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We consider the Grüneisen parameter and the magnetocaloric effect near a pressure and magnetic field
controlled quantum critical point, respectively. Generically, the Grüneisen parameter �and the thermal expan-
sion� displays a characteristic sign change close to the quantum-critical point signaling an accumulation of
entropy. If the quantum critical point is the endpoint of a line of finite temperature phase transitions, Tc

� �pc− p��, then we obtain for p� pc, �1� a characteristic increase ��T−1/��z� of the Grüneisen parameter � for
T�Tc, �2� a sign change in the Ginzburg regime of the classical transition, �3� possibly a peak at Tc, �4� a
second increase ��−T−1/��z� below Tc for systems above the upper critical dimension, and �5� a saturation of
��1/ �pc− p�. We argue that due to the characteristic divergencies and sign changes the thermal expansion, the
Grüneisen parameter and magnetocaloric effect are excellent tools to detect and identify putative quantum
critical points.
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I. INTRODUCTION

The competition between two different ground states at a
quantum phase transition leads to unusual behavior in ther-
modynamics as well as in transport. A prominent example
are the heavy fermion compounds whose non-Fermi liquid
behavior is attributed to the presence of a quantum critical
point �QCP� associated with a magnetic instability.

We recently pointed out1 that the Grüneisen parameter, �,
is an important tool to identify and classify a QCP since it
necessarily diverges near a pressure-driven quantum phase
transition with characteristic exponents.2 In this paper we
focus on another aspect, i.e., the sign change of the Grü-
neisen parameter. We will argue that generically the sign of �
�and therefore the thermal expansion� changes as entropy is
accumulated near a quantum critical point. The sign change
in combination with the divergence leads to strong signatures
of the Grüneisen parameter near a QCP.

A quantum phase transition �QPT� occurs at zero tempera-
ture upon tuning an external parameter like doping, pressure,
electric field, magnetic field, etc., to a critical value. The
underlying QPT manifests itself at finite temperatures in an
unusual sensitivity of thermodynamics on these tuning pa-
rameters. In the following we will focus on QCPs which are
tuned with pressure, p and/or magnetic field, H. Generaliza-
tions are straightforward. At T=0 the distance to the QCP is
determined by the control parameter which depends on pres-
sure and/or magnetic field, r=r�p ,H�. Near the QCP the con-
trol parameter can be linearized around the critical pressure
or the critical magnetic field,

r�p,H� = �p − pc�/p0 = �H − Hc�/H0, �1�

where p0 and H0 are a constant pressure and magnetic field
scale, respectively. Generically, the critical magnetic field
will depend smoothly on pressure, Hc=Hc�p�, and vice
versa. Note that a linearization in magnetic field is only pos-
sible if the critical field is large, H /Hc�1; in particular, this
is not fulfilled in the case of a zero-field QCP.

The critical contribution to the free energy density is a
function of this control parameter and temperature, f
= f�r ,T�. The sensitivity on the tuning fields is thermody-
namically measured by the derivatives of the free energy
density with respect to r. For a pressure-tuned QCP an ex-
ample is provided by the thermal expansion,

	 =
1

V
� �V

�T
�

p,H
= −

1

Vm
� �S

�p
�

T,H
=

1

Vm

�2f�r,T�
�p � T

, �2�

where Vm is the molar volume. With Eq. �1� follows that the
thermal expansion is directly proportional to the mixed de-
rivative �2f / ��r�T�. When the QPT can be tuned by mag-
netic field the same derivative can be accessed by the ther-
modynamic quantity �dM /dT�H. If the QCP is sensitive to
both, p and H, the critical part of the thermal expansion and
of the temperature derivative of the magnetization are ex-
pected to be proportional to each other near the QCP,

Vm	

�dM/dT�H
= �dHc

dp
�

p=pc

. �3�

Their ratio gives the dependence of the critical magnetic field
on pressure. Similar relationships hold for the magnetostric-
tion, compressibility and differential susceptibility which all
yield �2f /�r2.

The main quantity of our interest is the Grüneisen param-
eter which is measured by the ratio of thermal expansion and
molar specific heat Cp=T��S /�T��p,

� =
	

Cp
= −

��S/�p�T

VmT��S/�T�p
. �4�

Note that we define the Grüneisen parameter with the spe-
cific heat at constant pressure3,4 and not at constant volume
�as often used in the literature�. It is the specific heat at
constant pressure which is measured in experiments on
pressure-controlled QCPs. The corresponding quantity for
magnetic field tuning is given by �H=−��M /�T�H /CH,
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where CH=T��S /�T��H. It will become clear below that �H

describes the magnetocaloric effect.
Let us shortly recapitulate the main results of Ref. 1. The

main observation is that � diverges at a quantum-critical
point, while it is finite in all noncritical systems or close to
generic classical critical points. This can most easily be seen
in cases where scaling applies �i.e., for systems below the
upper critical dimension, d+z�4� and where the qualitative
behavior of � can be extracted from the scaling form of the
free energy

f�r,T� = b−�d+z�f�rb1/�,Tbz� , �5�

where b is an arbitrary scaling parameter, d is the dimension-
ality, and � and z are the correlation length and dynamical
critical exponent, respectively. As can be read off directly
from Eq. �4�, � scales like 1/r or equivalently,

dim��cr� = − dim�r� = − 1/� . �6�

Accordingly, one obtains directly from �5�

�cr �
1

T1/�z �7�

in the quantum-critical regime, i.e., for T
 �r��z �see Fig. 1�.
On the other hand, in the two low-temperature regimes on
the right- and left-hand sides of the QCP in Fig. 1, the Grü-
neisen parameter diverges with the inverse of the control
parameter r� p− pc,

