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We show how to incorporate fractionally charged quasielectrons in the finite quantum Hall matrix model.
The quasielectrons emerge as combinations of BPS solitons and quasiholes in a finite matrix version of the
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I. INTRODUCTION

During the last few years a new class of models for the
fractional quantum Hall �QH� effect has emerged. The basic
construction is due to Susskind,1 who observed that the
Laughlin states at filling fraction �=1/ �2k+1� are naturally
described by a noncommutative Chern-Simons �CS� theory,
or equivalently, by an infinite matrix model with the La-
grangian,

L0 =
eB

2
Tr��Ẋa − i�Xa, â0�m��abXb + 2�â0� , �1�

where Xa�t�, a=1,2, and â0�t� are Hermitian matrices—the
latter being a Lagrange multiplier imposing the matrix com-
mutator constraint, �X1 ,X2�= i�. The area � that enters L0 is
the noncommutativity parameter, and B is the transverse
magnetic field.

As it stands, this model has only a single state, since the
solution to the constraint, which can only be satisfied by
infinite matrices, is unique �up to gauge transformations�.
This reflects that the theory is topological and thus has no
excitations when defined on an infinite plane.22

The parameter � can be interpreted as an area per particle,
giving the unique state a constant density �=1/2��. Modi-
fying the constraint by hand, one finds other solutions corre-
ponding to fractionally charged quasielectrons and
quasiholes.1

In an important development, Polychronakos extended the
model by supplementing �1� with the Lagrangian,

Lb = �†�i�0 − â0�� , �2�

where � is a complex bosonic N-vector.2 The Xa’s in �1� are
now Hermitian N�N matrices, and the constraint is changed
to

�X1,X2� = i� −
i

eB
��† = i��1 −

1

	
��†� , �3�

where 	=eB�
0 is the so-called level number. It is striking
that this finite QH matrix model �QHMM� already at the
classical level describes several key features of the quantum
Hall system:

�1� In the presence of a rotationally invariant confining
potential, the ground state is a finite size circular “droplet”
with a constant bulk density �̄ depending on the level num-
ber.

�2� The excitation spectrum is consistent with that of a
QH droplet. In particular there are quasihole states in the
bulk and gapless quasielectron-quasihole states at the edge.

�3� In the absence of a potential, there is a set of degen-
erate low density states corresponding to single particles in
the lowest Landau level, at well separated positions in the
plane.

In particular note that the presence of quasielectron and
quasihole excitations takes this description beyond that of a
classical incompressible fluid, and we shall see below how
the model also describes how QH droplets are formed from
well separated particles in a strong magnetic field.

Quantizing �1�, and assuming the underlying matrix de-
grees of freedom to be fermionic, Susskind showed that the
density is quantized at the Laughlin fractions �= �̄ /�0
=1/ �2k+1�, where k is integer and �0=eB /2� �when �=1�
is the density of states in a single Landau level.23 At a tech-
nical level, it was also shown in Ref. 2 that in the presence of
a quadratic potential, there is an exact mapping of the QH
matrix model onto the Calogero model, both in the classical
and the quantum case. This mapping yields explicit expres-
sions for both energy levels and wave functions.3

In a previous paper we extended the QHMM model fur-
ther, by constructing a class of conserved charges and ac-
companying currents, thus allowing for a coupling to an ex-
ternal electromagnetic field.4 We then went on to calculate
low momentum response functions in the classical model, in
particular:

�1� The ground state density, being the response to a con-
stant electric potential, A0.

�2� The quantum Hall response �H.

�3� The response to a weak and slowly varying external B�

field.
The results were all in agreement with the known properties
of the Laughlin states.

In spite of these successes there are several basic aspects
of QH physics which are not incorporated in the finite matrix
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model given by �1� and �2�. Most significantly,
�a� There is no unambiguous definition of density.
�b� There are no quasielectron solutions.
�c� There is no natural way to introduce spin and/or

multilayer degrees of freedom analoguous to the usual de-
scription in terms of multicomponent CS fields.5

�d� There is no generalization to fractions other than
the Laughlin ones.
In this paper we address the first two points. Before turning
to the technicalities, we will give some general comments to
the above list, and also briefly discuss the status of the quan-
tized QH matrix model.

In Ref. 4 we constructed a class of conserved currents for
the classical matrix model. As we will discuss below, there
are three natural conditions on the charge density operator: it
should be non-negative, satisfy the classical version of the
sine-algebra characteristic of the lowest Landau level, and
have the correct limit for particles separated much further
than the magnetic length. Unfortunately, we have not found
any definition that satisfies all these demands.

The absence of quasielectrons in the noncommutative
theories is related to the existence of a minimal area for each
particle. A clue as to how to get quasielectrons is given in
Susskind’s original paper where they emerged from an ad
hoc change of the constraint. In a recent paper, Bak et al.
showed how the addition of a noncommutatve scalar field �
provides a dynamical version of this mechanism, and gives a
model with soliton solutions with charge density larger than
�0.6 In Sec. III we shall construct the corresponding finite
matrix model.

