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We investigate the role of the bandwidth difference in the Mott metal-insulator transition of a two-band
Hubbard model in the limit of infinite dimensions by means of a Gutzwiller variational wave function as well
as by dynamical mean-field theory. The variational calculation predicts a two-stage quenching of the charge
degrees of freedom, in which the narrower band undergoes a Mott transition before the wider one, both in the
presence and in the absence of a Hund’s exchange coupling. However, this scenario is not fully confirmed by
the dynamical mean-field theory calculation, which shows that, although the quasiparticle residue of the
narrower band is zero within our numerical accuracy, low-energy spectral weight still exists inside the Mott-
Hubbard gap, concentrated into two peaks symmetric around the chemical potential. This spectral weight
vanishes only when the wider band ceases to conduct too. Although our results are compatible with several
scenarios—e.g., a narrow-gap semiconductor or a semimetal—we argue that the most plausible one is that the
two peaks coexist with a narrow resonance tied at the chemical potential, with a spectral weight below our
numerical accuracy. This quasiparticle resonance is expected to vanish when the wider band undergoes the
Mott transition.
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I. INTRODUCTION

Unlike in single-band models, the Mott metal-insulator
transition �MIT� in multiorbital strongly correlated systems
generically involves other energy scales besides the short-
range Coulomb repulsion U and the bare electron bandwidth.
They include, for instance, the Coulomb exchange J which
produces the Hund’s rules, any crystal field or Jahn-Teller
effect splitting the orbital degeneracy, and possibly band-
width differences between the orbitals. There are many the-
oretical works making use of dynamical mean-field theory1

�DMFT� which analyze the role of the exchange J,2 the crys-
tal field splitting,3 and the Jahn-Teller effect.4,5 All these
analyses suggest that these perturbations, which have the
common feature of splitting multiplets at fixed charge, are
amplified near the MIT, leading, for instance, to an appre-
ciable shift of the transition towards lower U’s �Ref. 2� or to
the appearance of anomalous phases just before the MIT.5

This behavior is not surprising, since the more the electronic
motion is slowed down—i.e., the longer is the time electrons
stay localized around a site—the larger is the chance to get
advantage of multiplet-splitting mechanisms.

On the contrary, the role of different bandwidths for
nearly degenerate orbitals is less predictable, since the Cou-
lomb charge repulsion only cares about the total number of
electrons at a given site, while it is not concerned with the
orbital they sit in. Recently, this issue has been addressed in
a two-band Hubbard model by DMFT, yet leading to contro-
versial results. Liebsch has argued, on the basis of a DMFT
calculation using quantum Monte Carlo at finite temperature
as impurity solver, that for not too different bandwidths the
two orbitals undergo a common MIT at zero temperature.6,7

Other recent developments by Koga and co-workers8 have
shown, using exact diagonalization instead of quantum
Monte Carlo calculations, that if one considers the full

Hund’s coupling, there are two distinct MIT’s: there is a first
transition at which the orbital with smaller bandwidth be-
comes insulating, followed at larger values of the interaction
by a second transition at which the other orbital ceases to
conduct as well. This two-stage quenching of the charge de-
grees of freedom has been named the orbital-selective Mott
transition �OSMT� by those authors. Further calculations by
Koga and co-workers9 also indicate that an Ising-like aniso-
tropy �without a pair-hopping and exchange term� in the
Coulomb exchange tends to favor a single transition, which
might explain the apparent contradiction between their T=0
exact diagonalization results and Liebsch’s quantum Monte
Carlo results extrapolated at T=0.

However, these two scenarios could be consistent. Indeed,
the results obtained by Liebsch, using an Ising-like Hund’s
coupling, showed two distinct transitions at finite tempera-
ture T, which were merging into a single one as T was ex-
trapolated to zero. Moreover, the results of Koga et al.9 seem
to indicate that a Ising-like coupling rather than a full Hund’s
coupling tends to favor a single transition.

Although the coexistence of localized f electrons and itin-
erant d electrons is not unusual in rare-earth compounds, the
conclusions of Ref. 8 are a bit surprising in the case of de-
generate orbitals. Indeed, the Coulomb exchange splitting,
rather than favoring an OSMT, should naively oppose it,
since J competes against the angular momentum quenching
due to the different bandwidths.