�cr = − Gr
1

Vm�p − pc�
. �8�

Surprisingly, due to the third law of thermodynamics, i.e., by
assuming a vanishing residual entropy at zero temperature, it
is possible to determine even the prefactor Gr of the diver-
gence from a scaling analysis. It is given by a simple com-
bination of critical exponents

Gr = − �
y0

±z − d

y0
± , �9�

where the exponents y0
+ and y0

− are associated with the low-

temperature behavior of the specific heat, Cp�Ty0
±
, on the

right- and left-hand sides of the QCP, respectively. As was
shown in Ref. 1, these results might even hold �up to pos-
sible logarithmic corrections� in situations where the simple
scaling Ansatz �5� fails, i.e., for systems above the upper
critical dimension.

Equation �8� implies not only a divergence of � but also a
sign change �assuming that Gr has the same sign on both
sides of the QCP�. Obviously the question arises where and
how this drastic sign change takes place in the finite-
temperature phase diagram. This will be one of the main
topics discussed in this paper.

The following section will discuss the sign changes using
qualitative arguments. Section III investigates quantum criti-
cal points where there is no phase transition at finite tem-
perature and briefly discusses experiments close to metamag-
netic quantum phase transitions. In Sec. IV we study how
thermal expansion, Grüneisen parameter, and magnetocaloric
effects are influenced by a phase-transition at finite T in
proximity to a QCP. An overview of our main results is given
in Sec. V.

II. SIGN OF THE GRÜNEISEN PARAMETER

In order to obtain insight into the meaning of the sign of
the Grüneisen parameter it proves useful to consider a line of
constant entropy within the pressure-temperature plane
�p ,T�,

dS = � �S

�T
�

p

dT + � �S

�p
�

T

dp=! 0. �10�

Using the definition of the thermal expansion and the specific
heat we obtain for �,

� =
1

VmT
�dT

dp
�

S
. �11�

The Grüneisen parameter measures the variation of tempera-
ture upon pressure changes under constant entropy condi-
tions. The Grüneisen parameter thus corresponds to a
pressure-caloric effect. As already alluded to, for a QPT that
can be driven by magnetic field the quantity analogous to the
Grüneisen parameter is the magnetocaloric effect

�H = −
�dM/dT�H

CH
=

1

T
� dT

dH
�

S
, �12�

where CH is the specific heat at constant H. Experimentally,
the quantities � and �H can be directly accessed by measur-
ing the change in temperature at constant entropy upon pres-
sure and magnetic field variations, respectively. In math-
ematical terms both yield the slope of the constant entropy
curves, i.e., isentropes in the phase diagram.

How do the isentropes look near a quantum phase transi-
tion? We expect that we have an accumulation of entropy

FIG. 1. Different regimes in the phase diagram of a quantum
phase transition. The dotted lines correspond to crossovers between
the low-T and the quantum critical regime, T��r��z. The control
parameter might be sensitive to pressure and/or magnetic field. The
solid line shows a generic isentrope along which the entropy is
constant, dS=0.
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near the quantum critical point since directly at the QCP the
system is frustrated of two different possible ground states.
From this expectation follows that the isentropes are tilted
towards the QCP with a minimum in its vicinity, see Fig. 1.
The minima of the isentropes indicate how the entropy accu-
mulates around the QCP and sit at the positions where the
system is maximally undecided which ground state to
choose. According to Eq. �11�, the Grüneisen parameter is
proportional to the slope of the isentropes, i.e., it has a dif-
ferent sign on each side of the QCP. It thus follows from a
generic entropy distribution around the QCP that the Grü-
neisen parameter will change sign in its vicinity. The sign
change occurs at the location of the isentrope minima and
therefore tracks the accumulation of entropy in the phase
diagram. In this way, the Grüneisen parameter maps out the
entropy landscape near a quantum critical point.

Since the specific heat is always positive the sign change
of the Grüneisen parameter coincides with that of the thermal
expansion. As the thermal expansion is given by the negative
derivative of the entropy with respect to pressure, 	�−�S /
�p�T, a negative thermal expansion is present whenever the
entropy increases as a function of pressure. This happens
naturally in the vicinity of a pressure-controlled QPT. The
sign change of the thermal expansion and hence of the Grü-
neisen parameter occurs at a pressure value where the en-
tropy reaches a maximum. Similarly, for magnetic field tun-
ing the magnetocaloric effect and the quantity ��M /�T�H will
change its sign at the accumulation point of entropy.

As mentioned above, already the scaling result for the
Grüneisen parameter in the low-temperature regime �8�, sug-
gested a sign change of � provided that the prefactor Gr has
the same sign in both low-T regimes. That this is the case is
again ensured by entropic constraints. The sign of Gr is de-
termined by the relative size of the exponents y0

± and d /z.
These exponents determine the behavior of the specific heat
or, alternatively, the entropy, S, in the low-T regime, S
�Ty0

±
, and the quantum critical regime,1 S�Td/z, see Fig. 1.