The problem of spin, �or pseudospin corresponding to,
e.g., a multilayer index� derives from the restricted nature of
noncommutative gauge theories—U�N� is the only allowed
gauge group.7 The standard multicomponent CS Lagrangians
employed to describe spin and pseudospin, as well as the
general classification of abelian QH liquids given by Wen,5

are all based on the gauge group U�1�k.
The problem of finding non-Laughlin states, as already

mentioned, is superficially the same as for spin—there is no
noncommutative version of the standard multicomponent CS
theories. One would hope that the spin problem could be
addressed by introducing fermionic degrees of freedom and
couple them in a judicious way to the bosonic matrices. We
have tried several such schemes, but none turned out to be a
convincing solution. Neither do we know of any construction
for generating non-Laughlin states, and the initial hope that
the matrix theory would provide a new and more powerful
framework for the classification of QH liquids has so far
been elusive.

Thus, turning to quantum theory, there is no matrix model
where the density is quantized to other fractions than the
Laughlin ones �except for the trivial case of direct sums�, and
in particular there is no way to get the experimentally promi-
nent Jain series,8,9 �=n / �2pn±1��. At a technical level the
quantized QHMM is hard to handle since the current and
density operators are mathematically very complicated ob-
jects. This means that although the quantum states of the
model are known via the mapping from the Calogero model,2

it is not possible to calculate density profiles. Even for the
simplest case of two by two matrices the manipulation of

exponentials of matrices with �quantum� noncommuting ele-
ments is very difficult.

We already stressed the pros and cons of the classical
matrix model, and the aim of this paper is to extend this
model to allow for quasielectrons and also to find a density
operator that can describe quasiparticle and edge profiles
consistent with what is known about the QH system. As we
shall see, this endeavor has been rather successful, at least on
a qualitative level. Within an extended finite QH matrix
model, we can describe QH droplets, exponentially falling
edges, quasihole and quasielectron excitations.

The paper is organized as follows. In the next section we
discuss the ambiguities in the definition of the density opera-
tor and give the arguments in favor of our special choice. We
then calculate density profiles for droplets, and quasiparticles
and compare with what is expected from other approaches
such as CS mean field theory, and Laughlin wave functions.
In Sec. III we first show how to incorporate densities larger
than �̄ by adding a scalar field to the finite matrix model. The
resulting theory has soliton solutions with integer charges,
and quasielectrons can be constructed by adding holes on top
of these solitons. We give explicit expressions for the solu-
tions and calculate the density profiles which are again com-
pared with alternative descriptions. In the last section we
summarize our results and contrast the classical matrix
model approach with the standard classical commutative CS
description. Some technical points about the positivity of the
density operator and possible alternative definitions are given
in an appendix.

II. PARTICLES, DROPLETS, AND QUASIHOLES

In this section we shall study the density profiles of vari-
ous solutions of the finite classical matrix model. These so-
lutions were all found by Polycronakos,2 who also deter-
mined gross characterizations such as the radius and mean
density of the QH droplet, and the charge of the quasihole.
To calculate the profiles, we must first give a definition of the
density operator. As stressed in the introduction, our choice,
although not unique, gives profiles in good agreement with
those obtained by other methods.

A. The density operator

In Ref. 4 we constructed a class of conserved currents for
the classical matrix model. The general form of the charge
and current was given by

��y�,t� = Tr�
̂�ya − Xa�t��� , �4�

j��y�,t� = Tr��X�̇ − i�X� , â0�m�
̂�ya − Xa�t��� ,

where 
̂�ya−Xa� is a matrix-valued kernel. The general form
of this kernel follows from symmetry considerations and cur-
rent conservation,


̂�ya − Xa� =	 d2k

�2��2 f�ka�ya − Xa�,�abka�yb − Xb�,�k2�

�5�

and a rather natural guess is
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̂W�ya − Xa� =	 d2k

�2��2eika�ya−Xa�g��k2� , �6�

where g�0�=1. �The special case g�x�=1 is known as Weyl-
ordering.� For almost diagonal matrices, appropriate for
widely separated particles at positions x�n=X� nn, this corre-
sponds to �k� =g��k2�
ne−ik�·x�n. Clearly g can be thought of as
a form factor, and for the particular choice g�x�=e−�x/d�2

we
have Gaussian “blobs” which are very suggestive of maxi-
mally localized one-particle wave-functions in the LLL. With
this motivation we shall use

�k� = e−��2k2/2� Tr e−ik�·X� , �7�

where the length d was chosen as to match the rms radius
��r2
=�2� ��2� /eB�1/2 which is the appropriate value for
an isolated electron in the LLL.