In this work, we attempt to clarify this issue by means of
a variational analysis based on Gutzwiller wave functions by
standard DMFT calculations as well as by an approximate
DMFT projective technique. The paper is organized as fol-
lows. In Sec. II, we introduce the two-band model and dis-
cuss general properties. In Sec. III, we apply a variational
technique based on Gutzwiller-type trial wave functions to
analyze the ground state of the Hamiltonian. A full DMFT
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analysis is presented in Sec. IV. As a guide to interpret the
DMFT spectral functions, in Sec. V, we show the density of
state obtained by the numerical renormalization group of
Krishna-murthy et al.10 of the Anderson impurity model onto
which the lattice model maps within DMFT. In Sec. VI, we
present an approximate DMFT solution obtained by project-
ing out self-consistently high-energy degrees of freedom,
which allows a better low-energy description. Conclusions
are drawn in Sec. VII.

II. MODEL

We consider a two-band Hubbard model at half-filling
described by the Hamiltonian

H = − �
�i,j�,�

�
a=1

2

taf i,a�
† f j,a� + H.c. + �U

2
+

J

3
��

i

�ni − 2�2

+ Hexch, �1�

where f i,a�
† creates an electron at site i in orbital a=1,2 with

spin �, nia=��f i,a�
† f i,a� is the occupation number at site i in

orbital a, and ni=ni1+ni2 is the total occupation number. The
explicit expression of the Coulomb exchange Hexch is

Hexch =
J

2�
i

�ni1 − ni2�2 +
J

2�
i

�
�,��

f i,1�
† f i,1��

† f i,2��f i,2� + H.c.

+
J

2 �
�,��

f i,1�
† f i,2�f i,2��

† f i,1�� + �1 ↔ 2� �2�

�2J�
i

�Tix
2 + Tiz

2 � , �3�

where

Ti� =
1

2�
a,b

�
�

f i,a�
† �ab

� f i,b� �4�

are pseudo-spin-1 /2 operators, with �� the Pauli matrices,
�=x ,y ,z. Note that the term J�i�ni−2�2 /3 in Eq. �1� has
been introduced so that the center of gravity of the electronic
configurations at fixed charge ni does not depend on J and is
simply U�i�ni−2�2 /2. In what follows, we always take 0
� t2� t1. Let us start by discussing some general properties
of this Hamiltonian.

If U� t1, the model describes a Mott insulator in which
two electrons localize on each site. For J�0, the atomic
two-electron ground state is the spin triplet, followed at en-
ergy 2J by the two degenerate singlets �we drop the site
index�

	1

2
�f1↑

† f2↓
† + f2↑

† f1↓
† �
0�, 	1

2
�f1↑

† f1↓
† − f2↑

† f2↓
† �
0�

and, finally, at energy 4J by the singlet

	1

2
�f1↑

† f1↓
† + f2↑

† f2↓
† �
0� .

Hence, the Mott insulator for very large U, specifically
t1
2 /U	J, is effectively a spin-1 Heisenberg model where, at

any site, each orbital is occupied by one electron, the two
electrons being bound into a spin-triplet configuration.
Within the OSMT scenario, below some critical repulsion,
defined in the following as U1, electrons in orbital 1 start
moving, while one electron per site remains localized in or-
bital 2. Only below a lower U2�U1, electrons in orbital 2
delocalize too. In this particular example with a half-filled
shell, the Coulomb exchange does not conflict with the
OSMT, since Hexch favors single occupancy of each orbital.
Yet one may wonder about the role of the pair-hopping term
�2� which can transfer electrons from the delocalized orbital
to the localized one.

III. GUTZWILLER VARIATIONAL TECHNIQUE

Let us start by a variational analysis of the ground state of
the Hamiltonian �1�. In particular, we are going to use the
Gutzwiller variational approach, which is one of the simplest
ways to include electronic correlations into a many-body
wave function. In what follows, we briefly introduce this
variational technique for a generic multiorbital model, and
later we apply it to our specific example.