Using again the argument, that the competition between two
different ground states leads to an enhanced entropy close to
the QCP, we expect on physical grounds that the entropy as a
function of T decreases in the low-T regime at least as fast as
in the quantum critical regime. This implies that d /z�y0

± and
finally

Gr � 0 �13�

in both low-temperature regimes. There are examples of
critical theories with exponents d /z=y0, so that Gr=0, e.g.,
an insulating Heisenberg antiferromagnet with z=1 and y0
=d on the ordered side of the phase diagram or an itinerant
antiferromagnet with d=z=2 and y0=1. In the latter ex-
ample, logarithmic corrections ensure that the entropy at the
critical point is higher.1

In the low-temperature regime we can determine the criti-
cal isentropes explicitly by using the scaling result Eq. �8�.
We obtain for T� �r��z,

T�r�S � �r�−Gr. �14�

The isentrope behaves as a power law near the QCP with an
exponent given by Gr, Eq. �9�. A minimum of the isentrope
directly follows if Gr is negative.5

In the following we will give examples of two possible
scenarios. If the entropy landscape at finite temperature is
only determined by the zero-temperature transition we ex-
pect that the minima of the isentropes are located approxi-
mately above the QCP, i.e., at r�0. In this scenario, consid-
ered in Sec. III, the Grüneisen parameter and the magneto-
caloric effect change their sign near the critical pressure pc
and critical field Hc. If the QCP is however an endpoint of a
line of classical finite temperature transitions we expect that
the entropy landscape is distorted with the minima in the
vicinity of the critical temperature as sketched in Fig. 4. We
will show that the sign change of the Grüneisen parameter
then occurs within the Ginzburg region of the symmetric
phase. This scenario is considered in Sec. IV.

III. SIGN CHANGE OF � NEAR A QCP WITHOUT
ORDER AT FINITE T

A. Ising chain in a transverse field

A simple example of a QPT where the entropy landscape
is solely determined by the underlying QCP is provided by
the model of an Ising chain in a transverse field. The Ising
chain shows a QPT as a function of transverse magnetic field
H between a magnetic and a paramagnetic ground state. We
are interested in the behavior of the magnetocaloric effect
�12� near the critical field Hc, which was also considered in
Ref. 6. The continuum theory describing the transition is
given by �Majorana-� fermions with a relativistic spectrum7

�k = 	r2 + k2, �15�

where r�H−Hc. The important exponents of the critical
theory are z=d=�=1. Furthermore, the spectrum is gapped
away from the QCP which leads to a specific heat that decays
exponentially with temperature. The exponent y0

± appearing
in �9� can effectively be set to infinity on both sides of the
QCP, so that the prefactor in both low-temperature regimes
simplifies to

Gr = − �z = − 1. �16�

The thermodynamic quantities can be computed from the
free energy density

f�r,T� = − T

−

 dk

2�
ln�2 cosh

�k

2T
� . �17�

The isentropes near the critical field Hc are sketched in Fig.
2. Since the control parameter enters the free energy only
quadratically the entropy landscape is symmetric with re-
spect to the reflection r→−r. This symmetry is rooted in the
self-duality of the theory describing the QPT.8 This has the
consequence that in the case of the Ising chain the sign
change of the magnetocaloric effect occurs directly at r=0.
The self-duality symmetry thus causes the prefactor of the
divergence �7� to vanish in the quantum critical regime. The
resulting magnetocaloric effect is shown in Fig. 3 for a tem-
perature sweep at constant magnetic field and vice versa. In
the low-temperature regimes the magnetocaloric effect di-
verges with the universal prefactor �16� as is shown in the
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inset of Fig. 3�a�. The developing divergence combined with
a sign change leads to a strong signature of the magnetoca-
loric effect in the field sweep shown in Fig. 3�b�.

B. Experiments on metamagnetic quantum criticality

An especially interesting example of a QCP without an
associated finite-T phase transition are the so-called “meta-
magnetic quantum critical endpoints.”9 The QCP is here un-
derstood to be the endpoint, �Hc ,T*�, of a line of first order
transitions where the temperature T* is tuned to zero. As the
control parameter �i.e., the magnetic field� couples here lin-
early to the order parameter,9 the quantum-critical properties
of such systems differ in some aspects from the examples
considered in this paper—for a detailed discussion we refer
to Ref. 10. The notion of metamagnetic quantum criticality9

was originally motivated by experiments11,12 on Sr3Ru2O7.
The metamagnetic transition is sensitive to pressure and
magnetic field variations suggesting that both p and H can be
used as tuning parameters, r=r�p ,H�, and relations such as
Eq. �3� are expected to hold. In fact, the differential suscep-
tibility and magnetostriction nicely track each other13 near
the critical field, Hc�7.9T, confirming that pressure and
magnetic field variations probe indeed the same thermody-
namic information. The thermal expansion10 shows a change
of sign near the critical field indicating the accumulation of
entropy in the �H ,T� plane above H=Hc.

