The amplitudes b��t� of finding the entire system in the
state “�” are obtained from the Schrödinger equation
i�t	��t�
=H	��t�
 with the initial condition b��0�=��,0

Let us introduce the �reduced� density matrix � j j�
m,n�t�,

where n ,m denote the number of electrons which have ar-
rived the right reservoir with the spin components s�= ± 1

2 ,
respectively, Figs. 1 and 2. The lower indices j , j� denote the
discrete states of the quantum dot. For instance, in the case
of noninteracting �or weakly interacting� electrons
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j , j�= �0,1 ,2 ,3�, Fig. 2. This density matrix � j j�
m,n�t� can be

easily constructed from the amplitudes b�t�, Eq. �5�. For
example,

�00
0,0�t� = 	b0�t�	2, �11

0,0�t� = �
l

	b1l1/2�t�	2,

�22
0,0�t� = �

l

	b2l1/2�t�	2, �33
0,0�t� = �

l,l̄

	b21ll̄�t�	2,

�12
0,0�t� = �

l

b1l1/2�t�b2l1/2
* �t� ,

�00
1,0�t� = �

l,r
	b1l1/2r1/2�t�	2, ¯ �6�

The diagonal density matrix elements, � j j
n,m, are the prob-

abilities of finding the system in one of the states shown in
Fig. 2 and the off-diagonal matrix elements �“coherencies”�
describe a linear superposition of these states.

It was demonstrated in Refs. 15 and 16 that the
Schrödinger equation for the entire system, i�t	��t�

=H	��t�
, can be reduced to Bloch-type rate equations de-
scribing the reduced density matrix � j j�

n,m�t�. This reduction
takes place after a partial tracing over the reservoir states. It
becomes exact in the limit of large bias without the explicit
use of any Markov-type or weak coupling approximations.18

In the general case these equations are16

�̇ j j� = i�Ej� − Ej�� j j� + i��
k

� jk�̃k→j� − �
k

�̃ j→k�kj��
− �

k,k�

P2���� jk�k→k��k�→j� + �kj��k→k��k�→j�

+ �
k,k�

P2����k→j�k�→j� + �k→j��k�→j��kk� �7�

�for simplicity we have omitted the indices m and n, which,
however, can be easily restored from the conservation of the
total number of electrons�. Here �k→k� denotes the single-
electron hopping amplitude that generates the k→k� transi-

tion. We distinguish between the amplitudes �̃ describing
single-electron hopping among isolated states and � describ-
ing transitions among isolated and continuum states. The lat-
ter can generate transitions between the isolated states of the
system, but only indirectly, via two consecutive jumps of an
electron, into and out of the continuum reservoir states �with
the density of states ��. These transitions are represented by
the third and the fourth terms of Eq. �7�. The third term
describes the transitions �k→k�→ j� or �k→k�→ j��, which

cannot change the number of electrons �n ,m� in the collector.
The fourth term describes the transitions �k→ j and k�→ j��
or �k→ j� and k�→ j� which increase the number of electrons
in the collector by 1. These two terms of Eq. �7� are analogs
of the “loss” �negative� and the “gain” �positive� terms in the
classical rate equations, respectively. Yet, the sign of these
terms depends on the relative sign of the corresponding cou-
plings �.1 In our case it is determined by the sign of the
spin-flip amplitude, Eq. �3�. In addition, there is a �permuta-
tion� operator, P2= ±1, due to anticommutation of the fermi-
ons operators, a1,2

† in Eq. �5� �See also Ref. 15�. The prefac-
tor P2=−1 whenever the loss or the gain terms in Eq. �7� are
generated by a two-particle state of the dot. Otherwise
P2=1.