Let us consider in general a k-orbital Hamiltonian that
contains, besides the hopping term

H0 = − �
�i,j�,�

�
a=1

k

taf i,a�
† f j,a� + H.c., �5�

an on-site interaction of the general form

Hint = �
i

�
n,


U�n,
�Pi�n,
� , �6�

where Pi�n ,
�= 
i ;n ,
��i ;n ,

 is the projector operator onto
the site-i configuration 
 with n electrons. If 
�0� is the
Fermi-sea Slater determinant of the noninteracting Hamil-
tonian, the Gutzwiller wave function 
�� is defined through


�� = PG
�0� = �
i

PiG
�0� , �7�

where the operator PiG acts on site i and is given by

PiG = �
n,


�n
Pi�n,
� . �8�

The �n
’s in Eq. �8� are variational parameters which modify
the weights of the on-site configurations 
i ;n ,
� in accor-
dance with the interaction �6�. Following Ref. 11, we as-
sume, without loss of generality,12 that

��0
PiG
2 
�0� = ��0
�0� = 1, �9�

��0
PiG
2 f i,a�

† f i,b��
�0� = ��0
f i,a�
† f i,b��
�0� =

N

2k
ab���, �10�

where N is the average occupation per site within the Fermi
sea, in which all orbitals are equally occupied by our choice
of the hopping term �5�. These two conditions allow an ana-
lytic evaluation of any average value over the correlated
wave function in infinite dimensions.11 In particular, one can
show that Eq. �9� is satisfied by
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�n

2 =

P�n,
�
P�0��n,
�

, �11�

where

P�n,
� = ��
Pi�n,
�
�� �12�

is the correlated probability distribution of the on-site con-
figuration 
 with n electrons and

P�0��n,
� = ��0
Pi�n,
�
�0� �13�

is the uncorrelated one. Therefore, rather than using the
variational parameters �n
’s, one can directly work with the
correlated probability distribution P�n ,
� which satisfies

�
n,


P�n,
� = 1,�
n,


nP�n,
� = N .

By the above definitions, one can demonstrate11 that the av-
erage value of the hopping in infinite dimensions reduces to

��
f i,a�
† f j,a�
�� = ��0
PiGf i,a�

† PiGP jGf j,a�P jG
�0�

= Za��0
f i,a�
† f j,a�
�0� , �14�

where the reduction factor Za can be evaluated through

	Za =
2k

N
��0
PiGf i,��

† PiGf i,��
�0� . �15�

In addition, the average value of the on-site interaction is
found to be

��
Hint
�� = �
i

�
n,


U�n,
�P�n,
� . �16�

A. Results for J=0

Let us apply this technique to our model �1�, starting with
the simpler case where J=0. We define as P�0� and P�4� the
correlated probabilities of a site occupied by zero and four
electrons, respectively. P�1, + � and P�1,−� are instead the
probabilities of a singly occupied site with one electron in
orbitals 2 and 1, respectively. Analogously, P�3, + � and
P�3,−� are the probabilities of a site occupied by three elec-
trons, with one hole in orbital 1 or 2, respectively. Finally,
concerning doubly occupied sites, P�2,1� is the probability
of the spin-triplet configuration, P�2,0� of the interorbital
spin singlet, and P�2, + � and P�2,−� of the spin singlets with
two electrons in orbitals 2 and 1, respectively. By particle-
hole symmetry, we have that

P�0� = P�4� ,

P�1, + � = P�3,− � ,

P�1,− � = P�3, + � ,

P�2, + � = P�2,− � .

After some simple, but lengthy algebra, we find that the hop-
ping energy reduction factors are

	Z1 = 2	2	P�0�P�1,− � + 	2	P�1,− �P�2,− �

+ 	2	P�1,− �P�2, + � + 	2	P�1, + �P�2,0�

+ 	6	P�1, + �P�2,1� ,

	Z2 = 2	2	P�0�P�1, + � + 	2	P�1, + �P�2, + �

+ 	2	P�1, + �P�2,− � + 	2	P�1,− �P�2,0�

+ 	6	P�1,− �P�2,1� .

Since J=0, the two-electron configurations with one electron
in each orbital are equally probable: namely, P�2,1�
=3P�2,0�. Therefore, one can use the parametrization

P�1, + � = P�1�cos2 � ,

P�1,− � = P�1�sin2 � ,

P�2,1� = P�2�
3

4
cos2 � ,

P�2,0� = P�2�
1

4
cos2 � ,

P�2, + � = P�2,− � = P�2�
1

2
sin2 � .

The normalization condition now reads

2P�0� + 2P�1� + P�2� = 1, �17�

and the Z-reduction factors can be written as

	Z1 = 2	2 sin �	P�0�P�1� + 	P�1�P�2��2 sin � sin �

+ 	8 cos � cos � ,

	Z2 = 2	2 cos �	P�0�P�1� + 	P�1�P�2��2 cos � sin �

+ 	8 sin � cos � .

