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Pinning and depinning of a classic quasi-one-dimensional Wigner crystal in the presence
of a constriction
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We studied the dynamics of a quasi-one-dimensional chain-like system of charged particles at low tempera-
ture, interacting through a screened Coulomb potential in the presence of a local constriction. The response of
the system when an external electric field is applied was investigated. We performed Langevin molecular
dynamics simulations for different values of the driving force and for different temperatures. We found that the
friction together with the constriction pins the particles up to a critical value of the driving force. The system
can depin elastically or quasielastically depending on the strength of the constriction. The elastic (quasielastic)
depinning is characterized by a critical exponent 8~ 0.66 (8~ 0.95). The dc conductivity is zero in the pinned
regime, it has non-Ohmic characteristics after the activation of the motion and then it is constant. Furthermore,
the dependence of the conductivity with temperature and strength of the constriction was investigated in detail.
We found interesting differences between the single-chain and the multichain regimes as the temperature is

increased.
DOI: 10.1103/PhysRevB.72.205208

I. INTRODUCTION

In the last years, the interest in mesoscopic systems con-
sisting of interacting particles in low dimensions or confined
geometries has seen a sustained growth. A class of quantum
anisotropic systems exhibiting “stripe” behavior appears in
the quantum Hall regime,! in charge density waves?> (CDW),
in manganite oxides, and in high-T, superconductors® where
strong electronic correlations are responsible for the forma-
tion of these inhomogeneous phases. Another class of con-
fined quasi-one-dimensional (Q1D) geometries appears in
different fields of research and some typical and important
examples from the experimental point of view are ordered
electrons on microchannels filled by liquid helium,*3 micro-
fluidic devices.® colloidal suspensions,7 and confined dusty
plasma.® On the atomic scale, a chain-like system was found
in compounds such as Hg;_sAsFe,’ and in low dimensional
systems formed on surfaces.'? These kinds of interacting sys-
tems, which tend to form periodic or ordered structures when
the density of particles and the temperature are low enough
(i.e., Wigner crystallization'"'?), can exhibit a remarkable
variety of complex phenomena when they are driven by an
external force. Many of these phenomena, which arise from
the interplay between periodicity, disorder, nonlinearities,
and driving, are still poorly understood or even unexplored.
For numerous such experimental systems, transport
experiments'3~13 are a useful way to probe the physics (and
sometimes the only way when direct methods, e.g., imaging,
are not available). It is thus an interesting and challenging
problem to obtain a quantitative description of their nonlin-
ear dynamics. One striking property exhibited by all these
systems is pinning, i.e., at low temperature there is no mac-
roscopic motion unless the applied force f reaches a thresh-
old critical value f.. There is a quite extensive literature
about the dynamical properties near the depinning
threshold,'®~'® mostly in the context of CDW.!%-?!

The aim of this paper is to provide a description of the
properties of a Q1D Wigner crystal in the presence of a local
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constriction potential, thermal noise, and an external driving
force. Most of the previous theoretical and experimental
works are on moving two-dimensional (2D) or three-
dimensional (3D) lattices and glasses (see Ref. 22 and refer-
ences therein). The effect of confinement into a mesoscopic
channel has not yet been deeply investigated.

Our classical model is very ductile because of its scalabil-
ity and it is suitable for the description of diverse confined
systems, as electrons on liquid helium, colloids, and complex
plasmas. We should stress that the classical approach, which
is naturally valid in the case of colloids and complex plasmas
because of the microscopic size of the particles, is still valid
for pure quantum objects as electrons when they exhibit
Wigner crystallization. In the crystal phase, the electrons be-
come localized and thus distinguishable. In this case, the De
Broglie thermal length \p, is much smaller than the interpar-
ticle spacing; hence, the quantum aspect of the original fer-
mionic problem does not play a crucial role and the classical
treatment for the system is an accurate one. Several generic
aspects of the present model without a constriction and in the
linear regime were recently investigated by the present
authors.?®

A narrow channel with a constriction can be readily real-
ized in a colloidal system or in a dusty plasma. Additio-
nally, the problem we deal with could also be of interest
in nanoscale wires. Flux-line-lattice flow has been studied
in novel superconducting devices containing straight,
nanometer-scale, weak-pinning channels in a strong-pinning
environment.>* By introducing a constriction into the weak-
pinning channels, many features of the model that we pro-
pose can be investigated experimentally.

The paper is organized as follows. We first give, in Sec.
II, an overview of the model and of the numerical methods
used. In Sec. III, we describe the zero temperature phase
diagram in the absence of any external driving force, stress-
ing the differences in the ground state configurations near the
constriction. Section IV is devoted to the study of the dy-
namics of the system; in particular, we concentrate on the
velocity vs applied driving force curves and on the conduc-
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tivity. In Sec. V, we discuss the interplay between driving
force, thermal disorder, and constriction potential, focusing
on the difference between the single-chain and multichain
regime. In Sec. VI, we comment on the analogies and differ-
ences with the case of moving lattices and glasses and other
models in which quenched disorder or pinning potentials are
present. Finally, we conclude in Sec. VII.

II. MODEL AND METHODS

The system consists of an infinite number of classical
identical particles with charge ¢ and mass m, moving in a
plane with coordinates r=(x,y). The particles interact
through a screened Coulomb (Yukawa-type) potential, where
the screening length A is an external parameter. We impose a
parabolic confining potential in one direction, namely in the
y direction, and a constriction potential with Lorentzian
shape centered in the origin of the axes. The Hamiltonian of
the system is given by

n= T3 SRCA LS Ly 3

l>j |ri_rj| i
(1)

where € is the dielectric constant of the medium the particles
are moving in, w, measures the strength of the confining
potential, V|, is the maximum of the potential of the constric-
tion, which has a full width at half maximum of 2/a. Intro-
ducing a suitable system of units, the Hamiltonian can be
rewritten in a dimensionless form. We define ry
=(2¢*/mewy)' and Ey=(mawjq*/2€*)'? as unity of length
and energy, respectively. After using dimensionless units, the
Hamiltonian takes the following form:

, exp(— k7!
H =2 E E /2 12 (2)
i>j |ri J|
where H'=H/E,, k=ry/\, 7'=rlry, Vy=Vy/Ey, and o’
=rpa.