III. NONINTERACTING ELECTRONS

Consider first the case of no electron repulsion inside the
dot, UC=0. �In fact, the results would be the same for
UC
�L−E1, assuming the couplings � are independent of
energy.� As in the previous section we choose the initial
�“vacuum”� state corresponding to the polarized electrons in
the left reservoir, s= 1

2 �Fig. 1�. In this case all four configu-
rations shown in Fig. 3 contribute to Eqs. �7�. Taking into
account that there is no direct coupling between the states,

E1,2, i.e., �̃=0, one obtains the following Bloch-type rate
equations for the density matrix � j j�

n,m�t�:

�̇00
n,m = − 
L�00

n,m + 
R
�1���11

n−1,m + �22
n,m−1� + 
R

�2���11
n,m−1

+ �22
n−1,m� + 
L

�2��11
n,m + 
L

�1��22
n,m + 
L

�12���12
n,m + �21

n,m�

− 
R
�12���12

n−1,m + �21
n−1,m − �12

n,m−1 − �21
n,m−1� , �8a�

�̇11
n,m = − �
R + 2
L

�2���11
n,m + 
L

�1���00
n,m + �33

n,m�

− 
L
�12���12

n,m + �21
n,m� + 
R

�2��33
n−1,m + 
R

�1��33
n,m−1,

�8b�

�̇22
n,m = − �
R + 2
L

�1���22
n,m + 
L

�2���00
n,m + �33

n,m�

− 
L
�12���12

n,m + �21
n,m� + 
R

�1��33
n−1,m + 
R

�2��33
n,m−1,

�8c�

�̇33
n,m = − �2
R + 
L��33

n,m + 
L
�2��11

n,m + 
L
�1��22

n,m

+ 
L
�12���12

n,m + �21
n,m� �8d�

�̇12
n,m = − �i� + 
��12

n,m − 
L
�12���00

n,m + �11
n,m + �22

n,m + �33
n,m�

+ 
R
�12���33

n−1,m − �33
n,m−1� , �8e�

where �=E1−E2, 
=
L+
R and 
L,R
�1� =
L,R cos2�	L,R /2�,


L,R
�2� =
L,R sin2�	L,R /2�, 
L,R

�12�=
L,R sin�	L,R /2�cos�	L,R /2� are
the partial tunneling widths of the levels E1,2.

We now trace the origin of each term in these equations
taking as an example Eq. �8b�, corresponding to j= j�=1 in
Eq. �7�. The first term in this equation is a “loss” term gen-
erated by the transitions 1→0→1 and 1→3→1 in Eq. �7�
corresponding to the following processes: �a� an electron at

FIG. 2. �Color online� Four available states of the quantum dot.
The indices n ,m denote the number of electrons with the spin com-
ponents s�= ± 1

2 in the right reservoir.
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the level E1 
Fig. 3, �1�� tunnels to the right reservoir and
back to the same state, with the rate 
R; �b� the same electron
tunnels to the available continuum states of the left reservoir
and back to the level E1, with the rate 
L

�2�=
L sin2�	L /2�.
This can proceed only via spin-flip, since the spin-up states
in the left reservoir are occupied; �c� an electron from occu-
pied states of the left reservoir tunnels to the unoccupied
level E2 of the dot and then back to the same state of the left
reservoir, with the rate 
L

�2�.
The second term in Eq. �8b� is a “gain” term generated by

the transitions 0→1, 0→1 and 3→1, 3→1 of an electron
from the left reservoir to the level E1 and from the level E2 to
the unoccupied �spin-down� continuum states of the left res-
ervoir.

The third, loss, term in Eq. �8b� is generated by the tran-
sitions 2→0→1 and 2→3→1 via the left reservoir. These
transitions involve the following processes: �a� an electron at
the level E2 
Fig. 3, �2�� tunnels to an unoccupied, spin-down
state of the left reservoir, and then makes a spin-flip transi-
tion to the state E1 of the dot. The rate of this process is
� 1

2
�
L sin�	L�cos�	L /2�, as follows from Eq. �7�; �b� an elec-

tron from one of the occupied states of the left reservoir
tunnels to the state E1 with the corresponding amplitude
�L cos�	L /2�. Then an electron with energy E2 tunnels to the
vacant state of the left reservoir with the spin-flip amplitude
−�L sin�	L /2�. Since this transition proceeds via the two-
electron state of the dot, the corresponding permutation pref-
actor, P2=−1. As a result, the rate of this �loss� process is
� 1

2
�
L sin�	L�. Similar transitions via the right reservoir can-

cel. Indeed the electron from energy level E2 can reach the
level E1 by two ways: the first through the spin-flip hopping

to the right reservoir and then to the level E1 with no spin-
flip, and the second, without spin-flip to the right reservoir,
and then to the level E1 with the spin flip. These two ampli-
tudes are of the opposite sign.