If we define

T =
1

V
��0
 �

�i,j�,�
f i,1�

† f j,1� + H.c.
�0� =
1

V
��0
 �

�i,j�,�
f i,2�

† f j,2�

+ H.c.
�0� ,

the average value per site of the hopping operator in the
Fermi sea, then the variational energy of the Gutzwiller wave
function in infinite dimensions is

E = − t1TZ1 − t2TZ2 + UP�1� + 4UP�0� . �18�

Here, the Zi’s are functionals of the probability distribution
P�n�, n=0,1 ,2, with the normalization �17�, as well as of the
two angles � ,�� �0,� /2.

One can proceed analytically a bit further. It is known that
near a Mott transition and within the Gutzwiller wave func-
tion approach, one can safely neglect P�0�= P�4�.12 Within
this approximation, P�2�=1−2P�1� and
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	Z1 = 	P�1�P�2��2 sin � sin � + 	8 cos � cos � ,

	Z2 = 	P�1�P�2��2 cos � sin � + 	8 sin � cos � .

We denote P�1�=d /2, hence P�2�=1−d, so that the varia-
tional energy �18� becomes

E = − T
d�1 − d�

2
f��,�� +

U

2
d ,

where

f��,�� = t1�2 sin � sin � + 	8 cos � cos �2 + t2�2 cos � sin �

+ 	8 sin � cos �2.

The optimal value for d is

d* =
Tf��,�� − U

2Tf��,��
,

and the variational energy becomes

E��,� = −
�Tf��,�� − U2

8Tf��,��
.

At given � and �, the Mott transition at which both orbitals
localize occurs when d*=0: namely, when

Uc��,�� = Tf��,�� .

The most stable solution is the one which maximizes f . An
OSMT corresponds to a situation in which the Mott transi-
tion occurs with orbital 2 being already strictly singly occu-
pied: namely, with �=�=0. This solution is an extremum of
f . Yet one has to check whether it is also a maximum. We
find that this is indeed the case whenever

t2 �
1

5
t1. �19�

Therefore, within the Gutzwiller variational technique, an
OSMT can occur even in the absence of Coulomb exchange,
provided �19� is satisfied.

We optimized Eq. �18� numerically, considering an infi-
nite coordination Bethe lattice at half-filling. The free density
of state is given by

�a��� =
	4ta

2 − �2

2�ta
2 , �20�

and, in this case, T=8/ �3��. The half-bandwidth of each
band is Da=2ta, and our unit of energy is D1. The reduction
factors Z1 and Z2 are shown in Fig. 1 for different ratios
D2 /D1. The results indeed confirm the analytical calculation
�19�, displaying two distinct transitions when D2 /D1�0.20.

B. Results for JÅ0

Let us now move to the more complicated case of J�0.
The Hund’s rule coupling acts only within the two-electron
configurations and can be written as

HJ = �
i

−
4

3
J
i;2,1��i;2,1
 +

2

3
J
i;2,0��i;2,0


+
5

3
J�
i;2, + ��i;2, + 
 + 
i;2,− ��i;2,− 
�

+ J�
i;2, + ��i;2,− 
 + 
i;2,− ��i;2, + 
� , �21�

using the previous notation for the two-electron configura-
tions. Since it is not diagonal in the representation which we
have used so far, we are forced to generalize the Gutzwiller
correlator �8� to12

PiG → PiG + �2��
2, + ��2,− 
 + 
2,− ��2, + 
� . �22�

Consequently,

P�2, + � = �2+
2 P�0��2, + � + �2�

2 P�0��2,− � ,

P�2,− � = �2−
2 P�0��2,− � + �2�

2 P�0��2, + � .

Since by particle-hole symmetry P�2, + �= P�2,−�, as well as
P�0��2, + �= P�0��2,−�, then �2+=�2−��2± and hence

�2,±
2 + �2,�

2 =
P�2, + �

P�0��2, + �
.