This transformation is particularly interesting because
now the Hamiltonian no longer depends on the mass of the
particles, the dielectric constant of the medium, and the fre-
quency of the parabolic confinement, that is it is independent
of the specifics of the system under investigation. The di-
mensionless time and temperature, which are essential quan-
tities in  what  follows, are respectively 7T’
=T/[kg(mawjq*/2€*)"*] and =t

The zero temperature configurations for different densi-
ties, namely different numbers of particles, and different val-
ues of the parameters in the Hamiltonian were calculated by
the Monte Carlo (MC) technique using the standard Me-
tropolis algorithm as it was done in Ref. 23. We have al-
lowed the system to approach its equilibrium state at some
temperature T, after executing 10—10° Monte Carlo steps.
In order to reach the T=0 equilibrium configuration, the
technique of simulated annealing was used: first, the system
was heated up and then cooled down to a very low tempera-
ture. We introduced periodic boundary conditions along the x
direction in order to simulate an infinite long wire. Typically
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a simulation cell of length L=100 (in dimensionless units)
centered around the origin of the axis was used. This choice
was motivated by the fact that for larger L, the changes in
static and dynamical properties are negligible, especially for
a'=0.5 and k=1.

Because of the presence of the constriction, we found
many more metastable states, which complicates the numeri-
cal approach. We will elaborate on this point in Sec. III.

After reaching the T=0 equilibrium configuration, we in-
troduced an external electrical field in the x direction, or in
other words, we considered the effect of an external driving
force f and calculate the transport properties of the system.
We also considered the effect of temperature and thermal
noise, coupling the system to additional degrees of
freedom?>?® or to a heat bath. The Langevin dynamics®’ is
the most appropriate one to include such effects. The Lange-
vin equations for the x and y components of motion in di-
mensionless units are, respectively,

d’x] 2 d exp(— K7 = 7)) Via'?x]
i B B +
dr ydT |7 =7 (1+a'x/%)?
+&(T") + f, (3a)
d*y! dy; d exp(— k|r] = 7}])
i N o B P M =Dy g (1),
a2 Var %yi P &)

(3b)

where 7 is the friction coefficient, which is an external pa-

rameter as well as «, and &(T”) is a random force, reproduc-
ing the thermal noise, with zero average and standard devia-
tion

AF
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FIG. 1. Contour plots of the sum of the confinement and con-
striction potentials for two different values of the parameters: (a)
Vo=1, a'=1, (b) V{=5, a'=1.
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where (r,s)=(x,y). The driving force f and the random
force & are measured in units of mw%ro, while the friction
coefficient y is measured in units of w,. We used the same
simulation cell and the same boundary conditions as in the
case of the MC simulations. It should be noticed that in the
case of colloids?® or vortices in type II superconductors,?® the
motion is overdamped and Egs. (3a) and (3b) are simplified:
the hydrodynamic interactions can be neglected and Eqs.
(3a) and (3b) reduce to a system of coupled first order dif-
ferential equations.

We considered here the more general problem, including
also the hydrodynamic terms. In order to integrate the equa-
tions of motion, we used a quasisymplectic algorithm of
“leap frog” type in the following form:

Ar
Fi=r1) + ?Ui(t)»

oH
v(t+Af) =c,| cyvt) + Ata—(ﬁ) +d;7n |,
Ti

At
r{t+ A =7+ ?v,-(t + Ap),

where Ar is the time step, and #; is the Gaussian variable
with standard deviation equal to 1 and average equal to O; the
constants ¢, ¢, and d; are given, respectively, by

At
c= 1- 7_’
2
1
=T,
2T 1+ yA2
dl = \“”')/T’At.

It was shown that this integration scheme has a good sta-
bility and runs rather fast; furthermore, it is well behaved in
the limit y—0.3!

The driving force was increased from zero by small incre-
ments. A time integration step of A7=0.001 was used and
averages were evaluated during 2 X 10° steps after 2 X 10°
steps for equilibration.

III. GROUND STATE CONFIGURATIONS

The ground state configuration is the result of competitive
effects, that is, the electrostatic repulsion, the confining po-
tential that tries to keep the particles close to the x axis and
the Lorentzian constriction potential that prevents the par-
ticles from settling close to the y axis. In Fig. 1, the contour
plots of the sum of both potentials for two different values of
V, are shown. Depending on the values of (increasing) V/
and (decreasing) o', the saddle point at (x,y)=(0,0) be-
comes more pronounced.

As discussed in Ref. 23, in the absence of any constric-
tion, the charged particles crystallize in a number of chains.
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Each chain has the same density resulting in a total one-
dimensional density 71,. If a is the separation between two
adjacent particles in the same chain, it is possible to define a
dimensionless linear density 77,=1[r,/a, where [ is the number
of chains. In the case of multiple chains, in order to have a
better packing (or in other words to minimize the interaction
energy by maximizing the separation among particles in dif-
ferent chains), the chains are staggered with respect to each
other by a/2 in the x direction. For low densities, the par-
ticles crystallize in a single chain; with increasing density a
“zig-zag” (continuous) transition®” occurs and the single
chain splits into two chains. With further increasing the den-
sity, the four-chain structure is stabilized before the three-
chain one. This first four-chain configuration has a relatively
small stability range after which it transits to a three-chain
configuration. For higher values of the density, the four-chain
configuration attains again the lowest energy. Then a further
increase of 71, will lead to more chains, that is five, six, and
so on. The structural transitions are all discontinuous (i.e.,
first order), except the 1 —2 transition.

In the presence of the constriction potential, the ground
state configurations are modified near the constriction (see
Fig. 2), but the particles are still organized in chains far away
from this constriction. Close to the saddle point, the particles
do not arrange themselves in ordered chains. The particles
near the constriction lead to a significant increase of the
number of metastable states. Consequently, the procedure of
simulated annealing has to be more accurate than in the case
of the absence of a constriction, which means that several
intermediate temperature steps have to be considered. Some-
times the MC simulations do not provide us with the “exact”
ground state, as it is seen for instance in Figs. 2(c), 2(f), and
2(j), where the final configurations are not perfectly symmet-
ric with respect to x and y, while this is expected because of
the symmetry of the Hamiltonian.

When the full width at half maximum of the constriction
potential is short enough (a’=0.5) or, in other words, the
effect of the constriction is significative only in a narrow
region around x=0, it is still possible to define a local density
because the system exhibits a homogeneous spacing among
charged particles except in the vicinity of the saddle point.
Thus, excluding these regions, it is still meaningful to con-
sider 71,=1ry/a, where [ is the number of chains. In this case,
the same chain arrangements, i.e., 1 -2—4—3—-4—5
and so on, as in the case where the constriction is absent, are
found [see Figs. 2(a), 2(c), 2(e), 2(g), and 2(i)] with increas-
ing density, but with the difference that all the structural
transitions are now discontinuous.