The last two terms of Eq. �8b� are gain terms generated by
the transitions 3→1, 3→1 of an electron from the state in
Fig. 3, �3� to the spin-up or spin-down states of the right
reservoir. The number of electrons in the right reservoir in-
creases by 1.

A. Resonant current in the collector

Using Eqs. �8� we can easily obtain the spin-up and spin-

down currents, I1/2�t�=�n,mnṖn,m�t� and I−1/2�t�
=�n,mmṖn,m�t�, where Pn,m�t�=� j=0

j=3� j j
n,m is the probability of

finding n electrons with spin up and m electrons with spin
down in the right reservoir. One finds

I±1/2�t� = 
R�1 ± cos 	R

2
�11�t� +

1 � cos 	R

2
�22�t�

+ �33�t� �
sin 	R

2

�12�t� + �21�t��� , �9�

where � j j��t�=�n,m� j j�
n,m�t�. The latter can be obtained from

the following matrix equation:

Ẋ�t� + BX�t� = 0, �10�

obtained by the summation of Eqs. �8� over n ,m. Here
X= ��00,�11,�22,�33,�12,�21� and B is the corresponding
6�6 matrix,

B =�

L − 
L

�2� − 
R − 
L
�2� − 
R 0 − 
L

�12� − 
L
�12�

− 
L
�1� 
R + 2
L

�2� 0 − 
L
�1� − 
R 
L

�12� 
L
�12�

− 
L
�2� 0 
R + 2
L

�1� − 
L
�2� − 
R 
L

�12� 
L
�12�

0 − 
L
�2� − 
L

�1� 
L + 2
R − 
L
�12� − 
L

�12�


L
�12� 
L

�12� 
L
�12� 
L

�12� i� + 
 0


L
�12� 
L

�12� 
L
�12� 
L

�12� 0 − i� + 


� . �11�

Solving Eqs. �10� and substituting the result into Eqs. �9�
we find the following simple expressions for the average
polarized current:

I±1/2�t� =

L
R

2

�1 ± cos 	L cos 	R��1 − e−
t�

±

L
R
 sin 	L sin 	R

2��2 + 
2�

��1 − e−
t cos��t� + e−
t �



sin��t�� . �12�

The same result can be obtained in the framework of a
single-electron approach, valid for the noninteracting case.
�See Appendix A.� As expected, the polarized resonant cur-
rent displays damped oscillations. An example of these os-
cillations in I1/2�t� is shown in Fig. 3.

These oscillations, however, disappear in the total collec-
tor current,

I�t� = I1/2�t� + I−1/2�t� =

L
R



�1 − e−
t� , �13�

even though electrons in the emitter are polarized.
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B. Noise spectrum of the total collector current

Now we evaluate the noise spectrum of the total current,
represented by a sum of the spin-up and spin-down currents
in the final state, Eq. �13�. We introduce the density matrix
� j j�

N �t�=�n�n,N−n�t�, obtained from Eqs. �8�, where N denotes
the total number of electrons which have arrived at the right
reservoir by time t. In order to calculate the shot-noise spec-
trum we use the McDonald formula19

S��� = 2e2��
0

�

dt sin��t�
d

dt
�
N

N2PN�t� , �14�

where PN�t�=� j=0
j=3� j j

N�t�. One easily finds from Eqs. �8� that

�
N

N2ṖN�t� = 
R�
N

�2N + 1�
�11
N �t� + �22

N �t� + 2�33
N �t�� .

�15�

Substituting Eq. �15� into the McDonald formula Eq. �14�
we finally obtain

S��� = 2e2�
R Im
Z11��� + Z22��� + 2Z33���� , �16�

where Z��� is a six-vector, Z= �Z00,Z11,Z22,Z33,Z12Z21�, de-
fined as

Zij��� = �
0

�

�
N

�2N + 1��ij
N�t�exp�i�t�dt . �17�

One can find Zij��� directly from Eqs. �8� by performing the
corresponding summation over N. As a result one obtains

�B − i�I�Z��� = X̄ + 2
RȲ��� . �18�

Here B is given by Eq. �11� and I is the unit matrix. The

six-vector X̄ corresponds to the stationary solution of Eqs.