Before proceeding to use the formula �7� to calculate den-
sity profiles, we mention some problems with this definition.
The first, and most severe, is that ��x�� is not positive definite
on the space of matrices satisfying the constraint �3�. This is
not obvious, but can be shown by numerical calculations
which also indicate that this is mainly a problem for very
small systems, typically N�10, and also gets more severe
with lower �. For moderately large N, very small violations
of positivity is seen in typical density profiles such as the
“droplet” solution shown in Fig. 1 for N=50. For extreme
cases, such as N=2, the violation of positivity is large, as
shown in the Appendix. We have not been able to show that
the definition �7� gives a positive definite density in the limit
N→�, although our numerics appears to support this possi-
bility.

The situation is less favorable for other ordering prescrip-
tions. So will for instance antiordering, defined by


̂ao�z − Z, z̄ − Z†� =	 d2k

�2��2e�ik̄/2��z−Z�e�ik/2��z̄−Z†�g̃��k2� ,

�8�

where again g̃�0�=1, give strongly fluctuating profiles, and
large negative values for the density even for rather large

N.10 By going outside the class of density operators that can
be written on the form �4�, i.e., as a trace of a matrix kernel,
one can define a positive definite density operator with the
correct limiting behavior for separated particles. This con-
struction, which essentially involves taking the square root of
a delta function, has, however, other shortcomings. Technical
details are given in the Appendix.

A second problem is that we would expect the Fourier
components of the quantum mechanical density operator to
satisfy the following commutation relation,

��k�,�p��QM = 2i sin��2

2
�k� � p���e��2/2�k�·p��k�+p� , �9�

which is the sine algebra pertinent to the density operator
projected onto the LLL. We have not been able to find any
definition of the density that satisfies �9� except for �=0,
where the antiordering is known to be correct. The claim in
Ref. 4 that a particular quantum reordering of �8� satisfies �9�
for N=2 is erroneous. 24 Actually, by studying the classical
limit we can show that there is no quantum ordering of nei-
ther the matrix Weyl ordered nor antiordered density opera-
tors that satisfies �9�.

For readers familiar with the string theory literature, the
following comment might be of interest. In string theory one
can show that the Weyl ordered expression for the density,
corresponding to g��k2�=1 in �6�, gives the density of the
lower dimensional RR-charged D-branes. This follows since
�6� is nothing but the Seiberg-Witten map for the noncom-
mutative field strength which implies that it couples to the
Ramond-Ramond forms in precisely the correct way to act as
a source of the corresponding RR-charge.11 In our case there
is no such reason to use Weyl-ordering to define the density
of particles and we may modify this expression as long as it
respects the symmetries of the problem. Note, however, that
our choice �7� coincides with Weyl-ordering for the k=0
component corresponding to the total charge.

To summarize, we have no a priori reason to choose �6�
rather than e.g. antiordering, or in fact any other ordering in
the general class �5�. Similarly, there is no theoretical moti-

FIG. 1. �Color online� To the left ��x�� for �=1 as given by the density operator �7� and the droplet solution �12� with N=50. We use
dimensionless units given by 2�2=2��=1. To the right the density ��x�� in profile along the x-axis is given for �=1, 1

3 , 1
5 , respectively. All

states have roughly constant bulk densities, but note the increasing wiggles, and the building up of a rim at the edge, for lower �.12 Note also
the small violations in positivity at the edge.
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vation for taking any particular g�x�. Instead our choice �7� is
phenomenologically motivated, and its usefulness will be
demonstrated in the rest of this paper.

B. From particles to droplets

For the gauge choice �†=�eB��11¯1�, the constraint
�3� is solved by the following matrices:2

Xmn
1 = xm
mn, �10�

Xmn
2 = ym
mn −

i�

xm − xn
�1 − 
mn� ,

where we �arbitrarily� chose to diagonalize the hermitian ma-
trix X.1 For widely separated xi’s, the off-diagonal terms, that
are responsible for the “�-repulsion,” are small, and the di-
agonal elements can be interpreted as the coordinates of the
particles. More generally, we can think of the �gauge invari-
ant� eigenvalues of the matrices Xi as particle coordinates xi
and yi. Note, however, that there is no unambiguous way to
pair these eigenvalues to position coordinates for the par-
ticles.