For smaller values of a, that is, for larger interaction
ranges of the constriction potential, the system is highly in-
homogeneous and even shows coexistence of different chain
phases [see Figs. 2(d), 2(f), 2(h), and 2(j)]. In a certain sense,
the constriction introduces a local disorder into the system.

In order to make these affirmations clearer, we plot in Fig.
3 the inverse interparticle spacing, i.e., the density, in the
single-chain configuration as a function of the distance from
the origin of the coordinates for different values of « and «’
and V{=1. It is evident that the density is an increasing func-
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tion of the inverse screening length k, because the particles
can stay closer together as the electrostatic repulsion is
weaker. For small values of «', the density is an increasing
function of the distance over a large range of x values [Fig.
2(a)]; while for @’ =1 [Fig. 2(b)], this range can become very
small and the density becomes very quickly independent of
x. Notice that for x— o, the chain density should become
independent of the parameters of the constriction.

When a constant electrical field E is applied to the system

X

IV. DYNAMICAL PROPERTIES

tions.

FIG. 2. The ground state con-
figuration in the center of the
simulation cell for k=1, Vj=1,
and different values of the number
of particles N in a simulation cell
of length L=100 and two different
values of the constriction width:
(a) N=80, a'=1; (b) N=80, o'
=0.1; (¢) N=160, a'=1; (d) N
=160, a'=0.1; (e) N=228, a'=1;
(f) N=228, a’'=0.1; (g) N=240,
a'=1; (h) N=240, o'=0.1; (i) N
=440, a’'=1; (j) N=440, a’=0.1.
In the case of a’=1, the effect of
the constriction potential is sig-
nificant only around a narrow re-
gion around (x,y)=(0,0); while
for @’=0.1, it is appreciable all
along the length of the simulation
cell. It is interesting to notice that
for a’=1, the reentrant behavior
of Ref. 23, with the four-chain ar-
rangement stabilized before the
three-chain arrangement, is still
present, while it is absent for o’
=0.1. For small values of «’, the
configurations are highly
inhomogeneous.

in the x direction, it produces a longitudinal driving force f.
The charged particles then are pushed along the direction of
the driving force. In what follows, we consider mainly sys-
tems for which k=1 and y=0.2, which are typical values for
the inverse screening length and friction, respectively, en-
countered in complex plasmas.’ We also fixed the value of
a'=1, that means that we deal with short-range constric-

The first obviously important quantity to determine is the
velocity v’ as a function of the applied force f. In the ab-
sence of thermal fluctuations, i.e., 7=0, and in the absence of
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FIG. 3. The density as a function of the distance from the origin
in the single-chain configuration for 80 particles, for a large (a) and
short (b) interaction range of the constriction potential. Because of
the symmetry of the system around y=0, only the results in the
right part of the simulation cell are reported.

dv]” . I 9 exp(-«|r = 7))
=—Y; - _E o > oy +f’ (43)
dr 277 ox] |ri =7
dv;” 1w d exp(=«|F =7
L Ly 2GR D )
dr 2757 ay; |7} = 7]

Furthermore, because in the equilibrium configuration, the
net force acting on every particle, due to electrostatic repul-
sion and confinement, is zero, that is

JS e,

j 0")(:1- |ri—rj

Is 9 exp(=«|r;= 7))

; y.’:O,
277 ay;

i

Egs. (3a) and (3b) can be ulteriorly simplified and one ob-
tains the uncoupled equations

dv'*
dr

=-w"+f, (5a)
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=— ’)/U /)” (Sb)

vt = j—C (6a)
Y

v =0. (6b)

This shows that in the absence of thermal noise and con-
striction, the total effect of the external driving force is a
sliding of the ordered structure with a drift velocity which is
directly proportional to the driving force and inversely pro-
portional to the friction. More in general, when the leading
term in the equation of motion is the driving force, one
should expect that the drift velocity is v’*=f/v, or in other
words that the system behaves like a classical two-
dimensional Drude conductor.*® This feature has been ob-
served in experiments* and in numerical simulations.>* In the
presence of a constriction and thermal noise, v'* is no longer
a linear function of the driving force, as we will discuss in
Secs. IV A-IV D.

A. Pinning

The system is pinned until the applied driving force
reaches a threshold value f.. The pinned structures in the
presence of the driving force show substantial differences
with the ground state configurations in the absence of a driv-
ing force. The particles move into the direction of the driving
force and accumulate in front of the constriction, which ex-
erts a force that is opposite to the driving force. If f<f., new
static configurations are reached in which the electrostatic
repulsion and the repulsive force, due to the constriction,
balance the driving force. The situation is depicted in Fig. 4,
where the driving force is in the positive direction of the x
axis. In the case of low constriction barrier height, the chain
structures are relatively homogeneous, although the inter-
chain distance is smaller at the left than at the right of the
constriction because of the external drive. In the case of high
constriction barrier, the chain structures are no longer homo-
geneous. As can be seen in Fig. 4, different numbers of
chains can coexist in the same configuration. Since the en-
ergy to overwhelm the barrier is quite large, the particles
tend mainly to accumulate at x <0, which produces a density
gradient and, consequently, a splitting into a larger number
of chains, where the density is larger because, obviously in
such a case, the electrostatic repulsion among particles is
larger.

It should be noticed that the nature of pinning for the
system under investigation is different from the pinning often
studied in literature for, e.g., colloidal systems and vortex
lattices. In these cases, the pinning is the result of some kind
of disorder (in most cases quenched disorder) or, in other
words, the effect of the substrate. It is introduced into the
system and modeled as randomly placed point-like pinning
centers producing an attractive Gaussian potential®*3-3% or
as randomly placed parabolic traps.?® In our case, the pinning
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is the effect of a constraint, the particles have not enough
energy to overcome the constriction barrier and, conse-
quently, there is no net motion. We also investigated the case
of negative V|, i.e., a single Lorentzian potential well. In that
case, we still observed pinning, but without the formation of
highly inhomogeneous structures or, in other words, without
the accumulation of many particles in the direction of the
driving force. In the case of a negative Lorentzian potential,
the same chain configurations are preserved along the simu-
lation cell length even in the case of a large depth of the
potential well. In the case of CDW, the pinning potential can
be either attractive or repulsive, indeed the sign of the poten-
tial can be converted by changing the phase of the CDW by
7. In what follows, we will limit ourselves to positive V(’).