In addition, the following matrix element is nonzero:

A�2, ± � � ��
2, + ��2,− 
�� = 2�2,��2,±P�0��2, + � ,

�23�

so that

�2,± =
1

2	P�0��2, + �
�	P�2, + � + A�2, ± �

+ 	P�2, + � − A�2, ± � ,

FIG. 1. �Color online� Reduction factors Za for the wide band
�dashed line� and for the narrow band �solid line� obtained with the
Gutzwiller wave function for different ratios of the bandwidth,
D2 /D1 and J=0.
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�2,� =
1

2	P�0��2, + �
�	P�2, + � + A�2, ± �

− 	P�2, + � − A�2, ± � .

We notice that 
A�2, ± �
� P�2, + �. The hopping reduction
factors are consequently modified to

	Z1 = 2	2	P�0�P�1,− � + 	2	P�1,− ��	P�2, + � + A�2, ± �

+ 	P�2, + � − A�2, ± � + 	2	P�1, + �P�2,0�

+ 	6	P�1, + �P�2,1� ,

	Z2 = 2	2	P�0�P�1, + � + 	2	P�1, + ��	P�2, + � + A�2, ± �

+ 	P�2, + � − A�2, ± � + 	2	P�1,− �P�2,0�

+ 	6	P�1,− �P�2,1� .

The average value of the Hund’s coupling is

EJ = −
4

3
JP�2,1� +

8

3
J�P�2, + � + A�2, ± �

+
2

3
J�P�2,0� + P�2, + � − A�2, ± � �24�

and that of the Hubbard repulsion

EU = U�P�1, + � + P�1,− � + 4UP�0�; �25�

thus, the variational energy to be minimized is

E = − t1TZ1 − t2TZ2 + EJ + EU. �26�

By the numerical minimization of the variational energy, we
find that the critical ratio D2 /D1 for an OSMT increases
when J�0 from the value 0.2 found for J=0. In Fig. 2, we
show Z1 and Z2 as obtained by numerical minimization of
Eq. �26� for two ratios of D2 /D1 and J /U=0.10. Additional
calculations allowed us to draw the phase diagram within the
Gutzwiller variational approach; see Fig. 3. As is apparent
from the inset, the introduction of the Hund’s coupling in-
creases the value of the critical ratio D2 /D1. In addition, both
U2, after which the OSMT is observed, and U1, where the

complete Mott transition takes place, decrease with increas-
ing J, going to zero as J goes to infinity. We also notice that
the Mott transition at which both bands localize becomes
first order in the presence of J, which, however, might be a
pathology of the Gutzwiller wave function.12

In conclusion, we find that the Gutzwiller variational
technique predicts an OSMT for both J=0 and J�0, pro-
vided D1 /D2 is smaller than a critical value which increases
with J.

IV. DYNAMICAL MEAN-FIELD THEORY

To have further insights into the quality of the Gutzwiller
wave function in infinite dimensions, we have performed an
extensive DMFT calculation for the same Hamiltonian.
DMFT is a nonperturbative approach that neglects spatial
correlations but retains fully time correlations and becomes
exact for infinite-coordination lattices. In this limit, the lat-
tice problem �1� can be mapped onto an Anderson impurity
model supplemented by a self-consistency condition. For
simplicity, we consider an infinite coordination Bethe lattice,
as in the Gutzwiller variational approach, with a bare density
of states given by Eq. �20�. Again, Da=2ta is the half-
bandwidth of band a. The Anderson impurity model onto
which the lattice model maps within DMFT is

HAM = �
k,a,�

�kacka�
† cka� + �

k,a,�
Vka�fa�

† cka� + H.c.� + �U

2
+

J

3
�

��nf − 2�2 + 2J�Tx
2 + Tz

2� , �27�

where T�, �=x ,y ,z, are the pseudospin operators �4� for the
impurity. The self-consistency condition relates the impurity
Green’s function for orbital a, Ga, to the parameters �ka and
Vka through

ta
2Ga�i�n� = �

k

Vka
2

i�n − �ka
. �28�

FIG. 2. �Color online� Reduction factors Za for the wide band
�dashed line� and the narrow band �solid line� obtained with the
Gutzwiller wave function for different ratios of the bandwidth,
D2 /D1 and J /U=0.10.