�10�, X̄=X�t→�� and Ȳ���= �Y11+Y22,Y33,Y33,0 ,0 ,0�
where Y���= �Y00,Y11,Y22,Y33,Y33,Y12,Y21� is given by the
equation

�B − i�I�Y��� = X̄ . �19�

Using Eq. �18� we calculate the ratio of the shot-noise
power spectrum to the Schottky noise, S��� /2eI �Fano fac-
tor�, where I= I�t→��=
L
R /
t, Eq. �13�. In particular, the
result has a simple analytical form for a symmetric dot,

L=
R=
. We find

S���
2eI

=
2
2 + �2

4
2 + �2 +

2�2 sin2 	L

�4
2 + �2��4
2 + �2�
. �20�

As expected the shot-noise spectrum does not display any
peak or dip at frequencies corresponding to the Zeeman split-
ting, since the interference effects are canceled in the total
collector current. Yet the noise spectrum depends on the ini-
tial polarization of incoming electrons �	L�, whereas the total
collector current does not 
see Eq. �13��. If electrons are
initially polarized along the magnetic field inside the dot �n̄�,
then the Fano factor is the same as in the case of resonant
tunneling through a single level.20 With increasing 	L, how-
ever, the current flows through both levels of the Zeeman
doublet. This leads to an additional contribution to the shot
noise, described by the second term of Eq. �20�.

C. Ferromagnetic reservoirs

Let us consider ferromagnetic reservoirs polarized along
n and n� directions, Fig. 1. In this case the rate equations �8�
have to be modified since there are no available spin-down
states in the left and right reservoirs. One easily obtains the
following rate equations for the density matrix � j j�

n �t�, where
n denotes the number of electron, arriving at the collector
before time t:

�̇00
n = − 
L�00

n + 
R
�1��11

n−1 + 
R
�2��22

n−1 − 
R
�12���12

n−1 + �21
n−1� ,

�21a�

�̇11
n = − �
L

�2� + 
R
�1���11

n + 
L
�1��00

n − 1
2 �
L

�12� − 
R
�12����12

n + �21
n �

+ 
R
�2��33

n−1, �21b�

�̇22
n = − �
L

�1� + 
R
�2���22

n + 
L
�2��00

n − 1
2 �
L

�12� − 
R
�12����12

n + �21
n �

+ 
R
�1��33

n−1, �21c�

�̇33
n = − 
R�33

n + 
L
�2��11

n + 
L
�1��22

n + 
L
�12���12

n + �21
n � ,

�21d�

�̇12
n = − �i� + 1

2
��12
n − 
L

�12��00
n − 1

2 �
L
�12� − 
R

�12����11
n + �22

n �

+ 
R
�12��33

n−1. �21e�

Using these equations we first evaluate the average cur-
rent I�t�� I1/2�t� given by Eq. �9� with � j j��t�=�n� j j�

n �t�. The
latter quantities are obtained from a summation of Eqs. �21�
over n. As a result Eqs. �21� are reduced to the matrix equa-
tion �10�, where B is the corresponding 6�6 matrix of the
coefficients of Eqs. �21�. Solving this equation we find the
average current I�t�. For instance, in the case of 	L=	R one
finds for the stationary current, I= I���=
L
R / �
L+
R�. One
obtains the same expression for the resonant tunneling of
unpolarized electrons through a single level.

FIG. 3. Spin-up and total resonant currents through the Zeeman
doublet as a function of time for 	L=	R=� /2 and 
L=
R=0.1�.
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The time dependence of the average current, I�t�, is dis-
played in Fig. 4 for symmetric and asymmetric dots,

L=
R=0.1� and 
L=�, 
R=0.1�, respectively. In compari-
son with Fig. 2 one finds that the oscillations in the average
current are more pronounced in the case of ferromagnetic
reservoirs. This can be anticipated since the corresponding
spin-flip transitions via the spin-down states of the reservoirs
do not exist. We recall that precisely these transitions re-
sulted in the cancelation of the interference effects in the
previous case.