Another convenient gauge choice is �†=�N	�0¯01�
and introducing the dimensionless complex coordinates Z
�1/�2��X1+ iX2�, the constraint takes the form

�Z,Z†� = 1 − N�N − 1
�N − 1� , �11�

where the bra-ket notation refers to an oscillator basis as
explained in e.g. Ref. 7. In the large N limit, this is the usual
ladder operator algebra, and the effect of the boundary field
is only at the “edge” of the matrix. It is thus natural to seek

a solution for Z similar to the lowering operator a in the
n-representation. One finds,

Z = 

n=0

N−1

�n�n − 1�n� . �12�

We will refer to this as the droplet solution. By a
U�N�-transformation it can be put on the form �10�, with
ym=0 �since the matrix elements in Z are real� and almost
equidistantly spaced xm:s, which are the �gauge invariant�
eigenvalues of the hermitian combination �Z+Z†� /2.25

Using the choice �7� for �k�, we can calculate the corre-
sponding x-space density profile ��x��, which is shown in Fig.
1 for �=1, 1

3 , 1
5 and N=50. The lower � is, the more pro-

nounced is the up-shooting rim at the edge. Excluding a cir-
cular segment containing the rim, the distribution is very
well fitted by the formula

��r,�� =
�0

2
�1 − tanh

r − r0

��
� �13�

with r0�0.99�2�N=0.99��2N /� for all three � and �
�1.05,0.92,0.82 for �=1, 1

3 , 1
5 and N=50, respectively. This

is consistent with the expectation of a constant bulk density
and a very rapid fall-off at the edge over a distance of the
order of the magnetic length.26

In Fig. 2 we illustrate how a droplet is formed when sev-
eral, initially well separated, particles approach each other.
The middle figure is a density plot of the droplet solution
�12� for seven particles. From this solution we extracted the
eigenvalues xm, and then generated a set of solutions of the
form �10� by scaling the xm’s by a common factor, �. The top

FIG. 2. �Color online� The compression of seven quantum Hall particles as discusssed in the text. Note the perfect circular symmetry of
the maximally compressed state in the middle picture.
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figure shows the density for �=5, corresponding to particles
well separated on the x-axis. In the limit of large �, the xm’s
are simply the coordinates of the particles. The bottom pic-
ture is for �=1/5. Because of the �-repulsion the particles
cannot be compressed further than the droplet, and the result
is instead particles separated along the conjugate y-direction.
That this effect is entirely due to the finite value of � is
demonstrated in Fig. 3, which is identical to Fig. 2, but with
the off-diagonal �-repulsion terms in �10� set to zero �still
keeping the same form factor g��k2��. In this case no circular
droplet is formed and the maximally compressed state is sim-
ply an overlap of the individual Gaussian distributions.

C. The quasihole solution

The droplet solution �12� can readily be modified to de-
scribe a quasihole, i.e., a state where the density close to the
origin is depleted compared to the droplet state. Polychrona-
kos found

Z = �q�N
�0� + 

n=1

N−1

�n + q�n − 1
�n� , �14�

where 0�q corresponding to a shift in the eigenvalues of the
radius operator

R2 = �X1�2 + �X2�2 = 2�

n=0

N−1 �n +
1

2
+ q��n
�n� , �15�

with the amount q relative to the original droplet. By insert-
ing �14� into �7�, we get the distribution ��x�� shown in Fig. 4.
Here the charge of the quasihole, q, is a free parameter, but it

becomes quantized in the quantum matrix model.2

Although there is a clear charge deficit at the origin, the
matrix model does not reproduce the complete expulsion of
the electrons characteristic of the Laughlin quasiholes. A
more detailed comparison is made in Fig. 5, where we show
the cumulative integrated charge Q�R�=��0

Rdr2��r� for the
Laughlin quasihole �left�13 and the matrix model quasihole
�14� �right�. We also calculated the root mean square radius
for a quasihole of charge �e in a state with filling fraction �
numerically with the results ��r2
 / � =2.6,1.4,1.1 for �

=1, 1
3 , 1

5 , respectively. This can be compared with the vortex
solution of the mean field composite boson model �see, e.g.,
Ref. 14�, where the vortex has �r2
=�2.5�2.

III. BPS SOLITONS IN THE FINITE MATRIX MODEL

We already mentioned that the finite matrix model defined
by �1� and �2� does not allow for quasielectron solutions. On
the other hand, such solutions can be found if the constraint
is modified by hand. In the infinite matrix model we can take

�Z,Z†� = 1 + q�0
�0� , �16�

which describes a quasihole at the origin for q
0 and a
quasielectron for q�0. To have dynamical quasielectrons a
constraint of this type has to appear as one of the equations
of motion. Such a construction, based on a noncommutative
version of the Jackiw-Pi model,15 was given by Bak et al. in
Ref. 6. We first briefly review their work, and then show how
to construct a corresponding finite matrix model. This will
require both a modification of the action for the noncommu-
tative scalar field, �, and a coupling between � and the
boundary field �.