X

In Fig. 4, the trajectories of the particles are reported for a
temperature 7' =0.002, well below the melting temperature.
It is interesting to study for a fixed number of particles and
for a fixed temperature how by increasing the driving force
the configurations change. The variation of the density along
the constriction is shown in Fig. 5 for different values of the
external driving force for a constriction height of Vj=5 and
width «’=1. Increasing the driving force, more and more
particles accumulate to the left of the constriction barrier in
the direction of the driving force, corresponding to larger and
larger densities. The density 77, has a discontinuity at the
constriction. For low values of the driving force, except in
the vicinity of the constriction, 77, is almost constant. But for
larger values of the driving force, it is always an increasing
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FIG. 5. The density as a function of the distance along the
simulation cell for different values of the driving force and for a
temperature 7’ =0.002.

function of the distance along the simulation cell, except
close to the constriction.

Increasing 7', we observed larger and larger oscillations
of the particles until the system is melted. As already re-
ported in Ref. 23, also in this case, we observed larger oscil-
lations in the x direction than in the y direction, which is
evidently a combined effect of the confining potential and
the nature of the interparticle interaction. In the case of high
temperature, close to the solid-liquid transition, and mainly
in the case of large V), the arrangements of the particles are
slightly different from the ones shown in Fig. 4. Because
high values of V{, in combination with the driving force pro-
duce a density gradient in the chain-like structures, the melt-
ing is not homogeneous, with the coexistence of solid and
liquid regions. It is beyond the aim of the present paper to
discuss how the driving force induces the local melting of
the system.

The critical force f, is evidently a function of the tempera-
ture 7', it decreases with increasing temperature, that is, the
thermal motion aids the net motion of the particles. The criti-
cal force is also a function of the density, i.e., the number of
particles. In our simulations, we observed that for larger den-
sities f,. becomes smaller.

B. Depinning

When the driving force f is larger than the threshold f.,
the system exhibits Q1D flow. In Fig. 6, some typical trajec-
tories of the depinned particles are reported, for 7'=0.002
and different values of f just above f..

The first interesting observation is that the driven system
does not break up into pinned and flowing regions, as ob-
served in experiments and simulations of superconducting
vortices*®*2 or colloids,?® or, in other words, the chain-like
system under investigation does not exhibit plastic depin-
ning. Once the driving force overwhelms the critical thresh-
old f., all the particles move together. The depinning can be
either elastic or quasielastic depending on the height of the
constriction barrier. In the case of a low barrier (Vy=1 in Fig.
6), the particles move such that they keep the same neigh-
bors, thus the system depins elastically. In contrast in the
case of a high barrier (Vj=5 in Fig. 6), a complex net of
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conducting channels is activated and the particles move
without keeping their neighbors, that is, the depinning is
quasielastic. The quasielastic depinning is a feature closely
related to the low dimensionality of the system and to the
fact that we are considering a single constriction. We found
that quasielastic depinning appears when the strength of the
constriction potential is increased. In other infinite 2D sys-
tems of driven particles or vortices, where several pinning
centers are present, a crossover from elastic to plastic depin-
ning with increasing strength of the pinning potential occurs
(see, e.g., Ref. 28). We will focus on this problem in Sec.
IV C.

The region after the constriction barrier, as it is evident
from the trajectory patterns, shows features that deserve a
deeper investigation in the case of high values of V. In Fig.
6 for V(')=5, we found that at the right of the constriction
some noise is present and the particles flow disorderly. In
order to explain this behavior, we investigated the distribu-
tions of the x and y components of the velocity in narrow
strips along the simulation cell length. We concentrated our
attention on a system of N=400 particles at 7' =0.002, with
k=1, V(')=5, and o'=1. The results are reported in Fig. 7.

It is evident that v, is always normally distributed with
average equal to zero, as expected, because it receives con-
tributions mainly from thermal noise, which is Gaussian. The
distribution of v, is still Gaussian, but centered around a
value (v,) # 0 because of the external driving force, except in
the neighborhood of the constriction where the strong inter-
action with the barrier gives a non-Gaussian profile to it.
What is interesting is the fact that the velocity above the
depinning threshold has a pronounced gradient in the x di-
rection. From Fig. 7, it is clear that approaching the constric-
tion from the left side, the particles are slowed down; they
receive a sudden acceleration when they pass the constriction
barrier, then the velocity has a maximum in the right neigh-
borhood of the constriction, and finally it slows down again
when approaching the edge of the simulation cell. In order to
explain these highly nonlinear features, it is helpful to look at
the profile of the force due to the constriction potential (see
Fig. 8). This force has a significative magnitude only in a
narrow region around x=0. For x <0, it acts oppositely to the
driving force; while for x>0, it enhances the driving force.
There are two maxima for the intensity of the force located at
x==1/y3 and it is zero at the origin of the axis. Therefore,
when the particles approach the constriction they start to feel
this decelerating force and slow down. Because the system is
strongly interacting, the deceleration is seen not only in the
left neighborhood of the barrier, but in a wider region. At x
=0, the force is zero; for x>0 close to the constriction, the
force quickly increases and adds to the driving force, so the
particles experience a sudden acceleration which produces a
large velocity. After that the particles are accelerated, only by
the driving force, and start to feel the effect of the particles
on the opposite side of the simulation cell because of the
periodic boundary conditions, so the velocity decreases
again. In the case of low constriction barriers or large driving
forces, the x components of the velocity are more homog-
enously distributed along the simulation cell. From the width
of the velocity distribution it is possible to define an “effec-
tive temperature.” According to the equilibrium probability
factor
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where T’ff- and Tiﬁ» take into account also the contributions

eff

due to the potential energy, the fluctuations of the velocity
components are related to the effective temperature by

Tifff: m((U;( - <U;>)2>/k3,

10 20 30 40 50

FIG. 6. Typical trajectories of
the particles when the system is
depinned for different densities
and different values of the height
of the constriction barrier. The
plots are for a temperature 7"
=0.002, k=1, and a'=1.

Ty =m{(v; = () Mk

In our dimensionless units and our specific case, this yields

To5r=2(vy = (W)

2(vy?).

respectively. The calculated effective temperatures are re-
ported in Table 1.
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FIG. 7. The v, and v, distributions along the simulation cell length for a system of N=400 particles, for k=1, V=5, and &'=1 and for
a temperature 7' =0.002 and driving force f=0.05. The superimposed curves are the normal distribution curves generated using the mean and
standard deviation of the data.
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FIG. 8. The constriction force profile as a function of x for V
=5and a’'=1.