A metamagnetic anomaly of a different type but with
qualitative similar signatures is also observed in the heavy-
fermion compound CeRu2Si2.14,15 The thermal expansion as
a function of H again shows a pronounced sign change near
the metamagnetic field Hm�7.8T suggesting the vicinity to a
QCP. According to Eq. �8�, the zero-temperature limit of the
Grüneisen parameter is expected to diverge as �cr�T=0�
�1/ �H−Hc� which also seems to be compatible with experi-
mental observations, see Fig. 16 of Ref. 14.

IV. SIGN CHANGE OF � NEAR A QCP WITH ORDER AT
FINITE T

It is a common situation that the symmetry-broken phase
of the QPT extends to finite temperature, T. The QCP is then

in fact the endpoint of a line of classical transitions along
which derivatives of the free energy show a singular behav-
ior at a finite critical temperature Tc. Entropy is expected to
accumulate near the phase boundary and the entropy land-
scape is correspondingly distorted as shown in Fig. 4.

As a consequence, the Grüneisen parameter is expected to
change its sign near the critical temperature Tc. This is ob-
served, for example, in the heavy fermion compound
CeCu6−xAux �Ref. 16� and in the spin-gap compound
TlCuCl3.22 An especially nice example is the superconduct-
ing heavy fermion system URu2Si2. The thermal expansion
shows a pronounced jump at the superconducting transition
at Tc=1.18 K accompanied with a change of sign17 suggest-
ing the vicinity of an associated QCP. The superconducting
condensate of URu2Si2 forms in fact within a so-far uniden-
tified “hidden order” phase which can be suppressed by an
applied magnetic field of Hc�35.9T.18 Moreover, an addi-
tional reentrant phase is located in a magnetic field range of
H=36–39T. The magnetocaloric effect has been measured18

and the isentropes around the second order transition at H
�36T have a similar shape as in Fig. 4 with minima near the
critical temperature, Tc. Another example is the heavy-
fermion alloy U�Pt,Pd�3 where a Grüneisen parameter inver-
sion was also observed.19

As an illustration of such a scenario we will consider the
quantum phase transition of the dilute Bose gas. This ex-
ample will capture many features which we believe are ge-

FIG. 2. Sketch of the isentropes near the QCP of the Ising chain
in magnetic field with r�H−Hc. The entropy accumulates above
the QCP leading to a sign change of the magnetocaloric effect �12�
at r=0.

FIG. 3. Magnetocaloric effect �12� of the Ising chain near the
critical field Hc as a function of the control parameter r= �H
−Hc� /H0 for �a� a temperature sweep at constant magnetic field and
�b� a magnetic field sweep at constant temperature. As shown in the
inset, the saturation value in the low-T regime has the universal
prefactor, −Gr=�z=1.
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neric for a QCP with order at finite temperature. We assume
that the chemical potential is sensitive to pressure so that a
quantum phase transition can be induced by tuning the pres-
sure to a critical value pc. Moreover, for dimensions d�2 a
finite temperature transition is present which distorts the en-
tropy landscape in a manner as sketched in Fig. 4. The dilute
Bose gas is relevant for the field-driven QPT in the spin-gap
compounds which is interpreted as the Bose condensation of
magnons.20–25

The action of the dilute Bose gas has the form7

S��,�*� = 

0

�

d�
 ddr�*��,r�� �

��
− �2 − �0����,r�

+
u

2
����,r��4� . �18�

We will limit ourselves to a discussion of this model above
the upper critical dimension of the QPT, d+z�4 and there-
fore d�2, where the correlation length and the dynamical
exponent of the QPT are given by their Gaussian values,

� = 1
2 , z = 2. �19�

First let us consider the theory on the mean-field level,
however, including the one-loop correction to the chemical
potential. The Landau potential takes the form

VMF��,�*� = R���2 +
u

2
���4, �20�

where the effective mass R is temperature dependent as it is
renormalized by the critical fluctuations,

R = − �0 + 2u
 ddk

�2��d

1

2
coth� k2

2T
� = r − rcr�T� . �21�

In the last equation we introduced the control parameter r
given in terms of the renormalized zero-temperature chemi-
cal potential, r�−�=−�0+u��ddk / �2��d�. If the QCP is
sensitive to pressure changes, r can be linearized in the ap-
plied pressure, r= �p− pc� / p0 �assuming a finite magnetic
field in the case of critical spin-gap compounds25�, see Eq.
�1�. The phase transition occurs when the mass vanishes, R
=0. The phase boundary in the plane �r ,T� is thus given by7

rcr�T� = −
��d/2�

2d−1�d/2uT1/�, �22�

where the exponent reads 1/�= �d+z−2� /z=d /2. Note that
the temperature dependence of the phase boundary, Tc� �pc

− p��, is due to the dangerously irrelevant quartic coupling u.
Above the upper critical dimension, d+z�4, irrelevant

couplings will in general invalidate the simple scaling form
of the critical free energy density given in Eq. �5�. In the
present example the dependence on the quartic coupling, u,
must be incorporated into a generalized scaling form

f�r,T,u� = b−�d+z�f�rb1/�,Tbz,ubd+z−4� . �23�

The dependence on u may spoil the predictions for the Grü-
neisen parameter drawn from Eq. �5�. This is, for example,
the case within the wedge of the Ginzburg region indicated
in Fig. 4 which contains the phase boundary. Bearing this in
mind we now go beyond the mean field treatment by includ-
ing the contribution of fluctuations in the free energy density.