FIG. 3. �Color online� Phase diagram obtained within the
Gutzwiller approximation in the absence of the Hund’s coupling.
Inset: the critical ratio D2 /D1 below which an OSMT is observed as
a function of J /U.
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We solve the Anderson impurity model using an exact
diagonalization method13 at zero temperature. The continu-
ous conduction-electron bath is modeled by a finite number
of parameters �ka and Vka�k=1, . . . ,ns−1�. In our calcula-
tions, we considered ns=6 and 4 �not shown�. The self-
consistency �28� is implemented through a fitting procedure
along the imaginary axis. To this end, we discretize the axis
into Matsubara frequencies �n= �2n+1�� /�, where � is a
fictitious temperature that we have set to �=500/D1. More-
over, the smallest frequency �min has been determined by the
smallest pole in the continued fraction expansion of the
Green’s function.14 Note that this procedure sometimes leads
to different minimum cutoff frequencies for the two bands.
In the following, we will work in units of D1.

First, we treat the J=0 case in which there is no Hund’s
coupling. The metallic or insulating nature of each band is
characterized by its quasiparticle residue Za

−1=1
− 
�� Im �a�i�� /�i�
�→0. In Fig. 4, we show Za as a func-
tion of the Coulomb repulsion U for different bandwidth
ratios D2 /D1. When the ratio of the bandwidth, D2 /D1
�0.20, the quasiparticle weights decrease as the Coulomb
interaction gets bigger. Even though there is a stronger initial
reduction for the narrow band, the weights eventually vanish
for the same critical value of Uc /D1�3.6. The situation
changes when we further decrease the bandwidth ratio �i.e.,
D2 /D1=0.15�. In this case, we find that the weights of the
bands vanish for different values of U, in agreement with the
results of the Gutzwiller wave function. Moreover, the criti-
cal ratio D2 /D1=0.20 that we found earlier seems consistent
with the DMFT calculation.

Let us turn now to the model in the presence of a finite
Hund’s coupling, J /U=0.10 and perform the same calcula-
tions for the following ratios of the bandwidths: D2 /D1
=0.80 and 0.40. The results are shown in Fig. 5. We still find
evidence for an OSMT, this time, however, below a larger
ratio of the bandwidths. Further calculations show that the
critical ratio of the bandwidth for J /U=0.10 is D2 /D1

�0.66. That is also what one finds within the Gutzwiller
approximation. In Fig. 6, we plot the outcome obtained by
the Gutzwiller approximation and DMFT for D2 /D1=0.66.
Again, the two results agree rather well and display a similar
critical U�2D1.

If we were to confine our analysis to the behavior of the
quasiparticle residues Za’s, we should conclude that, both in
the absence and in the presence of a Hund’s coupling, the
OSMT scenario does occur for sufficiently small ratio of the
bandwidth, in qualitative and also quantitative agreement
with the variational results of the Gutzwiller wave function.
The only difference may lie in the order of the transition.
Even if it is difficult to settle precisely the order of the tran-
sition with exact diagonalization calculations, our results
seem to point towards a second-order phase transition at the
MIT U1 with finite J, contrary to the first-order transition
predicted by the Gutzwiller wave function.

A deeper insight into the above scenario can be gained by
analyzing the spectral properties of the more correlated band,
and not just its quasiparticle residue. Indeed, such an inspec-
tion leads to a less clear-cut picture, revealing features which
are not captured by the Gutzwiller wave function. In Fig. 7,
we show the density of states �DOS� of both orbitals for
various Hubbard U’s and D2 /D1=0.15. We notice that, al-
though the DOS of the narrow band right at the chemical
potential becomes zero within our numerical accuracy above
U2, there is still low-energy spectral weight inside the Mott-
Hubbard gap. Due to our discretization procedure, this
weight is concentrated in two peaks located symmetrically
with respect to the chemical potential. These peaks are also
present at J=0 and move linearly away from the chemical

FIG. 4. �Color online� Quasiparticle residues Za for the wide
band �squares� and for the narrow band �circles� obtained by the
DMFT calculation for different ratios of the bandwidth, D2 /D1 and
J=0.

FIG. 5. �Color online� Quasiparticle residues Za for the wide
band �squares� and the narrow band �circles� obtained by the DMFT
calculation for different ratios of the bandwidth, D2 /D1 and J /U
=0.10.