Now we can evaluate the shot-noise spectrum, S��� using
the McDonald formula. One obtains from Eqs. �14� and �21�

S��� = 2e2� Im�
R
�1�Z11��� + 
R

�2�Z22��� + 
RZ33��� − 
R
�12�

�
Z12��� + Z21����� , �22�

where Z��� is given by Eq. �18� with the matrix B corre-

sponding to Eqs. �21� and Ȳ = �Ȳ00, Ȳ11, Ȳ22,0 , Ȳ12, Ȳ21�. Here

Ȳ00=cos2�	R /2�Y11+sin2�	R /2�Y22−sin 	R /2�Y12+Y21�, Ȳ11

=sin2�	R /2�Y33, Ȳ22=cos2�	R /2�Y33, and Ȳ12= Ȳ21

= �sin 	R /2�Y33, while Y jj�=Y jj���� are given by Eq. �19�.
The corresponding Fano factor is shown in Fig. 5 for the

same parameters as in Fig. 4. It clearly displays a dip at the
Zeeman frequency for a symmetric dot. It reflects the
damped oscillations in the average current, shown in Fig. 4.
The dip, however, almost disappears for an asymmetric dot
with large 
L.

IV. COULOMB BLOCKADE

We now introduce strong Coulomb repulsion inside the
dot, UC��L−E1, so that the state �3� in Fig. 3 is not avail-
able. As a result the corresponding rate equations have an
even simpler form than those found for noninteracting elec-
trons. Consider again the case of ferromagnetic reservoirs,
where the quantum interference effects are most pronounced.
The corresponding rate equations for the case of Coulomb
blockade can be obtained from Eqs. �21� for noninteracting

electrons, by eliminating configurations with two electrons in
the dot. In the following we consider separately the electron
current in the right and in the left reservoirs.

A. Collector current

The electrical current in the right reservoir and its power
spectrum are obtained from the following rate equation:

�̇00
n = − 
L�00

n + 
R
�1��11

n−1 + 
R
�2��22

n−1 − 
R
�12���12

n−1 + �21
n−1� ,

�23a�

�̇11
n = − 
R

�1��11
n + 
L

�1��00
n +


R
�12�

2
��12

n + �21
n � , �23b�

�̇22
n = − 
R

�2��22
n + 
L

�2��00
n +


R
�12�

2
��12

n + �21
n � , �23c�

�̇12
n = − �i� +


R

2
��12

n − 
L
�12��00

n +

R

�12�

2
��11

n + �22
n � .

�23d�

Using these equations one finds for the average �polar-
ized� current in the collector

IR�t� = 
R
�1��11�t� + 
R

�2��22�t� − 
R
�12�
�12�t� + �21�t�� ,

�24�

where the � j j��t�=�n,m� j j�
n,m�t� are obtained from Eq. �10� for

X= ��00,�11,�22,�12,�21�, and B is the 5�5 matrix ob-
tained from the coefficients of Eqs. �23�. Solving such a
modified Eq. �10� for 	L=	R, one finds for the stationary
current,

IR = IR��� =

L
R

2
L + 
R
. �25�

This expression shows an asymmetry with respect to the
widths 
L and 
R, in contrast with the noninteracting case.
The reason is that an electron enters the dot from the left
reservoir with the rate 2
L. However, it leaves with the rate

FIG. 4. The polarized resonant current through the Zeeman dou-
blet with ferromagnetic reservoirs and 	L=	R=� /2. The solid line
corresponds to 
L=
R=0.1� and the dashed line to 
L=� and

R=0.1�.

FIG. 5. The Fano factor versus � for a polarized electron current
with ferromagnetic reservoirs and 	L, 	R=� /2. The solid line cor-
responds to 
L=
R=0.1� and the dashed line to 
L=� and

R=0.1�.
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R, since the state with two levels of the dot occupied is
forbidden.

