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Magnetic flux induced spin polarization in semiconductor multichannel rings
with Rashba spin-orbit coupling
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We show that a finite magnetic flux threading a multichannel semiconductor ring can induce spin polariza-
tion at the borders of the sample when the Rashba spin-orbit interaction is taken into account. The spin
polarization has an opposite sign on the two borders giving rise to a spin accumulation effect in the absence of
external electric fields or currents. In addition the persistent charge current (PC) is investigated. As a conse-
quence of the multichannel nature of the ring, the signature of the spin-orbit interaction in the PC cannot be

encoded in a single effective topological phase.
DOI: 10.1103/PhysRevB.72.205315

I. INTRODUCTION

In recent years semiconductor devices in which the spin
orbit (SO) interaction plays a significant role, have been pro-
posed for applications in spin controlled transport.! Among
them, multiple connected mesoscopic geometries are natural
candidates to explore how spin dependent effects manifest in
the quantum interference patterns that appear in transport
measurements at low temperatures.”* In the case of quasi-
one-dimensional (quasi-1D) rings, the effect of the SO inter-
action has been addressed theoretically in a series of
papers.”~ As a consequence of the SO, the wave function
acquires a nontrivial spin dependent topological phase® that
manifests in several remarkable quantum phenomena.

We will be considering SO coupling of the Rashba type
which arises on a two-dimensional electron gas (2DEG) of a
semiconductor heterostructure due to the inversion asymme-
try of the confining potential.” When a ring is pierced by a
magnetic flux, the SO modifies the magnetic flux dependence
of the spectrum and therefore the conductance'® and the per-
sistent current (PC), in the case of an isolated ring, change as
compared to the case without SO.!" So far the theoretical
analysis has been restricted to 1D geometries and quasi-1D
in the two band approximation,'?> where the results are quali-
tatively the same as in the 1D systems. The multichannel
nature of realistic rings employed in the experiments'>!4 and
recent controversies around the possibility of an experimen-
tally observed spin dependent phase in transport experiments
with many propagating modes!>!¢ challenges us to address
exactly the 2D geometry.

In this work we show that when a multichannel ring with
Rashba SO coupling is pierced by a magnetic flux a spin
accumulation effect is developed on the boundaries of the
sample. In addition, even for an even number of electrons, a
finite spin polarization in the direction perpendicular to the
plane of the ring is generated whose intensity can be con-
trolled with the magnetic flux. These phenomena share some
analogies with the intrinsic spin Hall effect (SHE) studied in
bar or T-like geometries,!”'? but in the present case the sys-
tem is in equilibrium without external electric fields or volt-
age drops applied.?’
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II. MULTICHANNEL RING WITH RASHBA SO
INTERACTION

We start by considering a 2D electron gas in the xy plane
confined to a mesoscopic annular region (multichannel ring)
threaded by a magnetic flux ®. The single particle Hamil-
tonian describing an electron of effective mass m subject to
the Rashba SO coupling reads

2
p a N
=—+V+-(pXa)-Z, 1
. #(pX0)-2 (1)
where « is the strength of the Rashba spin orbit (RSO) cou-
pling and the Pauli matrices ¢ are defined as standard. Em-
ploying polar coordinates p and ¢, the hard wall confining
potential defining the ring is

0 forr<p<R
Vip) = . (2)
oo otherwise,

where r and R are the internal and external radii of the ring.
The vector potential which is introduced in the Hamiltonian
via the substitution, p=fk=-iiV—-e/cA, is written in the
axial gauge as A=(®/2mp)¢. Using, G,=cos ¢G,+sin ¢4,
and G,=-sin @G, +cos ¢G, we can rewrite the Hamiltonian
as

Rl 1
H=- . ;ap(p&p) - E(la¢+ v)?
. A a A .
+iad,d, - ;a'p(ldp +v), (3)

where v=®/®, is the magnetic flux in units of the flux
quantum Py=hc/e. As JZ=IZ+SZ=—iﬁz9d,+%ﬁ6'Z, commutes
with H, the eigenfunctions can be chosen as

¢ V¢f(p)

o 4)
el(lﬂ)‘pglﬂ(l))

‘ﬂj(P’ QD) =

where J_i;=fiji; and j=1 +%. In what follows it will be use-
ful to work with dimensionless variables. With that purpose
we define the dimensionless coordinate é=p/R, the aspect
ratio A\=R/r and
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with the boundary conditions

FNY =g WD =0=F£(1)=g,,(1). (6)

We can look solutions of the form f(&)~Y, (k€ and
81:1(&) ~ Y, (k&) where Y,(£) are Bessel functions of the
type J,(&) or Ny(€). The Rashba term simply acts as rising or
lowering operator on the Bessel function basis since the fol-
lowing standard recurrence relations hold:?!