FIG. 3. �Color online� As in Fig. 2 but with �=0. No droplet is formed and the maximally compressed state in the last picture is just seven
superimposed Gaussians.
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In terms of the complex covariant position operators Z
= �1/�2���X1+ iX2� and Z†, and the CS level number 	, the
noncommutative CS Lagrangian �1� takes the form,

LCS =
i	

2
Tr�Z†D0Z − ZD0Z†� + 	 Tr a0, �17�

to which Bak et al. added a noncommutative �4

Lagrangian27

Ls = Tr��†iD0� −
1

2m
Di��Di��† −

�

2�
��†��2� . �18�

Here � is a matrix field in the fundamental representation,
i.e., it transforms as �→U� under the gauge transformation
U. The covariant derivatives are defined by D�=��+ iâ� and
act on � as

D0� = �0� + iâ0�,

Di� =
i

�
�ij�x̂j,�� + iâi� =

i

�
�ij�Xj� − �x̂j� , �19�

where x̂i are noncommuting coordinates, �x̂i , x̂j�= i�ij�. The
corresponding derivatives are given by �i= �i /���ij�x̂j , • �, and
the matrices Xi, defining the actual state, are related to the
noncommutative gauge potential via

Xi = x̂i − ��ijâj , �20�

i.e., âi parametrizes the deviation from the ground state so-
lution �X1 ,X2�= i�.

Defining the current

Ji =
− i

2m
��D j���† − ��D j��†� , �21�

the Hamiltonian can, after some algebra, be written as

FIG. 4. �Color online� The density distribution ��x�� and its profile given by �7� for �14� for N=50, �=q=1/3.

FIG. 5. To the left, Monte Carlo calculation �Ref. 13� of the difference Qhole�R�−Qdroplet�R� in the cumulative integrated charge between
the Laughlin quasihole density distribution and the ground state density distribution for N=50, �=1/3. The horizontal line corresponds to the
charge difference 1/3. The radial distance is in units of �2� and the charge in units of e. To the right, the same distribution calculated from
the matrix model.
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H = Tr
1

2m
�D1� − iD2���D1� − iD2��† −

�ij

2
Tr DiJj

−
1

2m�
Tr��Z,Z†� − 1 + �m��†���†. �22�

Assume that the solution is regular enough for the covariant
derivative of the current to integrate to zero. Also, set �
=1/m	. Then the last term will vanish because of the con-
straint

�Z,Z†� = 1 −
1

	
��†. �23�

The Hamiltonian reduces to the first term which is quadratic
and equals zero for �D1�− iD2��=0. This choice of param-
eters corresponds to the theory being of the Bogomol’nyi-
Prasad-Sommerfield �BPS� form.6,15 The complete set of
BPS equations is given by

â0 =
1

2	�
��†, �24�

D1� − iD2� = 0,

�Z,Z†� = 1 −
1

	
��†,

and it is easy to check that any solution of these is also a
solution to the full time-independent equations of motion
corresponding to LCS+Ls.

We now turn to finite matrices. Because of the coupling
�Tr�â0��†� the Gauss law constraint became �23�, which
can be satisfied by finite matrices. Of course, it is then no
longer possible to have �x̂1 , x̂2�= i��z ,z†�= i�, where z
= �1/�2���x̂1+ ix̂2�. Instead we let

�ẑ, ẑ†� = M = 1 − N�N − 1
�N − 1� , �25�

with

ẑ = 

n=1

N−1

�n�n − 1
�n� . �26�

Now the Hamiltonian can no longer be written on BPS form
�22�, but by adding the term,

LM =
1

2m�
Tr�+ �M�† − ��†� , �27�

it is a matter of algebraic manipulations to show that the
Hamiltonian corresponding to L=LCS+Ls+LM is again of the
BPS type.

It is not hard to verify that the model we just defined has
droplet solutions, and topological solitons of the type found
by Bak et al.6 There are, however, no quasihole solutions.
This can be remedied by also adding a Polychronakos-type
boundary field, which has the additional advantage that the
sector where the scalar field is not excited becomes identical
to the original finite QH matrix model. Our final Lagrangian
now reads

L = LCS + Ls + LM + L� �28�

where the boundary Lagrangian is given by

L� = �†iD0� −
�

2�
�†��†� �29�

yielding the Gauss law constraint

�Z,Z†� = 1 −
1

	
��† −

1

	
��†. �30�

The last term in �29� was added to allow the Hamiltonian to
have a BPS form almost identical to �22�, but with the BPS
equation �23� replaced by �30�. The remaining BPS equa-
tions are unchanged. This completes the derivation of the
extended finite QH matrix model, which is a finite matrix
version of the conformal Chern-Simons-Higgs model intro-
duced by Jackiw and Pi.15

We now turn to a discussion of the solutions of this
model. First note that all solutions discussed in Sec. II, i.e.,
the isolated particles �10�, the droplet �12�, and the quasihole
�14�, can all be taken over unchanged if we set �=0. For
nonzero � we will have two new types of solutions corre-
sponding to waves and solitons. The latter, which will pro-
vide the basic building block for the quasielectrons, are the
most interesting, but we first briefly discuss the former.