The shot-noise power spectrum for the collector current is
given by

SR��� = 2e2� Im�
R
�1�Z11��� + 
R

�2�Z22���

− 
R
�12�
Z12��� + Z21����� . �26�

Here Zij��� are obtained from Eqs. �18� and �19�, where Ȳ

= �Ȳ00,0 ,0 ,0 ,0� and Ȳ00=cos2 	R /2Y11+sin2 �	R /2�Y22

− sin 	R /2�Y12+Y21�.
The results of our calculations of S��� for symmetric and

asymmetric quantum dots in the case of Coulomb blockade
are shown in Fig. 6.

B. Emitter current

We now consider the electric current and its power spec-
trum in the left reservoir. These quantities are determined
from the density-matrix � j j�

p , where p is the number of elec-
trons that left the emitter before time t �the number of holes
in the left reservoir�. The corresponding rate equations are
similar to Eqs. �23�. One finds

�̇00
p = − 
L�00

p + 
R
�1��11

p + 
R
�2��22

p − 
R
�12���12

p + �21
p � ,

�27a�

�̇11
p = − 
R

�1��11
p + 
L

�1��00
p−1 +


R
�12�

2
��12

p + �21
p � , �27b�

�̇22
p = − 
R

�2��22
p + 
L

�2��00
p−1 +


R
�12�

2
��12

p + �21
p � , �27c�

�̇12
p = − �i� +


R

2
��12

p − 
L
�12��00

p−1 +

R

�12�

2
��11

p + �22
p � .

�27d�

The average emitter current in the left reservoir is given
by IL�t�=
L�00�t�, which differs from Eq. �24� describing the
collector current, IR�t�. Yet, as expected, their stationary val-
ues coincide, IL���= IR���, Eq. �25�.

The shot-noise power spectrum of the emitter current is
given by

SL��� = 2e2�
L Im Z00��� �28�

instead of Eq. �26� for SR���, where Zij��� are obtained from

Eqs. �18� and �19�. Yet, Ȳ���= �0,cos2 	L /2 , sin2 	L /2 ,
− sin 	L /2 , − sin 	L /2�Y00���, in contrast with the corre-
sponding expression for SR���. Even though the expressions
for SL,R��� are quite different, one finds that the shot-noise
power of the emitter current is the same as that in the col-
lector current, SL���=SR���.

C. Circuit current

In general, the circuit current is given by Ic�t�
=�IL�t�+�IR�t�, where the coefficients � ,� with �+�=1
depend on the junction capacities.21 Using charge conserva-

tion IL= IR+ Q̇, where Q is charge in the dot, one finds

Ic�t�Ic�0� = �IL�t�IL�0� + �IR�t�IR�0� − ��Q̇�t�Q̇�0� .

�29�

Using this relation one finds a simple expression for the
noise spectrum of the circuit current4,22

Sc��� = �SL��� + �SR��� − ���2SQ��� , �30�

where SQ��� is Fourier transform of the charge correlation
function. This quantity can be obtained straightforwardly

from the matrix equation �19�, where X̄ is the five-vector
�0,�11��� ,�22��� ,0 ,0�. Then SQ���=4 Re
Y11���+Y22����.

The results of our calculations of Sc��� for �=�= 1
2 are

shown in Fig. 7.
One finds from Figs. 6 and 7 that the Coulomb blockade

modifies the current spectrum very drastically with respect to
the noninteracting case, Fig. 5.

V. CONCLUSIONS

In this paper, we study the interference effects in magne-
totransport through Zeeman split levels of quantum dots or
impurities. We concentrated on the time-dependent proper-
ties and the power spectrum of the electric current by apply-
ing the new approach using quantum rate equations, which is
mostly suitable for this type of problems. We explicitly dem-
onstrated that our method produces the same results as a

FIG. 6. The Fano factor versus � for a polar-
ized collector current with ferromagnetic reser-
voirs and Coulomb blockade and 	L, 	R=� /2.
The solid line corresponds to 
L=
R=0.1� and
the dashed line to 
L=� and 
R=0.1�.
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single-electron approach, widely used for a description of
noninteracting electron transport. Yet the quantum rate equa-
tions method is valid also for the case of interacting electrons
and accounts for the Coulomb blockade in the most simple
and precise way.