( d 1=x1
L, =
dé ¢

This is indeed the property which allows us to obtain, as in

the case of a disk geometry,?> an exact analytical solution.
Due to the RSO, the bulk spectrum has two branches

e=k>+ Bk. (®)

) Y (k€) = £ kY (k§). (7)

Therefore for a given value of e there are two nontrivial
solutions for the momentum k that we denote k* and k-,
respectively. It is then possible to obtain a solution as

4 4 Y1
Y(§) = ( % ) =2 Y= ( Y;) 9)
i=1 i=1

8i+1 i
with
T (k)
Tk ) ~
Y‘(g)"<fz_v+l(k+§) - 9= —%Jl_m(k-f)

and with Y3 and Y, obtained from Y, and Y, by exchanging
Bessel functions of type J by Bessel functions of type N.

Deﬁning?as

Yivh) viah rih i
i) rch vch vich
i)y vy1) i) vy
Yiy vy v v

Y= ,  (10)

the boundary conditions lead to the equation det(Y)=0.
Given B, \, and v we solve this equation to obtain the (di-
mensionless) energies €; (v) where j is the total angular mo-
mentum and i labels the different eigenstates for a fixed j, in
such a way that for v=0 and f=0 we have €;;<€; ;..

In order to fix numerical estimates for the parameters we
consider characteristic values extracted from recent experi-
ments performed on semiconductor heterostructures defined
on a 2DEG. Rings with external radius R ~400-500 nm and
an aspect ratio A~2 have been recently employed as
devices.'* Typical values for the Fermi wavelength are \j
~40-50 nm that give kz~0.1 nm~!. For R=400 nm one
gets a maximum value of the (dimensionless) Fermi energy
€-=(Rky)>~1600. For an effective mass m~0.042m,, a
Rashba coupling constant =8 meV nm and R~ 400 we ob-
tain 8=2000 nm/R(nm)~4. These parameters define the
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sample S studied in the present work. As the relevant situa-
tion for an isolated system, we work in the canonical en-
semble keeping fixed the total number of electrons N as the
magnetic flux is varied. One can estimate N at zero flux,”
that in this case gives N=[3 €/8]=600 (the symbol [..] de-
notes integer part). The maximum number of transverse
channels M can be then calculated as**
—
M{zw(x 1)]. 0
mINF -1
Thus for N~200-600 one gets M ~4-8, in agreement with
the reported experimental values.'

For v=0 and finite 3, the SO breaks the degeneracy be-
tween states differing in one unit of j. The degeneracy be-
tween states with opposite values of j is broken by the pres-
ence of a finite magnetic flux v, the charge PC being the
signature of this broken symmetry.

III. ENERGY LEVELS AND PERSISTENT CURRENTS

As discussed previously in the literature, in 1D rings the
RSO induces a topological phase,'® Az=am/#%$ (2 X o)-dl,
that once added to the Bohm-Aharonov one 27rv, leads to an
“effective flux” veu= V+%(1 T V(2amalh?)+1) (the = sign
depends on the sign of the z spin projection in the local spin
frame and a is the radius of the ring). It is then via this
effective flux that the SO interaction affects the behavior of
the PC.!