A. Collective modes

For our model to give a realistic description of the QH
system it is important that the collective wavelike solutions
in the bulk are gapped. This is certainly expected from the
analogy with the continuum model, but should nevertheless
be established in the matrix model context. Let us first con-
sider the case of a constant density of � particles, �̃, �not to
be confused with the constant density of electrons �̄

=1/2�� represented by the solution Ẑ= ẑ ,�=0� in the infi-
nite matrix model of Bak et al.6 The mean field solution that
we want to expand about is given as an expansion in the
density �̃

Z = �1 −
�̃

2	
�z + O��̃2�,

� = ��̃�1̂ + O��̃�� , �31�

a0 = −
�

2�
�̃ + O��̃2� ,

which solves the full equations of motion to first order in �̃.
We then expand �17� and �18� to quadratic order around

the mean field solution, and then use the polar decomposition
�=UP which is valid for an arbitrary square matrix. Here U
is a unitary and P is a positive semidefinite Hermitian
matrix.16 By a U�N� gauge transformation, we can now re-
move the U�N� phase U from the field �. As a result we find
that the kinetic term of what remains of � becomes a total
derivative and this field thus becomes a Lagrange multiplier
enforcing a constraint relating the fluctuations of the gauge
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field and �. The result is that we have moved the entire
dynamics from the scalar field to the gauge field Z. This is
the noncommutative version of going to unitary gauge in
Ginzburg-Landau Chern-Simons �GLCS� theory. The result-
ing Lagrangian reads,

LCS + L� = i	 Tr a†ȧ −
�̃

2m
Tr�aa† + a†a� + ¯ , �32�

in terms of â� i�ẑ−Z�=�� /2�â1+ iâ2�, with âi given by �20�.
The dots indicate commutator terms corresponding to spatial
derivatives, as well as potential terms and terms of higher
order in �̃. There is also a constraint equation that relates
density fluctuations to the noncommutative gauge field. Just
as in the commutative case, the Lagrangian �32� has the form
of a harmonic oscillator, and consequently exhibits a gap at
�c= �̃ /	m. This has the natural interpretation as the Kohn
mode at the cyclotron frequency of the � particles.

For solutions with vanishing background density �̃—the
simplest case being that of a soliton considered below—there
will be zero modes corresponding to translations. In the full
model �28� there will also be gapless edge modes. We have
not analyzed these more complicated cases, but we think that
the above demonstration of the similarity between the com-
mutative and noncommutative models strongly suggests that
the latter will not develop any gapless modes not found in
the former.

B. Solitons and quasielectrons

In Ref. 6, Bak et al. found noncommutative counterparts
of the self dual vortex solutions due to Jackiw and Pi. These
correspond to a quantized flux, and, as will be clear from the

explicit expressions given below, they carry unit electric
charge. Since flux is quantized, one cannot have fractionally
charged quasielectrons in the model by Bak et al., but in our
finite matrix model there is a natural construction in terms of
a soliton combined with a quasihole.

1. The charge −1 soliton

Using �19� one can derive

D1� − iD2� = −�2

�
�Z†� − �ẑ†� . �33�

A soliton of charge −1 centered at the origin is now given by
the following expression:

Z = 

n=2

N−1

�n − 1�n − 1
�n�,

� = ��N − 1�	�N − 1
 , �34�

� = �	�0
�0� .

It is easy to verify by direct substitution that this indeed is a
solution to the BPS equations corresponding to the full
QHMM �28�. In Fig. 6 we show a density plot of this solu-
tion for N=50.

2. The quasielectron

In analogy with the soliton solution �34�, we can now try
to construct a fractional quasi-electron based on the Ansatz,
Z=
n=1

N−1�n+q �n−1
�n� with −1�q�0. Note, however, that
this implies Z �0
�0 so the only option seems to be �

FIG. 6. �Color online� The density distribution of a soliton of charge −1 for N=50, �=1.
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=��N+q�	 �N−1
�0� and �=�−q	 �0
. Such a solution
would, however, not reduce to the ground-state �12� as
q→0.

An obvious alternative construction, alluded to above, is
to add a quasihole to the soliton, i.e., to combine the solu-
tions �34� and �14�. This amounts to finding a q-dependent
modification of Z for which the constraint is still
q-independent. The solution is

Z = �q�N − 1
�1� + 

n=1

N−1

�n − 1�n − 1
�n�,

� = �N	�N − 1
 , �35�

� = �	�0
�0� ,

for which we still have Z �0
=0 and hence D̄�=0. Again the
BPS equations can be verified by direct substitution. In Fig.

7 we show for N=50, �=1/3 a q=2/3 hole sitting on the top
of a soliton of charge −1 to produce a charge −1/3 quasi-
electron. The small dip at the foot of the peak has also been
seen in numerical studies of QH wave functions,13 see Fig. 8.