It is worth noticing that the effective temperatures are the
same as the simulation temperature in the regions far away
from the constriction barrier where the velocity fluctuations
are nicely described by a normal distribution (see Fig. 7).
The effective temperatures T:,)’ff and T:,;f increase when ap-
proaching the constriction. In the strips —0.5<x=<0.5 and
1.5<x<2.5, both T,/ and T,;;>T". This is evidently a re-
sult of the strong interaction with the barrier which increases
significantly the fluctuations in the velocity. Actually, the
spreading of the distribution of the velocities is one to two
orders of magnitude larger in the constriction region with
respect to the regions where the constriction potential is al-
most zero.

In the elastic regime, the velocity fluctuations could be
fitted to a Gaussian distribution both for v, and v,, even in
the vicinity of the constriction. Around the barrier, the strong
interaction effect is felt as an increase of the effective tem-
perature, which is much less pronounced than in the quasi-
elastic regime.

Regarding the noise observed in the trajectory plots, it is
essentially due to the fact that the particles merge from the
constriction with a relatively large y component of the veloc-
ity. As is seen form of Fig. 7(d), the distribution of the v,
spreads over a quite large range of values while passing the
constriction. Indeed, the standard deviation of the Uy distri-
bution around x=0 is one order of magnitude larger than in
the other regions, as already mentioned. This feature is a

TABLE 1. Effective electron temperatures corresponding to the
situation of Fig. 6(h) in the different regions studied in Fig. 7.

Toy Ty
—40.5<x=<-39.5 0.0018 0.0020
—205<x=<-19.5 0.0020 0.0021
25<x=-15 0.0060 0.0051
~0.5=x=<05 0.28 0.031
15<x<25 0.14 0.26
19.5<x<20.5 0.0024 0.0023
39.5<x=<405 0.0019 0.0021
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consequence of the fact that very close to the barrier the
constriction force is very small (it is zero at x=0), the par-
ticles proceed slowly and, thereby, they strongly undergo the
effect of the confining potential which accelerates them in
the y direction, producing a significant y component of the
velocity. This is also confirmed by the fact that passing the
constriction barrier a narrowing of the chain structures is
always present (see Fig. 6). Notice from Figs. 7(d) and 7(e)
that the velocity fluctuations are no longer described by a
normal thermodynamic equilibrium distribution and that, in
particular for v,, there are large deviations.

As first predicted by Fisher, the elastic depinning ex-
hibits criticality*? and the velocity vs force curves scale as
v=(f—f.)8. This scaling has been extensively studied in 2D
CDW systems where 8=2/3.4%% It is, however, still an open
issue whether this exponent is the signature of a universality
class and whether it depends on the particle-particle interac-
tion. Actually, in other investigations on elastic depinning of
driven colloidal lattices, the findings were B~0.5% and
B=0.92+0.01.3* Other studies on plastic depinning with fila-
mentary or river-like flow have shown a velocity-force curve
scaling with 8=2.2,% B8=1.94+0.03?® for colloids, 8=2.0
for electron flow simulations in metallic dots,*” and
B=2.22 for vortex flow in superconductors.?’

As pointed out by Le Doussal and Giamarchi, for an in-
finite size 2D system, true elastic depinning is not expected
since dislocations and defects, acting as pinning centers,
should appear at large scales.??> Both the simulations and the
experiments are, however, always for finite size systems and,
consequently, elastic depinning is possible where the dis-
tance between dislocations may be larger than the system
size.

In Fig. 9, we report the v-f curve in the case of elastic and
quasielastic depinning for different numbers of particles, i.e.,
for different chain arrangements. It should be noticed that the
critical exponent does not depend on the number of chains in
the system. For all the investigated chain configurations, we
obtained on average that 8=0.66 in the case of homoge-
neous channel flow, that is, elastic depinning, and $=0.95 in
the case of inhomogeneous channel flow, that is, quasielastic
depinning. For negative value of V, we found similar values
for the critical exponent in the elastic and quasielastic re-
gime. The value of the critical exponent, therefore, could be
considered as a clear signature of the kind of depinning. Our
results are consistent with the findings on CDW systems and
colloids mentioned before. With increasing temperature but
below the melting temperature, we observed a broadening of
the conducting channel or some changes in the structure with
some chains collapsing (we will provide more details about
this point in Sec. IV C), but no significant dependence of the
critical exponent on temperature was found (within our fit-
ting errors).

The question of whether in confined systems there is a
universal exponent for elastic and quasielastic depinning
cannot be answered conclusively. We found that the critical
exponents are not affected by the value of «, as it can be seen
in Table II: going from x=0.2 (nearly Coulomb interaction)
up to k=5 (short-range interaction), the value for the critical
exponent stays the same. Although we found that the critical
behavior is independent of the particle-particle interaction,
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FIG. 9. Velocity v, vs applied drive f for the elastic depinning [(a) and (b)] and for the quasielastic depinning [(c) and (d)] for k=1 and
a’=1. The dashed curves are the best fitted power law behavior for 7'=0. At zero temperature, the curves exhibit a sudden jump at the
depinning threshold; while at finite temperature, they are smoother. The critical exponents are independent of the density, i.e., the number of

chains.

further investigations with other kinds of pinning potentials
are required in order to affirm that the elastic, quasielastic,
and plastic depinning belong to different universality classes.

In our simulations, neither in the case of elastic or quasi-
elastic depinning history dependence was found. The veloc-
ity vs applied drive are not hysteretic, and we obtained the
same result for increasing and decreasing values of f.

Finally, in the case of very small «, that is, for a wide
constriction interaction, because of the density gradient pro-
ducing the coexistence of different chain structures, we al-
ways observed quasielastic depinning.

C. Crossover from elastic to quasielastic depinning

It is interesting to investigate the values of 8 or, in other
words, the kind of flow as a function of V('). For colloidal
systems, a sharp crossover from elastic to plastic depinning
was found with increasing strength of the substrate disorder,
accompanied by a sharp increase in the depinning critical
force.”® Carpentier and Le Doussal studied theoretically the
effect of quenched disorder on the order and melting of 2D
lattices and found a sharp crossover from the ordered Bragg
glass (where there are no defects) to a disordered state.*®
They also predicted that the depinning threshold increases at
the order to disorder transition due to the softening of the

lattice, which allows the particles to better adjust to the sub-
strate. A similar mechanism could account for the peak effect
observed in vortex matter in superconductors,* in which the
depinning threshold rises abruptly with increasing applied
magnetic field.