A. Gaussian approximation

Depending on the regime in the phase-diagram plane, Fig.
4, the physics of the dilute Bose gas is determined by differ-
ent fixed points.26

In the low-temperature regime I� within the symmetry-
broken phase, T�−r, the physics of the Grüneisen parameter
will be controlled by the Goldstone modes; an expansion
around the Gaussian theory in the quartic coupling u is
plagued with IR divergencies in this regime indicating the
crossover to the stable Goldstone fixed point.26–28 This re-
gime is conveniently treated by decomposing the fluctuations
into massive amplitude- and gapless phase modes. The ther-
modynamics will be determined by the phase modes leading
to a specific heat which decreases in temperature as Cp

��T /	−r�y0
−

with y0
−=d. The prefactor, Gr, of the Grüneisen

divergence �8� is here given by

− Gr− = −
��d − zy0

−�
y0

− =
1

2
. �24�

On the other hand, the thermodynamics in the low-
temperature regime I within the symmetric phase, T�r, is
determined by the Gaussian fluctuations around the T=0
theory. The specific heat decreases exponentially with tem-
perature, Cp�rd/2�r /T�1/2e−r/T, reflecting the gap in the fluc-
tuation spectrum. Correspondingly, in this regime the prefac-
tor Gr is given by

FIG. 4. �Color online� Sketch of a phase diagram with a
symmetry-broken phase extended to finite temperature; here the
QCP is the endpoint of a line of classical second order transitions.
The minima of the isentropes, which identify the position of the
sign change of the Grüneisen parameter, are located within the
Ginzburg regime in the symmetric phase. Furthermore, in the
Ginzburg regime the isentrope tend to nestle to the phase boundary
as explained in the main text. For later reference the different re-
gimes were labeled as I / I� low-temperature regime, T� �r��z, and
II/ II� quantum critical regime, T
 �r��z, in the symmetric/ordered
phase, and III the Ginzburg regime that houses the phase boundary,
Tc��−r��.
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� − Gr�+ = �z = 1. �25�

The most interesting regime for our discussion is the
quantum critical regime, T
 �r�. Here thermodynamics is al-
most always �in regions indicated as II and II�� dominated by
ideal gas behavior with a specific heat, Cp�T d/2 and thermal
expansion 	�T d/2−1. Only sufficiently near the classical
critical transition in regime III, thermodynamics will be con-
trolled by the classical critical fixed point which for the di-
lute Bose gas belongs to the XY-universality class. This
crossover occurs at the Ginzburg temperature when the Gin-
zburg parameter is of order one,

G � uT�R��d−4�/2 = O�1� . �26�

Note that the effective classical quartic coupling is given by
uT. The description of the classical critical properties within
this Ginzburg regime is beyond the simple approximation
scheme employed here. It is within the Ginzburg regime
where the thermal expansion and the Grüneisen parameter
change sign. However, as we will explain in detail below the
sign change is not a property associated to classical critical-
ity but is rather to be attributed to the underlying quantum
phase transition. The sign change is a property of the quan-
tum critical background on which the classical singularities
develop.

For its description we will evoke a Gaussian approxima-
tion which captures the correct thermodynamics in the quan-
tum critical regime, T
 �r�, except in the Ginzburg region
where it will fail yielding singularities with wrong Gaussian
exponents. In the quantum critical regime within the sym-
metric phase the Gaussian fluctuations determine the free
energy density

f+ = T
 ddk

�2��d ln1 − exp�−
R�r,T� + k2

T
�� . �27�

For the following it will be crucial that here and in Eq. �28�
the temperature dependent mass R�r ,T� enters, see Eq. �21�,
which measures the distance from the classical transition.
Note that in Eq. �21� we have set R=0 on the right-hand side,
using only critical fluctuations when computing the mass
renormalization. For our discussion it is essential that this
approximation is justified outside of the Ginzburg regime, as
corrections are of order of the Ginzburg parameter, �R /R
=O�G�. Outside the Ginzburg regime, we therefore obtain
similar results as other approximation schemes like the self-
consistent Hartree-Fock or the Popov approximation. Those
approximations have, however, the disadvantage that they
wrongly predict a first-order transition29,30 within the Gin-
zburg regime, while our approximation describes a second-
order phase transition with Gaussian �and therefore wrong�
critical exponents.

In the symmetry-broken phase the field fluctuates around
the solution of the mean-field potential �20�. The condensate
then attains the finite value, ���2=−R /u, and contributes to
the free energy. The fluctuations around the finite condensate
have the Bogoliubov spectrum,

f− =
R�R − 2r�

2u
+ T
 ddk

�2��d

�ln1 − exp�−
	k2�− 2R + k2�

T
�� . �28�

Note that by virtue of �21� the resulting entropy derived
within this Gaussian approximation is indeed continuous at
the critical temperature as is appropriate for a second order
phase transition.

The temperature dependence of the free energies, �27� and
�28�, is twofold, there is an explicit T-dependence and an
implicit dependence via the effective mass R=R�r ,T�. In the
following it will be useful to distinguish between a quantum
critical and a classical critical contribution to thermodynam-
ics. We will define the quantum critical contribution to be the
one which derives from the explicit temperature dependence
of the free energies. The classical contribution to thermody-
namics will arise from the implicit T-dependence via the
effective mass R�r ,T� which is induced by the dangerously
irrelevant quartic coupling u, see Eq. �22�. This latter contri-
bution will dominate thermodynamics near the classical tran-
sition since near Tc the free energy is very sensitive to varia-
tion of R.