Note that this solution does not reduce to the ground state
as q→1. This is not necessarily a drawback, since it might
be interpreted as the limiting case of a small exciton, i.e., an
overlapping state of an electron and a hole. Finally we
should mention that we have not investigated the stability of
our quasielectron solution, so we cannot be sure that it will
not decay into a soliton and a quasihole. Although such a
calculation amounts to a straightforward small oscillation
analysis, it is algebraically complicated, and also of limited
interest since we would in any case have a stabilizing Cou-
lomb interaction in a more detailed model.

IV. SUMMARY AND DISCUSSION

To summarize, we have argued for a particular expression
for the charge density in the classical QH matrix models, and

FIG. 7. �Color online� The density distribution of a charge − 1
3 quasielectron composed of a charge + 2

3 quasihole on top of a charge −1
soliton for N=50, �=1/3.

FIG. 8. The same plots as in Fig. 5, but for a Jain quasielectron �Ref. 13�. Note the characteristic dip at the foot to the right of the
quasielectron.
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shown that with this definition, the various solutions corre-
sponding to separated particles, droplets and quasiholes are
reproduced in reasonable agreement with standard treatments
based on wave functions and GLCS mean field solutions. We
furthermore extended the model to incorporate densities
higher than that of the ground state, and found quasielectron
solutions. Again the profiles were in good agreement with
those found from explicit wave functions.

In this connection it is fair to ask what has been gained by
the classical QH matrix model as compared to the usual ef-
fective low energy CS theory of the form,

L = ����
1

4��
a���a� − ����

1

2�
A���a� − j�a�, �36�

where j� is the quasiparticle current. This effective theory is
topological, has a unique state on an infinite plane and can be
derived from the GLCS theory by expanding around a mean
field.28 We shall now briefly contrast this approach to that of
the classical QH matrix model. That the two theories are
closely connected is clear from Susskind’s original formula-
tion of the QH matrix model as a noncommutative CS theory
described by,

L =
1

4��
�����a� � ��a� +

2i

3
a� � a� � a�� , �37�

where the Moyal star product � is defined with a noncom-
mutative parameter �= �2��̄�−1. This is a purely topological
theory, consistent with the infinite matrix model having a
unique state with a constant density �̄. Quasielectrons and
quasiholes can be introduced by hand in the infinite matrix
model by changing the constraint. In the commutative CS
theory this corresponds to adding delta function sources.
Here we see the first advantage of the matrix model in that it
gives a size �� to the quasiparticles.29

Adding the boundary field � to the matrix model allows
for a plethora of states not described by the usual CS ap-
proach. Defining the latter on a manifold with a boundary
gives edge degrees of freedom corresponding to chiral Lut-
tinger liquids, but there are no excitations inside the bulk nor
outside the droplet. The basic reason is that the edge excita-
tions in the CS theory can be understood as hydrodynamic
modes of an incompressible liquid, while the matrix model
allows for density fluctuations in the fluid itself. From this it
is also clear that no questions regarding density profiles or
effective sizes of quasiparticles can be addressed in the
framework of pure CS theory.

There is an asymmetry between quasielectrons and quasi-
holes in the matrix model, since there is a maximal density
given by the noncommutative parameter �. This was the ba-
sic reason that forced us to introduce a new field, �, to de-
scribe quasielectrons, while quasiholes were present already
in the model based on only a CS field Xi and the boundary
field � needed to “absorb” the anomaly. Such an asymmetry
is present also in other descriptions of the QH effect. For
instance, in the wave function approach Laughlin’s quasihole
wave function is essentially unique, while there are several
quite different approaches to the quasielectron state.13 The
introduction of a new field raises questions about the correct

counting of degrees of freedom. The finite matrix model
without any extra field describes N particles, but with a phase
space repulsion giving a maximum density �1/�. As we
have shown, the extra field relaxes the maximum density
constraint in a way consistent with QH phenomenology, but
one might worry that we have at the same time introduced
additional unphysical �gapped� excitations in the high energy
part of the spectrum. We have not investigated this problem
any further.

To summarize, there are some aspects of QH physics that
is more easily described in the conventional low energy CS
framework, notably the classification of Abelian QH liquids
using a generalization of �36� involving many gauge fields,
developed by Wen.5 The QH matrix model, on the other
hand, allows for a more detailed analysis of density profiles
and a dynamical description of quasielectrons and quasi-
holes.

There are several detailed questions left open concerning
the details of the classical QHMM, and the quantum theory
is to a great extent unexplored territory. If we might venture
a guess, we would, however, say that if the noncommutative
approach to QH physics is to provide any essential new
physical insights one has either to find ways to generalize the
quantum models—with the aim of understanding the hierar-
chy and/or the Jain states—or to find some quantitative use
for the classical description. The mere fact that a classical
model can do so well in describing a strongly interacting
system in the extreme quantum regime is in itself intriguing,
and it might be quite interesting to extend the model to in-
clude disorder and study possible phase transitions.
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APPENDIX A: MORE ON DENSITY OPERATORS

In this appendix we first demonstrate that the definition of
��x�� implied by �7� gives negative values for certain configu-
rations satisfying the constraint �3�. We then give two alter-
native definitions of ��x�� which are positive, but have other
difficulties.