We found a crossover from elastic to quasielastic depin-
ning as the barrier height of the constriction is increased.
This is analogous to the crossover from the elastic to plastic
flow encountered in other systems. As can be seen in Fig. 10,
the behavior of 8 as a function of V(') is almost step-like, and
the crossover takes place in a narrow range of V;, values. We
also observed increasing values of the critical threshold f... It
is beyond the scope of this paper to determine whether the
elastic to quasielastic crossover is a first or second order
transition and how temperature influences this transition.
However, the relative smoothness of the curves in Fig. 10
suggests a possible second order transition. Furthermore, the
effect of increasing temperature should reasonably result in a
shift to lower values of f, or V|, for the transition from elastic
to quasielastic flow.

It is evident from Fig. 10 that the crossover shifts toward
lower values of the potential barrier as the inverse screening
length is increased, which means that the particles with
stronger interparticle interactions can flow in a more ordered
way.
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TABLE II. The critical exponent S for different values of the
inverse screening length k and the constriction barrier height V).

K Vi B Depinning
0.2 0.25 0.68+0.04 elastic
0.2 1 0.70+0.06 elastic
0.2 5 0.95+0.04 quasielastic
1 0.25 0.64+0.03 elastic
1 1 0.67+0.02 elastic
1 5 0.92+0.05 quasielastic
1.5 0.25 0.63+0.05 elastic
1.5 1 0.68+0.04 elastic
1.5 5 0.95+0.06 quasielastic
2 0.25 0.65+0.04 elastic
2 1 0.66+0.03 elastic
2 5 0.96+0.03 quasielastic
3 0.25 0.65+0.03 elastic
3 1 0.95+0.06 quasielastic
3 5 0.97+0.05 quasielastic
4 0.25 0.68+0.04 elastic
4 1 0.94+0.04 quasielastic
4 5 0.91+0.05 quasielastic
5 0.25 0.67+0.04 elastic
5 1 0.98+0.06 quasielastic
5 5 1.02+0.08 quasielastic

The values of the critical exponent 8 shown in Fig. 10 can
be fitted by the curve a tanh[b(V(’)—‘_/(’,)]+c, where a, b, c,

and \_/(’) are the fitting parameters. In particular, the sum a
+c gives the value of B for the case of quasielastic depin-
ning, while the difference c—a gives the value of S for the

case of elastic depinning. \_/(’) can be identified with the value
of the constriction height for which the crossover from elas-
tic to quasielastic depinning takes place, and b is related to
the sharpness of the transition or, to be more precise, it is
related to the inverse width of the transition region. The re-
sults of the fits are reported in Table III.

As it can be seen from Table III, the constriction height
for which the quasielastic regime is established is a decreas-
ing function of the inverse screening length «, while the
sharpness of the transition is an increasing function of « (see
also Fig. 11). Again it confirms that for long-range interac-
tions, the particles can flow more orderly. The errors in the

fitting parameters are small for a, ¢, and \_/(’) and relatively
large for b.

In Fig. 11, the values of 1_/(') and b as a function of « are

reported. The curve V)= V/(x) is well fitted by a Lorentzian
1/(p+qx®) with p=0.302+0.005 and ¢=0.058+0.002 and
the inverse width (see inset of Fig. 11) by the Padé approxi-
mation (g+hx?)/(1+1xk*) with g=1.9+0.2, h=1.4+0.4, and
1=0.23+0.07.

We should stress that the physics behind the crossover
from elastic to quasielastic depinning is different from the
case of quenched disorder, where with increasing disorder
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FIG. 10. The critical exponent 3 as a function of the constriction
barrier height V{ for different values of the inverse screening
length: (a) k=0.2, (b) k=1, (c) k=2, and (d) x=5. With increasing
values of , the crossover region shifts to lower values of V. The
solid lines are guides to the eye.

strength, the ordered structure is softened and particles can
better adjust to the substrate. In our case the accumulation of
particles in the vicinity of the constriction barrier and their
mutual repulsion give rise for high values of V) to a complex
arrangement of conducting channels, in which the nearest
neighbors of each particle change, i.e., to the impossibility of
elastic flow.
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TABLE III. The fitting parameters for the crossover curves for different values of the inverse screening

length «.

K a b c v

0.2 0.144+0.007 2.1+0.6 0.799+0.007 3.28+0.06
1 0.131+0.005 2.4+04 0.790+0.004 2.90+0.05
1.5 0.139+0.005 3204 0.796+0.005 2.12+0.06
2 0.143+0.006 4212 0.813+0.006 1.78+0.04
3 0.152+0.005 4.8+1.3 0.811+£0.007 1.24+0.05
4 0.146+0.007 52+1.3 0.802+0.008 0.94+0.06
5 0.160+0.008 54+14 0.80+0.01 0.61+0.03

D. Conductivity

According to Ohm’s law, the current density of a classical
system of charged particles is proportional to the applied
electric field

j=0-E, (7)
where ¢ is the specific conductivity. The conductivity can be
in general expressed as a second rank tensor. Because of the
geometry of the investigated system and because the driving
is in the x direction, we are interested only in o, which we
will refer to in what follows as simply o.

From the definition of j and from Eq. (6a), it follows, in
dimensionless units:

v

!
’ ~ X

o'=n,—
f

where o' =0/ (q*/mwyry). As the definition of total density is
not always an accurate one for our system, as mentioned
above, we investigated the ratio v_/f, which is directly pro-
portional to ¢’ through 77, and which is a constant equal to
1/v', according to Eq. (8). In Fig. 12, the results of our
calculations are reported for different values of the friction.

, (8)

= |3

3.5
. 7
30F o, ° %
25} <4 , J[
=~ 20} Yoo
s [ 4 1 2 % 3 4 5
15+
05 L 1 L 1 L 1 1 $
0 1 2 3 4 5

FIG. 11. The transition points V}, as a function of the inverse
screening length «. The dashed line is the fitting curve 1/(p+g«?).
The inset shows the behavior of the inverse width of the transition
region as a function of . The dotted line is the fitting curve (g
+hi?) (1+163).