The situation in the 2D ring is considerably more in-
volved. We display in Fig. 1 some regions of the spectrum
for both =0 and =4 cases. The upper panel of Fig. 1
shows the lowest eigenvalues of the multichannel ring S as a
function of v. As the first transverse channel is active in that
region, the spectrum is similar to that of the 1D ring (due to
the symmetry with respect to ¥=0.5, the spectrum is shown
for 0<v=<0.5). We can observe the evolution with v of the
single particle energy states labeled by the quantum numbers
(j,i). For B=0 (bold dotted lines) we have the double degen-
erate fundamental states (+1/2,0) and the doublets (1/2,1),
(3/2,0) and (-1/2,1), (-3/2,0). Notice that at v=0, except
for the fundamental state, the others are four-fold degenerate
and, as in the 1D regime, crossings occur only at v=0,0.5.
The effect of a finite RSO coupling is clearly visible in the
figure. The RSO interaction lowers the energy of each state
and it can even change the order in which they appear. For
the case shown in Fig. 1, the lowest energy states are (3/2,0)
and (-3/2,0) that for finite flux remain almost degenerate
and appear in the figure as a single line. We then have four
states which for very small v (i.e., before any v induced level
crossing) are ordered as (-1/2,0), (1/2,0), (5/2,0),
(=5/2,0). Higher in energy, we display the states (1/2,1),
(=1/2,1), (=7/2,0), (7/2,0). Notice that as a result of the
RSO new crossings appear. As an example, we draw arrows
in the panel as guides for the location of the new crossings
between (1/2,0) and (5/2,0) and (-1/2,1), (=7/2,0).
These crossings are indeed the fingerprints of the effective
flux v, mentioned above.?

When many transverse channels are activated, the spec-
trum displays additional crossings between levels belonging
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FIG. 1. Dimensionless energies € as a function of the magnetic
flux » for the annular cavity S defined in the text. Upper panel:
lowest eigenvalues in the absence of RSO (bold dotted lines) and
for B=4 (small dotted lines). The arrows are guides for the eyes to
locate the position of the crossings due to the RSO coupling. See
the text for details. Lower panel: high energy region showing many
crossings between different transverse channels, in the absence of
RSO (bold dotted lines) and for =4 (small dotted lines).

to different channels, even in the absence of RSO coupling
(see lower panel of Fig. 1). The crossings that arise due to
the SO interaction are mixed with the crossings between lev-
els with different transverse channel numbers, and it is not
straightforward to identify the signature of an effective flux
as in the 1D case, when only a single transverse channel is
active. This can be understood looking at the functional form
of the 2D Hamiltonian Eq. (3), whose last term contains the
ratio a/p between the RSO constant and the radial coordi-
nate. Therefore, loosely speaking, on average each transverse
channel feels a topological phase that depends on the value
of the transverse quantum number. This argument could be
extended to explain the difference in patterns of conductance
oscillations of single-channel and multichannel open rings
with RSO interaction.'® In terms of the dimensionless vari-
ables, the only nonvanishing component of the charge cur-
rent density for eigenstates as given in Eq. (4) reads

f
Rl U= (=gt Bg). (12)

J,=

Employing the probability and spin densities, &;()= f7
+g%+l, (&z>jE\Iﬁ€rz\I’ and <&p>quﬁ(}qu, the current can be
written as

. L., B,
Therefore the effect of the SO interaction in the charge cur-
rent density is unveiled in the last term of Eq. (13). To cal-
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FIG. 2. (Color online) Persistent current / as a function of v in
the absence of SO interaction (dashed lines) and for B=4 (solid
line). Upper panel corresponds to N=6 (black lines) and N=22
(grey lines) and M=1. The lower panel corresponds to N=162
(black lines) and N=182 (grey lines). The finite slope of the jumps
is due to size of the flux step (5.1073) employed in the numerical
calculations.

culate the total charge PC we have to sum the contributions
of all states up to the Fermi energy

R
- E
=[S = (14)

whereas before, n labels the occupied states. Besides a geo-
metrical factor that takes into account the area of the outer

circle of the sample 7 is the magnetic moment. In terms of
the dimensionless variables

~ cE, de
I=—1, I=-—

% P (15)
For the parameters quoted before for sample S, results 1
~0.2 I(nA). In Fig. 2 we plot I as a function of v for f=4
and for comparison, in the absence of RSO interaction. For
N=6 and N=22, when only one channel is open (M=1), the
jumps in the PC are solely due to SO interaction and are
located, as for the 1D rings, at the same flux values indepen-
dently of the filling (see the upper panel of Fig. 2). On the
other hand, for N=162(M=2) and N=182(M=4) the loca-
tion of the jumps in the PC depends strongly on the channel
number, as it is shown in the lower panel of Fig. 2 and in
accordance to our previous discussion.?

IV. SPIN ACCUMULATION EFFECT

As a result of the RSO interaction, spin projection is not a
good quantum number. For N occupied states, the mean
value of the z projection of the spin is proportional to
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FIG. 3. Dimensionless total spin density o, as a function of ¢ for
v=0.2 for the sample S. N=2 (solid line), N=4 (dashed line), and
N=6 (dotted-dashed line).