To illustrate this point let us rewrite the free energy den-
sities �27� and �28�,

f± = �±�r,R� + T�d+z�/zF±�RT−1/��z�� , �29�

where �+=0 and �−�r ,R�= �R�R−2r�� / �2u� is the contribu-
tion from the condensate. The part of the free energies that
depends explicitly on temperature obeys scaling with z
=1/�=2 and the scaling functions

F±�x� =
Kd

2



0



dt t�d−2�/2 ln�1 − e−�±�t,x�� , �30�

where Kd
−1=2d−1�d/2��d /2� and

�+�t,x� = t + x, �−�t,x� = 	t�t − 2x� . �31�

The Gaussian approximation yields an expression for the
free energy density which conforms to the general scaling
form �23�. The dependence on the quartic coupling, u, how-
ever appears only via the thermal renormalization of the
mass R=R�r ,T�. Apart from this implicit temperature depen-
dence induced by the dangerously irrelevant quartic cou-
pling, u, the expression �29� resembles the quantum critical
scaling form �5�. Thermodynamic contributions that only de-
rive from the explicit temperature dependence will therefore
conform with the results obtained from Eq. �5�. In this sense
it is appropriate to call these contributions quantum critical.
The implicit temperature dependence via R=R�r ,T� results
in additional classical contributions to thermodynamics
which are subleading except in the Ginzburg regime where
the Gaussian approximation breaks down. The purpose of
including the thermal renormalization of the mass is to en-
sure the correct threshold behavior at Tc. The sign change of
R�r ,T� across the phase transition will reflect itself in a sign
change of the Grüneisen parameter. This sign change persists
even outside the Ginzburg region as is explained below.
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B. Sign change of the Grüneisen parameter

We will show in the following that the sign change of the
Grüneisen parameter stems from the quantum critical contri-
bution to the thermal expansion and is in fact a property of
the functions F±. Consider the contribution to the thermal
expansion at the critical temperature Tc deriving from the
explicit temperature dependence,

	QCP
± �

1

Vmp0
lim
R→0

�2

�R � T
f±

=
1

Vmp0

��d + z� − 1

�z
Tc

��d−1�/�zF±��0� . �32�

Although the scaling function itself is continuous at the
phase transition, F+�0�=F−�0�, its derivative is not. In our
specific example we have

F+��0� = − F−��0� , �33�

i.e., the quantum critical contribution to the thermal expan-
sion is discontinuous and changes sign at the phase transi-
tion. Note that the quantum critical contribution to the spe-
cific heat is smooth at Tc.

Making use of Eq. �21�, the associated anomaly in the
thermal expansion, �	QCP�	QCP

+ −	QCP
− , can be related to

the derivative of the phase boundary,

�	QCP = −
1

Vmp0

1

u
� �rcr�T�

�T
�

R=0
= −

1

Vmp0
2u
�dTc

dp
�−1

.

�34�

The same anomaly follows also from the renormalized
mean-field potential �20�. In this sense the anomaly �	QCP
and the resulting sudden sign change of the Grüneisen pa-
rameter near Tc can be interpreted as a finite temperature
manifestation of the mean-field character of the underlying
quantum phase transition. Although the sharp jump will be
smeared out by the classical critical fluctuations in spatial
dimensions d�4, the smearing is confined to the Ginzburg
regime which is vanishingly small near the QCP. A pro-
nounced jump near Tc in the thermal expansion and in the
Grüneisen parameter with an accompanying sign change will
result.

The smearing of the jump will also shift the exact position
of the sign change away from the critical temperature Tc. In
the following we will argue that this shift is towards the
symmetric phase.

C. Location of the sign change

Where is the position of the sign change and hence the
minima of the isentropes exactly located? Let us first give
some general arguments. Let us consider the behavior of the
entropy upon approaching the phase boundary from the or-
dered phase, see Fig. 4. The entropy attributed to the QCP
increases when the phase boundary is approached from the
ordered side by increasing the control parameter, �S /
�r�T�Tc

�0. When we enter the Ginzburg regime the change
in entropy becomes dominated by the finite temperature

phase transition. The symmetric phase can be entered by
either increasing control parameter r or temperature T. How-
ever, within the Ginzburg regime the tuning of r, i.e., pres-
sure or temperature have the same effect since both param-
eters couple to the same relevant operator of the classical
transition. Since the entropy always increases as a function
of temperature we also have �S /�r�T=Tc

�0. The entropy as a
function of r should therefore attain its maximum, �S /�r
=0, above the critical temperature Tc. As a consequence, it
follows that the sign change of the thermal expansion and the
Grüneisen parameter should occur within the symmetric
phase.