When the particles are pinned, the conductivity is obvi-
ously zero. It is interesting to notice that after the depinning
threshold, there is a narrow region where the conductivity
shows non-Ohmic features, going from zero to the saturation
value 1/v'. Afterward, when the drive is the leading effect in
the equations of motion, the particles behave as a classical
Ohmic conductor. This behavior is independent of the num-
ber of particles and of the height of the constriction barrier.
For higher values of V{, the non-Ohmic conductivity region
is enlarged.

Studying the conductivity as a function of temperature,
some interesting features were observed. We investigated a
rather wide range of temperatures from 0.001 to 0.018. From
Ref. 23, we know that for the single-chain configuration in
the absence of driving and constriction potential, the melting
temperature is arbitrarily low, while in the multichain con-
figuration it is 7'/, ~0.015. The results of our calculations,
for a driving force f=0.05 and for different values of V;, are
sketched in Fig. 13.

The behavior in the single-chain configuration shows sub-
stantial differences from the multichain one. First of all, for
weak values of V|, the conductivity is an increasing function
of T' in the single-chain case, while it is decreasing in the
multichain case. This means that when the number of par-

5

5
4{.*0—% V‘0=1,(X|=1,K:1
4k 3
;x 2 (S0 Ormememe ToR— o
TV Y % ol - »
3 1 e T
“— 8502 07 06 08 1.0 N=600
> 02" T'=0.002
> —eo—v={).
2t ” o
o--y=0.4 o
1 4--v=0.6 o JE— R
cvor=08 g P e s
O o1 ooz Y g L L
0.003 0.006 0.009 0.012 0.015
f

FIG. 12. The ratio between velocity and driving force as a func-
tion of the drive strength for different values of the friction coeffi-
cient. The conductivity is non-Ohmic in a narrow region above the
depinning threshold. The inset shows that for larger values of f,
Ohm’s law is fulfilled with the conductivity as a constant. The
curves are guides to the eye.
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FIG. 13. Dependence of the conductivity on the temperature for
(a) a single-chain structure and (b) a multichain structure. For weak
values of the potential barrier, the conductivity of the single-chain
structure is an increasing function of temperature, in all the other
cases it shows a decreasing trend.

ticles is small, that is the electrostatic interaction is not too
strong, the thermal motion aids the particles to overcome the
potential barrier and does not act as a disturbance, while in
the case of a large number of particles, the possibility of
overcoming the barrier is sustained by the electrostatic repul-
sion and the thermal agitation is a dissipative factor. This is
an ulterior confirmation that the dynamics of the system un-
der investigation is a very complex interplay of driving, elec-
trostatic interaction, repulsion from the constriction, thermal
fluctuations, and confinement.

In general, in a classical model of conduction, the conduc-
tivity is expected to be a decreasing function of temperature.
For large values of the constriction barrier height, either in
the case of single-chain and multichain structures, we found
that the conductivity is not a monotonic function of tempera-
ture, although it shows a decreasing trend. The presence of
structure in the v,/f curve vs T’ can be explained by the fact
that with increasing temperature some of the channels
formed for high V|) can collapse together to form new chan-
nels, as mentioned in Sec. IV D. This is confirmed by the
analysis of the configurational energy per particle as a func-
tion of temperature, which is plotted in Fig. 14.

The average potential energy exhibits the same tempera-
ture dependance as the conductivity, while in the case of a
weak constriction barrier height, the configurational energy
per particle increases linearly with temperature. Another fac-
tor, which is also responsible for that nonmonotonicity, is the
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FIG. 14. The average configurational energy per particle as a
function of the temperature for a multichain configuration.

fact that, in the case of high barrier values, a density gradient
is present and the melting is not homogenous, thus some
parts of the system can be in the liquid state while others are
still in the solid state, giving rise to complex phenomena in
the transport properties.

V. OTHER DYNAMICAL PROPERTIES

For high values of the driving force, the system shows the
phenomenon of dynamical reordering. When the driving
force is large the system, even in the case of a high constric-
tion barrier, can flow in an ordered channel structure. This is
shown in Fig. 15. It is interesting to compare the trajectories
of Fig. 15 with the one of Fig. 6(j). Above the depinning
threshold [Fig. 6(j)], the channel structures are not homog-
enous; by increasing the drive (Fig. 15), an ordered moving
structure is reached again.

This is a well-known phenomenon. Indeed, it was ob-
served experimentally for vortex lattices in type II
superconductors®® and for colloids.’’ The interplay between
dynamical reordering and melting in mesoscopic channels
was recently studied experimentally in the case of vortices,
providing the first conclusive evidence for a velocity depen-
dent melting transition.>> The dynamical reordering was also
investigated theoretically for CDW systems.*> The dynami-

Vy=5, a'=1, K=11

=1.0 T'=0.002

3
-60 -40 -30 -20 10 O
X

10 20 30 40 50

FIG. 15. Trajectories of a system of N=560 particles for a high
value of the driving force. The five-channel structure is attained
over the whole wire [cf. Fig. 7(j)].
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FIG. 16. The ratio between potential and kinetic energy per
particle as a function of temperature.

cal reordering for such systems originates from the fact that
the applied driving force tilts the pinning potential, thereby
reducing the pinning strength. When a large enough force is
applied, the particles depin and then flow quite orderly. The
same mechanism is responsible for the dynamical reordering
of the studied system, with the difference that the tilted po-
tential is in this case the constriction potential.

It is worth studying the ratio between kinetic and potential
energy, averaged at every simulation step, as a function of
the temperature. From Fig. 16, it is evident that the kinetic
energy increases faster than the configurational energy with
temperature, which is an expected result. What is interesting
is the fact that the fitting curve is of the type y=c/(1+dx).
The fit is excellent with very small errors in the fitting pa-
rameters ¢ and d.

Finally, we also investigated the distribution of the veloc-
ity v, as a function of the distance from the x axis, or in other
words, we studied the velocity for each conducting channel
when the system flows orderly. Motivated by the experimen-
tal findings of Ref. 4, that for a chain system of electrons on
liquid helium, the particles in the external chains have higher
velocity than the particles in the internal chains, we tried to
clarify whether a similar behavior occurs in our system. Our
findings are in contrast with the one of Ref. 4, actually, we
found that the internal chains have, on average, a velocity
which is 5% higher than the external chains. However, this
discrepancy can be explained by the circumstance that the
pinning mechanisms are different for the two systems: the
coupling between electrons and ripplons in the case of Ref. 4
and the constriction potential in our case, and by the fact that
the confinement potentials are not exactly the same in the
two systems.