Our results indicate that the Coulomb blockade plays an
important role in the spectral properties of the transport cur-
rent. First of all, in the presence of Coulomb blockade the
signal-to-noise ratio significantly is amplified, as one can ob-
serve from the results in the previous sections. This is prob-
ably a consequence of the prohibition of the double occupa-
tion of the resonant level in the quantum dot. Indeed, when
two electrons in the dot are present, the interference effects
are suppressed due to the “randomization” of the relative
phase. Interestingly, the dip in the noise spectrum for the
noninteracting electrons is replaced by a peak as result of
Coulomb interaction. Clearly the Coulomb interaction modi-
fies the phase of the electrons tunneling trough the dot,
which “flips” the spectral feature in the noise. The details of
this very interesting phenomena must be studied in the fu-
ture.

We emphasize that the coherent oscillations in the current
can be observed only for polarized current and that oscilla-
tions disappear for unpolarized current. This is different from
the resonant transport through two orbital levels of a quan-
tum dot or impurity, where the quantum interference effects
can be observed even in unpolarized case. Therefore it is
most natural to use ferromagnetic leads for the observation
and utilization of the quantum interference effect in the mag-
netotransport. Thus our calculations were mostly concen-
trated on this case. Our results show explicitly the appear-
ance of a peak or dip at a frequency near the Zeemann
splitting frequency �Larmour frequency�. We believe that this
phenomenon can be useful in analyzing the noise spectros-
copy of quantum dots or impurities. Indeed, the Zeeman
splitting of a localized quantum dot orbital must be sensitive
to local magnetic fields, and therefore one can hope that such
a coherent effect, if observed experimentally, may allow for
detection of the local hyperfine structure of the dot and/or
impurity. This, however, must be a subject of a separate in-
vestigation.

ACKNOWLEDGEMENTS

We thank J. Brown, L. Fedichkin, M. B. Hastings, M.
Hawley, and I. Martin for valuable discussions. We are espe-

cially grateful to Gary D. Doolen for important remarks and
for proofreading the manuscript. The work was supported by
the Department of Energy under Contract No. W-7405-
ENG-36 and by DOE Office of basic Energy Sciences. D. M.
was supported, in part, by the US NSF Grant No. DMR-
0121146.

APPENDIX A: SINGLE-ELECTRON DESCRIPTION

In the case of noninteracting electrons one can compare
our results with those obtained using a single-electron ap-
proach. Although the latter is widely used in the literature, it
is usually restricted to the time-independent �stationary�
case. Here we present an extension of the single-electron
approach for the nonstationary case. This would allow us to
evaluate the time-dependent resonant current, Fig. 3, and to
compare the results with those obtained from Eqs. �7�.

Let us consider a system consisting of the reservoirs and
the quantum dot filled with only a single electron. We as-
sume that this electron is initially in the left reservoir �emit-
ter� at the level El̄ with the spin polarized along the n direc-
tion, Fig. 1. The electron motion is described by a wave
function which can be written in the most general way as23

	��t�
 = ��
l,s

bls�t�als
† + �

d=1,2
bd�t�ad

† + �
r,s�

brs��t�ars�
† �	0
 ,

�A1�

where b��t� is the amplitude of finding the electron in the
state � given by a corresponding creation operator. These
amplitudes are obtained from the Schrödinger equation
	��t�
, with the initial conditions bls�0�=�l,l̄�s,1/2 and
bd�0�=brs�0�=0. It is useful to use the Laplace transform,

b̃�E�=�0
�b�t�exp�iEt�dt. In this case the time-dependent

Schrödinger equation for the amplitudes b̃�E� becomes the
following system of linear algebraic equations:

�E − Els�b̃ls�E� − �l �
d�=1,2

ds,sd�

�1/2��	L�b̃d��E� = i�l,l̄�s,1/2,

�A2a�

FIG. 7. The Fano factor for the circuit
��=�= 1

2
� versus � for a polarized electron cur-

rent with ferromagnetic reservoirs and Coulomb
blockade and 	L ,	R=� /2. The solid line corre-
sponds to 
L=
R=0.1� and the dashed line to

L=� and 
R=0.1�.
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�E − Ed�b̃d�E� − �
l,s

�ldsd,s
�1/2��	L�b̃ls�E�

− �
r,s�

�rdsd,s�
�1/2��	R�b̃rs��E� = 0, �A2b�

�E − Ers��b̃rs��E� − �r �
d�=1,2

ds�,sd�

�1/2� �	R�b̃d��E� = 0.