FIG. 6. �Color online� Quasiparticle residues Za obtained with
the Gutzwiller wave function �wide band, dashed line; narrow band,
solid line� and by DMFT �wide band, squares; narrow band, circles�
for the critical ratio of the bandwidth, D2 /D1=0.66 and J /U
=0.10.
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potential when J�0, roughly as 2J; see Fig. 8. Their total
spectral weight scales approximately like the quasiparticle
residue of the wider band, Z1, both vanishing at the second
MIT U1. In addition, if J=0, the distance between the peaks
also scales like Z1; see Fig. 7. If we, reasonably, assume that
these two peaks mimic two resonances, one below and the
other above the chemical potential, it becomes much less
obvious what might be the actual value of the DOS right at
the chemical potential if we were not constrained to a small
number of levels. Moreover, even if the DOS were strictly
zero at the chemical potential, still we should determine
whether band 2 behaves like a small-gap semiconductor or a
semimetal for U2�U�U1. In other words, the energy dis-
cretization inherent in the exact diagonalization technique
might play a more critical role in our case than in the sim-
plest single-band Hubbard model.

Therefore, although the numerical evidence we have pre-
sented so far points in favor of the existence of an OSMT
with zero or finite J below a critical bandwidth ratio, there
are several aspects which still need to be clarified. We will
consider a deeper investigation of such aspects in the follow-
ing sections.

V. SINGLE-IMPURITY SPECTRAL PROPERTIES

The first issue we want to address concerns the origin of
the two peaks in the orbital 2 spectral function inside the
Mott-Hubbard gap. The self-consistency condition �28� of
the effective Anderson impurity model �27� plays a very cru-
cial role; for instance, it determines a critical value of U
above which the Kondo effect does not take place anymore.
Yet useful information can be obtained by studying Eq. �27�
without imposing Eq. �28�, which is what we are going to do
in this section by means of the Wilson numerical renormal-
ization group �NRG�.10

The Anderson impurity model �27� is controlled by sev-
eral energy scales, the Hubbard U, the Hund’s coupling J,
and the so-called hybridization widths


a = �
k

Vka
2 ��ka� .

For simplicity, we will assume that the two conduction baths
are degenerate with half-bandwidth D, which will be our unit
of energy. In Fig. 9, we show the impurity spectral function
of the orbital 2, A2���, as obtained by the NRG for J=0,
U=2D, 
1=D / �2��, and for several values of 
2 /
1�1.
Since we do not impose any self-consistency, the DOS for
any 
2�0 shows a Kondo resonance at the chemical poten-
tial, which narrows as 
2 decreases. In addition, there are
two more peaks which move slightly away from the chemi-
cal potential as 
2 is reduced. These peaks actually resemble
those we find in the DMFT calculation. Indeed, they move
linearly as we switch on J �see Fig. 10�, just like we observe
within DMFT.

FIG. 7. �Color online� Density of states for the wide band �left
panels� and the narrow band �right panels� as obtained by DMFT
for different values of the Coulomb interaction. The ratio of the
bandwidth is D2 /D1=0.15 and J=0.

FIG. 8. �Color online� Upper panels: low-energy part of the
density of states of the narrow band as obtained by DMFT for
different values of J /D1. The ratio of the bandwidths is D2 /D1

=0.15, and the Coulomb repulsion is set to U /D1=2. Lower panel:
position of the low-energy peaks as a function of J /D1.

FIG. 9. �Color online� Spectral function A2��� of the narrow
band for J=0, U /D=2, 
1=D /2�, and 
2 /
1= 1

2 , 1
4 , 1

6 , 1
8 ,0 �from

top to bottom�. Inset: the same spectral function on a wider scale.
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The origin of these peaks is easy to identify when 
2=0.
When orbital 2 is not hybridized with its bath, its occupation
number n2 is a conserved quantity. The ground state is ex-
pected to belong to the subspace with n2=1, because, in this
case, �n1�=1 and the Kondo-screening energy gain is maxi-
mum. This state is twofold degenerate, reflecting the free
spin 1/2 of the electron localized in orbital 2. The energy
gap to the lowest-energy states for n2=0 ,2, �n1�=2,0, re-
spectively, is therefore of the order of the Kondo temperature
of orbital 1, TK1. The DOS of the impurity orbital 2 is analo-
gous to the core-hole spectral function in x-ray absorption,
so it should start above a finite threshold proportional to TK1.
In other words, the DOS has a small but finite gap of order
TK1, similar to what we observe within DMFT.