1
S, = E\y;&;pn:zwf o () EdE, (16)
1

ring n 2N

where n=1, N(ep) labels the occupied states and o(£) cor-
responds to the total spin density for N particles. Even in the
case of N even, a nonzero spin density is obtained when SO
is present and v# 0. In addition a spin accumulation effect is
developed and it is manifested in the tendency of o, to be
positive on one border of the sample and negative on the
other one. Although the accumulation becomes stronger as N
and the number of open channels increase, it is also present
when only one transverse channel is active. In order to ex-
plain the origin of the effect we first concentrate on a pair of
eigenstates that, being degenerate at v=0 with opposite value
of j and with opposite out-of-plane spin projection, become
nondegenerated for finite ». The expectation value of &, in a
given W, is (6.);=|f\_,|*~[g1_pn1|> It is straightforward to
verify that at »=0 states with opposite value of j have oppo-
site value of () and therefore for even number of particles
N=2p, is 0.(£)=0. As >0, two facts induce a spin accu-
mulation effect. On one hand, the magnetic field breaks the
symmetry between single particle states with opposite value
of j and on the other hand, due to the presence of additional
level crossings the total J, of the ground state can change and
be different from zero for finite flux. In Fig. 3, we show o,
for B=4, v=0.2 and N=2,4,6. For N=2, the single particle
states have j=+3/2. As v is turned on, the effective orbital
index [=[—v becomes 1-v and —2—v for j=3/2 and j=
—3/2, respectively. Thus as the modulus of the effective or-
bital index decreases (increases) for j=3/2 (j=-3/2), the
probability density and (&);_; are pushed toward the inter-
nal (external) boundary of the sample. This symmetry break-
ing explains the observed accumulation effect in this case.
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FIG. 4. Dimensionless total spin density o, as a function of & for
v=0 (solid line), »=0.1 (dotted line), and v=0.45 (dashed line) for
the sample S. (a) N=181, (b) N=182. Note that in this case o,=0
for v=0 as expected for an even number of particles.

For N=4 the situation is different. Due to the level crossing
mentioned before, the single particle states in the ground
state have j=3/2,-3/2,-1/2,5/2 and the accumulation ef-
fect is mainly due to the imbalance between the last two
states. We show the case N=6, which again is similar to the
case N=2.

As the particle number is increased to the relevant experi-
mental values, transverse channels are activated and the de-
scription of the effect becomes more complicated. Neverthe-
less our simulations suggest that the accumulations effect is a
generic feature of the system in the presence of a magnetic
flux. As an illustration, in Fig. 4 we show the spin density o,
as a function of the dimensionless coordinate & for N=181
and N=182 and different values of the magnetic flux in the
range 0 <v<0.5. For N=181 and v=0 [see Fig. 4(a)] a finite
0.(&) is obtained whose value corresponds to the last occu-
pied level, as expected for the odd particle number. On the
other hand, for N=182 is 0,(£€)=0 at v=0, as it is shown in
Fig. 4(b). For v>0 the spin density profile has a more com-
plicated structure than in the quasi-1D regime due to the
behavior of the radial components of the spinors as the num-
ber of transverse channels increases and the flux is varied.

V. CONCLUSIONS

In this paper we have shown that a finite magnetic flux
threading a multichannel semiconductor ring with SO inter-
action induces spin polarization with opposite sign for the
two borders of the ring. We believe this system constitutes a
proposal to detect accumulation effects induced by SO inter-
action in constrain geometries in equilibrium, that is without
applied electric fields or currents. The characteristic wave-
length of the accumulation effect is of the order of 0.1 um,

205315-4



MAGNETIC FLUX INDUCED SPIN POLARIZATION IN...

which is not far from the sensitivity of methods employed
recently to probe spin polarization in semiconductor
channels.!” Besides the accumulation effect, the integrated
spin density 3, is different from zero and is sensitive to the
value of the magnetic flux, as can be inferred from Fig. 4. In
the presence of an external magnetic field perturbation, the
spin magnetization should be proportional to _. With the
help of experimental techniques based on resonant methods
it should be possible to sense changes in the total magneti-
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zation of isolated rings due to SO interaction.?’
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