We can obtain an explicit expression for the Grüneisen
parameter at the critical temperature, Tc, when the specific
heat is sufficiently singular at the classical second order
phase transition. The derivation follows standard arguments.4

Near the finite temperature transition the singular part of the
molar entropy can be written in the form

SCL = SCL�T − Tc�p�,p� . �35�

Near the critical temperature, the leading contribution to the
thermal expansion will derive from the pressure dependence
of the first argument. We thus obtain for the critical thermal
expansion

Vm	cr � − � �SCL

�p
�

T

�
�SCL

�T

dTc

dp
�

Ccr

Tc

dTc

dp
. �36�

If the classical critical contribution is sufficiently singular
such that the background contribution can be neglected the
Grüneisen parameter at Tc is just given by the slope of the
phase boundary,

��T = Tc� =
1

VmTc

dTc

dp
= − � �

Vm�pc − p�
�

T=Tc�p�
. �37�

In the last equation we made use of Tc� �pc− p��. The nega-
tive slope of the phase boundary, i.e., the suppression of Tc
with increasing pressure, r= �p− pc� / p0, as depicted in Fig. 4,
results in a negative Grüneisen parameter at the critical tem-
perature, ��T=Tc��0. The Grüneisen parameter thus has the
same sign at the critical temperature as in the ordered phase.
We again find that the sign change must occur within the
symmetric phase.

In order to locate the sign change we consider the thermal
expansion of the dilute Bose gas within the symmetric phase.
The quantum critical contribution reads

	QCP =
1

Vmp0

�2f+�R�r,T�,T�
�R � T

=
1

2uVmp0

�R

�T
�1 + O�uTR�d−4�/2�� . �38�

In addition to 	QCP, the implicit temperature dependence via
the effective mass, R, yields a classical contribution

	CL =
1

Vmp0

�2f+�R�r,T�,T�
�R2

�R

�T
. �39�

We obtain for their ratio
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0 �
	CL

	QCP
� 2u

�2f+

�R2 = O�uTR�d−4�/2� . �40�

The classical part of the thermal expansion has a sign oppo-
site to the part attributed to the QCP. The classical part there-
fore reduces the contribution 	QCP upon approaching the
phase boundary from the symmetric phase. This finally leads
to the sought-after sign change. The two contributions are of
the same order when the Ginzburg criterion �26� is fulfilled.
The position of the sign change of the Grüneisen parameter
is hence located within the Ginzburg regime of the classical
finite temperature transition. Sufficiently near the QCP the
Ginzburg regime is vanishingly small so that the position of
the sign change of � almost coincides with the critical tem-
perature Tc�p�.

The temperature evolution of the specific heat, thermal
expansion and the Grüneisen parameter is shown in Fig. 5.
The control parameter has been chosen negative such that the
critical temperature is crossed during the temperature sweep.
The temperature region shown in Fig. 5 corresponds to the
quantum critical regime, �r��T1/��z�, where the expressions
�27� and �28� for the free energy are applicable. In this re-
gime the Grüneisen parameter is determined by temperature
and obeys the scaling form �7�. Since we have �z=1 it be-
haves as ��1/T. The curve follows this behavior except
within the small Ginzburg regime where the Grüneisen pa-
rameter strikingly changes its sign and forms a sharp peak at
the critical temperature. Since within our Gaussian approxi-
mation the classical critical specific heat is divergent with the
Gaussian exponent, 	Gauss=2−d /2�0, the peak value is
given by Eq. �37�, where for the dilute Bose gas we have
�=2/d. In particular, at the phase transition the Grüneisen

parameter is now determined by the distance to the QCP, p
− pc. Since the phase boundary is located well inside the
quantum critical regime, T
 �p− pc�, where � is usually de-
termined by temperature, ��1/T, the Grüneisen parameter
is strongly enhanced at Tc. The crossover to this enhanced
value occurs within the narrow Ginzburg regime leading to a
peak structure at Tc. The peak of � at the critical temperature
manifests itself in an additional tilt of the isentropes within
the Ginzburg regime as sketched in Fig. 4. Indeed, remem-
bering that the Grüneisen parameter just measures the slope
of the isentropes, Eq. �11�, it follows from expression �37�
that the isentrope locally follows the phase boundary at Tc.

The well-pronounced peak of the Grüneisen parameter at
Tc is only expected for a sufficiently singular classical criti-
cal specific heat such that relation �37� holds. The Gaussian
approximation employed here overestimates the classical
critical specific heat exponent of the dilute Bose gas. In fact,
the specific heat exponent of the d=3 XY-universality class
is negative, i.e., the specific heat is not divergent at Tc. Nev-
ertheless, we still expect it to dominate over the quantum
critical background such that a narrow peak in � should
evolve at Tc.

As can be seen in the inset of Fig. 5, near the QCP the
anomaly in the specific heat, �Cp, near Tc is small in com-
parison with the one in the thermal expansion, �	. This is
expected since the large anomaly in the thermal expansion is
attributed to the quantum critical point, �	=�	QCP, see Eq.
�34�, whereas the anomaly of the specific heat originates
only from the classical contribution to thermodynamics due
to the temperature dependence induced in the effective mass,
R, by the dangerously irrelevant quartic coupling, u.