1. The Weyl-ordered density is not positive

For small electron numbers and small filling fractions one
can find many solutions for where the density becomes nega-
tive. In some cases it just about becomes negative, but for
other solutions the violation of positivity is big, as can be
seen in Fig. 9.

That the density is sometimes negative can, for special
cases, also be established analytically to lowest order in �.

2. Alternative density operators

We now give two alternative definitions of the density
operator that are both non-negative. The starting point is the
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non-relativistic density operator for N point particles,

��x�� = 

n=1

N


�x� − x�n� . �A1�

If x�n are taken as quantum operators, this is also the first
quantized density operator in the x� representation. The op-
erator �A1� is by construction non-negative, since it is a sum
of positive operators. In momentum space, the operator �A1�
takes the form

��k�� = 

n=1

N

e−ik�·x�n. �A2�

It is well known that quantum mechanical particles in the
lowest Landau level are described by the following density
operator:

�L�k�� = 

n=1

N

e−�i/2�k̄zne−�i/2�kz̄n �A3�

with zn=xn
1+ ixn

2 and �zm , z̄n�=2�
mn. In x� space this be-
comes,

�L�x�� =
1

2��2 

n=1

N

e−��x� − x�n�2/2�2� = 

n=1

N


��x� − x�n� , �A4�

where 
� can be thought of as a regularized delta function.
Again the operator �A4� is positive by construction.

With these preliminaries, we now present two possible
definitions of ��x�� in the finite matrix model that are mani-
festly positive. The most obvious idea is to try to extract a set
of N particle positions, x�n from the matrices Xi and simply
plug these into a formula of the type �A4�. In this case we are
of course free to use any positive definite profile function for
the particles, but by choosing exactly �A4� we ensure that the

profile of a single particle in the matrix model is identical to
that of an electron in the lowest Landau level. The problem
of defining coordinates in the QH matrix model was dis-
cussed in a paper by Karabali and Sakita.17 They showed that
taking the eigenvalues of the complex matrix Z as particle
positions,30 correctly reproduced the low momentum part of
the Laughlin wave function, while the short distance part
was distorted—the characteristic �zi−zj�2	 behavior of the
two particle correlation was softened to a lower power. We
would thus expect that a density operator defined by �A4�
and the coordinates proposed in Ref. 17 in spite of being
positive, would have difficulties in describing the profiles
studied in this paper, which vary rapidly on the order of a
magnetic length. Since the construction is very indirect, we
also do not have any closed expression for the density and
current similar to �4�.

Another possibility is based on expressing the operator
�A4� as a square of an operator, thus making the positivity
manifest:

�L�x�� = ��L�x��1/2�2, �A5�

where

�L�x��1 � 2 �
1

�2��2 

n=1

N

e−��x� − x�n�2/4�2� � 

n=1

N


�
1/2�x� − x�n� ,

�A6�

which is a good approximation when the particles are far
apart. Going to Fourier space, where the square of the distri-
bution become a convolution integral, we are led to the fol-
lowing proposal for the density operator:

�pos�p�� =
2�2

�
	 d2ke−�2��p� − k��2+k2�Tr�e−i�p�−k��·X��Tr�e−ik�·X�� .

�A7�

The corresponding �pos�x�� is positive by construction, and it
is easy to show that for widely separated particles, where the
matrices become almost diagonal, the profile reproduces the
one given by �A5� and �A6�. When the particles come closer
this is no longer true. Figure 9 shows the droplet solution
with the old definition �7� shown by a broken line, and the
definition �A7� by a solid line. Other examples, like for par-
ticles further apart, show again that if the density becomes
negative, �A7� repairs that. The basic problem of that defini-
tion is that it is not normalized, i.e., �d2x�pos�x���N. This can
of course be remedied by a renormalization, but difficulties
remain.

Note that the definition �A7� is not in the general class �4�
since it involves the product of two traces rather than a single
trace over a matrix kernel. This in particular means that our
construction of a conserved current is no longer valid, but
more importantly, that Pandora’s box is opened—Why
should we restrict ourselves to the product of two traces?
Why not several, or perhaps even an infinite series?

In summary, we have given alternative constructions of
the density operator which are manifestly non-negative.

FIG. 9. Density profiles of the droplet solution �12� for N=2,
�=1/5. The definition �7� is given by the broken line and the posi-
tive definite definition �A7� by the full line. Both definitions give a
circularly symmetric distribution. The density �A7� integrates to a
total particle number of about 1.66.
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There are, however, other difficulties related to these propos-
als, and we have no reason to believe that they would pro-

vide a better description than �7� that we used in the main
text of the paper.
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