VI. COMPARISON WITH OTHER DRIVEN SYSTEMS

A rather general theory of periodic structures in a random
pinning potential under the action of an external driving
force was developed by Le Doussal and Giamarchi.?? Their
findings were that the periodicity in the direction transverse
to the motion leads to a different class of driven system: the
moving glasses, with the decay of the translational long-
range order as a power law. Similar considerations can be

PHYSICAL REVIEW B 72, 205208 (2005)

made for our system as well, but with the important differ-
ence that because of the confining potential and the constric-
tion potential, the periodicity is broken both in the x and y
directions. For weak constriction barrier height, long-range
translational order is present in the x direction, but it is soft-
ened when the system is moving and the temperature is in-
creased. For infinite systems, one of the consequences of
periodicity in the transverse direction to the motion is that
particles flow along static channels for uncorrelated and
weak disorder and that there are barriers to transverse mo-
tion. In our confined system, the barriers to transverse mo-
tion are an effect resulting from confinement instead of pe-
riodicity. Most of the studies on driven lattices or glasses
show that, at finite but low temperature, the channels
broaden and strong nonlinear effects exist in the response to
the applied drive, though the asymptotic behavior is found to
be linear, which is, indeed, what we found as well.

In infinite moving systems with random pinning centers,
depending on the strength of that disorder, two kinds of flow
are possible: (i) the elastic one, where all the particles move
keeping their neighbors, and (ii) the plastic one, where part
of the particles are moving in river-like or filamentary struc-
tures and part is pinned. There is a sharp crossover from the
elastic to the plastic flow, related to an order-disorder transi-
tion. In our system, we found that two kinds of flow are
possible: (i) the elastic flow, where all the particles move
orderly and the nearest neighbors are preserved, and (ii) the
quasielastic flow, where all the particles move together, but
creating a complex net of conducting channels, for which the
neighbors are not kept. We also found a continuous crossover
from the elastic to quasielastic flow. It is important to stress
that this difference is closely related to the different pinning
potentials considered. To be more precise, in the case we
investigated, the pinning is due to a constraint rather than an
actual pinning potential. That is the reason why we did not
observe plastic flow, because particles cannot be strongly
attracted and pinned by any pinning center.

It is remarkable that for our system we also found that in
the case of elastic depinning, the velocity vs driving force
curve scales as v « (f—f.), with 8~ 0.66, which is in agree-
ment with most of the theoretical and numerical works for
infinite systems exhibiting elastic flow, where 8=2/3. Thus,
the value of the critical exponent S=2/3 seems actually the
signature of elastic depinning independently of the presence
of confinement and the type of pinning potential. Naturally,
in order to affirm this definitely, more investigations are re-
quired with different topologies and potentials. Furthermore,
in the case of quasielastic depinning, we found a critical
exponent B~0.95, which is an intermediate value between
the case of elastic and plastic flow, where the experimental
findings give S~ 2. This leads us to the conclusion that the
quasielastic depinning is an intermediate regime between
elastic and plastic depinning.

Finally, for the elastic regime, the previous theoretical in-
vestigations followed essential two approaches: (i) elastic
theory with renormalization group techniques®>*® and (ii)
perturbation theory in 1/v.3 The first one explains the
flowing channel structures and their mutual interactions,
while the second one elucidates the v-f characteristics and
the criticality in the depinning. Despite the amount of experi-
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mental and numerical data, a detailed theoretical understand-
ing of plastic motion still remains a challenge.’®

VII. CONCLUSIONS

We studied the ground state and the dynamical properties
of a classical Q1D infinite system of particles interacting
through a Yukawa-type potential and with a Lorentzian
shaped constriction potential. The system is confined in one
direction by a parabolic potential. By MC simulations, we
found that at 7=0, the particles arrange themselves in a
chain-like system, where the number of chains are a function
of the number of particles, i.e., the density. Depending on the
height and on the interaction range of the constriction barrier,
a density gradient in the chain configuration is present near
the constriction.

We studied the response of the system when an external
driving force is applied in the not confined direction. We
performed Langevin molecular dynamics simulations with
periodic boundary conditions in the not confined direction
and open conditions in the confined direction for different
values of the driving force and for different temperatures. We
found that the constriction barrier and the friction pin the
particles up to a critical value of the driving force. The
pinned phase is a new static phase, with particles accumulat-
ing in the neighborhood of the constriction point barrier and
arranging themselves in such a way as to balance the external
drive. For values of the driving force which are higher than
the critical threshold, the particles can overcome the poten-
tial barrier and the system depins. We analyzed in detail the
depinning phenomenon, and we found that the system can
depin elastically or quasielastically depending on the
strength of the constriction potential. The quasielastic flow is
a new regime, where particles move together without keep-
ing their neighbors.

In the case of elastic flow, the chain-like structure, formed
at T=0 in the absence of external drive, is preserved; while
in the case of quasielastic flow, it is destroyed and a complex
net of conducting channels is created. The elastic depinning
is characterized by a critical exponent, which is on average
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B~0.66 and does not depend on the number of chains. This
is in excellent agreement with the theoretical and numerical
findings on 2D systems exhibiting elastic depinning. The
quasielastic depinning state has a critical exponent 8~ 0.95.
We demonstrated that the values of the critical exponent are
independent of the range (i.e., screening length) of the inter-
particle interaction. But the crossover between elastic and
quasielastic flow depends on the kind of interparticle inter-
action.

Furthermore, we showed that the dc conductivity is zero
in the pinned regime, it has non-Ohmic characteristics after
the activation of the motion, and then it is constant; in other
words, the system has a nonlinear response to the applied
drive. The linear regime is attained as the asymptotic behav-
ior. The dependence of the conductivity with temperature
and strength of the constriction was also investigated. We
found that in the single-chain configuration for low height of
the constriction, the conductivity is an increasing function of
temperature; while in the multichain configuration, it is a
decreasing function, as expected. For high constriction bar-
rier height, the conductivity has no longer a monotonic be-
havior, although it has a decreasing trend. In these cases,
some structures are present in the conductivity vs tempera-
ture curve, signaling the circumstance that some channels
collapse or some parts of the system have already undergone
the transition from the solid to the liquid state. Finally, for
large values of the external driving force, even in the case of
the high constriction barrier, the particles can flow orderly in
a well-defined channel structure, because the drive tilts the
contact point potential, thus reducing the pinning strength,
that is, the system exhibits the phenomenon of dynamical
reordering.
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