This is also in agreement with the Ehrenfest relation4

which compares the size of the anomalies, i.e., the jumps in
thermal expansion and specific heat at the classical transition
that derive from the mean-field potential �20�,

�	

�Cp
=

1

Vm

d ln Tc�p�
dp

= � �

Vm�p − pc�
�

T=Tc�p�
� 0. �41�

In the second equation we made again use of Eq. �22�. As the
quantum critical point is approached the relative size of the
anomalies is expected to diverge as �1/ �p− pc� resulting in a
dominant anomaly in the thermal expansion. Note that al-
though it has the same functional form as Eq. �37� the Ehren-
fest relation contains different information. In particular, the
Ehrenfest relation does not discuss the absolute size of the
Grüneisen parameter �.

At low temperatures the Grüneisen parameter will even-
tually saturate after crossing over into the low-temperature
regime I� �not shown� and converges to a value now given
by Eq. �8�. The behavior of the thermal expansion and the
Grüneisen parameter in the various regimes of the phase dia-
gram are summarized in Figs. 6 and 7.

FIG. 5. �Color online� Grüneisen parameter of the dilute Bose
gas as a function of temperature in dimension d=3 as derived from
the Gaussian approximation to the free energy, �27� and �28�. The
sign change occurs near the classical transition. The shaded area
indicates the Ginzburg regime where the employed Gaussian ap-
proximation breaks down. The inset shows the temperature evolu-
tion of the specific heat coefficient and the thermal expansion. The
value of the control parameter was chosen r=−0.001, temperature is
shown in dimensionless units and the quartic coupling has been set
to u=1.
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V. SUMMARY

The Grüneisen parameter, �, and the magnetocaloric ef-
fect change sign near generic quantum critical points. We
showed that the position of the sign change indicates the
accumulation of entropy in the phase diagram. Two scenarios
have been distinguished, a QCP with and without a symme-
try broken phase at finite temperature. For the latter, treated
in Sec. III, the sign change is expected to be located near the
critical value of the control parameter, e.g., near the critical
pressure pc. We discussed two examples where such a sce-
nario is realized, the Ising chain in a transverse field and
metamagnetic quantum critical materials.

An overview of our main results for the second scenario,
where a symmetry-broken phase at finite T is present, is
given in Figs. 6 and 7. While explicit calculations have been
performed for a QPT of the dilute Bose gas, we expect that
all of our qualitative results are equally valid for other quan-
tum phase transitions where the control parameter couples
quadratically to the order parameter. Note that the exponents
for � in Fig. 7 were obtained by considering the ratio of the
critical parts of thermal expansion and specific heat; for com-
parison with experiments a possible noncritical background
contribution might have to be subtracted, cf. discussion in
Ref. 1. Most interesting is a situation where one investigates
the behavior on the ordered side of the phase diagram close
to the QCP. Upon lowering temperature one crosses accord-
ing to Fig. 4 four different regimes.

In regime II one observes the usual power laws in thermal
expansion and Grüneisen parameter �or equivalently magne-
tocaloric effect� which are associated to the quantum-critical
part of the phase diagram. The main result of our paper is the
characteristic jump of thermal expansion and Grüneisen
parameter in the Ginzburg regime located slightly above
the classical phase transition. The jump in � proportional
to 1/ �pc− p��/��z�, where � characterizes the form of the

phase boundary, Tc� �pc− p��, gets more and more pro-
nounced upon approaching the QCP. If the classical specific
heat is diverging, there is also a sharp maximum in � at Tc
with the universal value ��Tc�=� / �Vm�p− pc��. In situations
where the classical specific heat is not so singular, a peak can
still occur but a lower maximal value is expected. In the
ordered phase outside of the Ginzburg regime, i.e., in regime
II�, the Grüneisen parameter increases again as in II but with
an opposite sign as the system is located on the other side of
the phase transition. Finally, at lowest temperatures � satu-
rates at a universal value given by Eq. �8�. For a magnetic-
field tuned quantum phase transition an analogous behavior
is expected for the magnetocaloric effect �12�. In cases where
the QCP is below its upper critical dimension, one has �
=�z and region II� is absent.

It is an interesting open question how the above results
are modified for quantum phase transitions which involve
different types of fluctuations possibly characterized by dif-
ferent time scales as, for example, in the case of itinerant
ferromagnetism.31,32

To summarize, the divergence of the Grüneisen parameter
and magnetocaloric effect1 near a QCP in combination with
their sign change result in very strong signatures. They are
thus important thermodynamic probes to detect and classify
QCPs.
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FIG. 6. �Color online� Sketch of the thermal expansion coeffi-
cient, 	 /T, in different regimes of the phase diagram in Fig. 4 for a
QPT above its upper critical dimension, d+z�4. The thermal ex-
pansion changes sign near the critical temperature Tc. The exponent
	 is the specific heat exponent of the classical transition and y0

− is
determined by the spectrum of low-lying excitations in regime I�.

FIG. 7. �Color online� Sketch of the Grüneisen parameter, � �or
equivalently of the magnetocaloric effect in the case of a field-
driven transition� in different regimes of the phase diagram in Fig. 4
for a pressuretuned QPT, r� p− pc, above its upper critical dimen-
sion, d+z�4, where �=1/2 and �=z / �d+z−2�; Gr is defined in
Eq. �9�. Near the classical critical transition � changes its sign in a
characteristic jump. The peak at the critical temperature, Tc� �pc

− p��, is present if the specific heat is sufficiently singular at Tc, see
Eq. �37�. The intermediate regime II� vanishes in the limit d+z
→4+.
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