�A2c�

Substituting b̃ls and b̃rs� from Eqs. �A2a� and �A2c�, into Eq.
�A2b� and replacing the sums on l and r by the integrals, we
obtain

�E − E1 + i

L + 
R

2
�b̃1�E� = i

�L cos�	L/2�
E − El̄,1/2

, �A3a�

�E − E2 + i

L + 
R

2
�b̃2�E� = − i

�L sin�	L/2�
E − El̄,1/2

. �A3b�

Note that the amplitudes, b̃1�E� and b̃2�E�, are decoupled in
Eqs. �A3� although the corresponding states are connected
via the continuum. The reason is that the spin-flip couplings
of the dot with the reservoirs are of the opposite sign for the
spin-up and the spin-down states of the dot �E1 and E2 in Fig.
1�. However, for the general case of resonant tunneling
through two levels, the corresponding amplitudes are
coupled via the interaction through continuum.1

Using the inverse Laplace transform b1,2�t�
=�b̃1,2�E�exp�−iEt�dE / �2��, we obtain for the amplitudes
b1,2�t� for finding the electron inside the dot

b1�t� =
�L cos�	L/2�

EL − E1 + i



2

�e−iELt − e−iE1t−
/2t� , �A4a�

b2�t� = −
�L sin�	L/2�

EL − E2 + i



2

�e−iELt − e−iE2t−
/2t� , �A4b�

where 
=
L+
R. The probability amplitude of
finding the electron inside the collector is brs��t�
=�b̃rs��E�exp�−iEt�dE / �2��, where b̃r,s��E� is given by Eq.
�A2c�

b̃rs��E� =
�R

E − Ers�
�

d

ds�sd

�1/2��	R�b̃d�E� . �A5�

The above equations determine the motion of a single
electron placed initially in the emitter. In order to obtain the
polarized current Is��t� in the single-electron model one has
to sum over all initially occupied states El̄ of the emitter and
over all available states Er of the collector. Thus
Is�=dNs��t� /dt, where Ns��t�=�l̄,r	brs��t�	

2 is the average
number of electrons with spin-up and spin-down �s�= ± 1

2
�,

accumulated in the collector by the time t. Using the inverse
Laplace transform and replacing �l̄,r→��L�RdELdER we ob-
tain

Ns��t� =� �L�RdELdER� dE dE�

�2��2 b̃rs��E�b̃rs�
* �E��ei�E�−E�t.

�A6�

Substituting Eq. �A5� into Eq. �A6� and integrating over
Ers� one obtains for the polarized current

I1/2�t� = 
R�
�R

�L

�LdEL	cos�	R/2�b1�t� − sin�	R/2�b2�t�	2,

�A7a�

I−1/2�t� = 
R�
�R

�L

�LdEL	sin�	R/2�b1�t� + cos�	R/2�b2�t�	2,

�A7b�

where the amplitudes b1,2�t� are given by Eqs. �A4�. Note
that these amplitudes in the stationary limit, b1,2�t→��, are
the transmission amplitudes describing the resonance tunnel-
ing through the levels E1,2.7 Thus, Eqs. �A7� represent a gen-
eralization of the Landauer formula for the time-dependent
case.

For large bias �L−�R�
 the integration over EL in Eqs.
�A7� can be performed analytically using Eqs. �A4� for the
amplitudes b1,2�t�. As a result we finally arrive at Eq. �12�
obtained from Eq. �7� for the case of noninteracting elec-
trons. This agreement with the case of noninteracting elec-
trons is quite remarkable since our rate equations dealing
with many-electron states are very different from those ob-
tained in the single electron framework. Yet, this is not sur-
prising since in the case of noninteracting electrons the
single-electron description is valid. In fact, Eqs. �A3� can be
mapped to Eq. �10� using 	bi�t�	2=�ii�t�+�33�t�, where i=1,
2 and b1�t�b2

*�t�=�12�t�.
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