However, as soon as 
2 is nonzero, this gap is filled and,
in addition, a Kondo resonance appears. Even if we move the
peaks away from the chemical potential by increasing J �see
Fig. 10�, the region between them and the narrow �practically
invisible in the figure� Kondo resonance is still covered by
spectral weight. In the light of this dynamical behavior, it is
not at all obvious what the self-consistency requirement �28�
may lead to when band 1 is still conducting. In other words,
either a true narrow gap, as if 
2=0, or a pseudogap with a
power-law vanishing DOS or two peaks plus the narrow
resonance are equally compatible with the self-consistency
condition. However, the event in which most of the spectral
weight is concentrated in the two symmetric peaks, leaving
only negligible weight within the narrow resonance, is ex-
tremely hard to identify with a limited number of levels. As
an attempt to discriminate among the aforementioned pos-
sible scenarios, in the following section, we implement a
projective self-consistency technique which allows a more
detailed low-energy description within DMFT.

VI. PROJECTIVE SELF-CONSISTENT TECHNIQUE

A remarkable feature uncovered by DMFT nearby a MIT
is the clear separation of energy scales between well-

preformed high-energy Hubbard bands and lingering low-
energy itinerant quasiparticles. It has been shown14 that this
partition of energy scales allows one to reformulate the prob-
lem into a new one, in which the high-energy part is pro-
jected out. Essentially, the original Anderson impurity model,
which involves both high-energy sidebands and low-energy
quasiparticles, is reduced to a Kondo-like model which can
be attacked more easily by a numerical procedure. In this
section, we apply a projective technique to our model, which
is similar to Ref. 14, with the only difference that the result-
ing effective problem is still an Anderson impurity model
with rescaled parameters.

As we showed, the occurrence of an OSMT does not seem
to require a finite exchange but rather a sufficiently small
bandwidth ratio. Therefore, we prefer to present the projec-
tive technique in the simpler case where J=0. Following Ref.
14, we start by rewriting the Anderson impurity model �27�,
explicitly separating low- �L� and high- �H� energy scales,

HAM = HH + HL + Hm, �29�

where

HH =
U

2
�nf − 2�2 + �

k,a,�

H�ka
H cka�

† cka�

+ �
k,a,�

HVka
H �fa�

† cka� + H.c.� �30�

describes the impurity coupled to the high-energy levels,

HL = �
k,a,�

L�ka
L cka�

† cka� �31�

is the low-energy bath Hamiltonian, and finally

Hm = �
k,a,�

LVka
L �fa�

† cka� + H.c.� �32�

mixes low- and high-energy sectors. The impurity Green’s
function, also written as sum of a low- and a high-energy
part, Ga�i��=Ga

L�i��+Ga
H�i��, should satisfy the self-

consistency requirement �28�. If we assume that the low-
energy spectral weight is Wa	1, the self-consistency condi-
tion for the integrated low- and high-energy spectral
functions �a

L��� and �a
H���, respectively, implies the sum rules

�
k

L �Vka
L �2 = ta

2Wa, �33�

�
k

H�Vka
H �2 = ta

2�1 − Wa� , �34�

showing that the impurity is strongly hybridized with the
high-energy levels and very weakly with the low-energy
ones. Let us for the moment neglect the coupling to the latter.
The ground state of Eq. �30� is the adiabatic evolution of the
states in which all negative-energy bath levels are doubly
occupied and two electrons sit on the impurity, giving rise to
a sixfold-degenerate ground state. Other states with the same
number of electrons lie above the ground state at least by an
energy U. The lowest-energy states with one more �less�

FIG. 10. �Color online� Spectral function A2��� of the narrow
band for J /D=0,0.004,0.008,0.012 �from top to bottom�, U /D
=2, 
1=D /2�, and 
2 /
1=1/8. Inset: the same spectral function
on a wider scale.
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electron are more degenerate, since they emerge adiabati-
cally from the states obtained by adding �removing� an elec-
tron either in the impurity levels or in the positive-
�negative-� energy baths. This large degeneracy is, however,
split linearly by Vka

H , which implies the broadening of the
Hubbard bands around their centers of gravity, ±U /2. The
main effect of the mixing term �32� is to provide a Kondo
exchange coupling between the sixfold-degenerate ground
state of HH and the low-energy baths, which can be obtained
by degenerate second-order perturbation theory in Hm or,
more formally, by a Schrieffer-Wolff canonical
transformation.14,15 Once the effective Kondo model is ob-
tained, we could, for instance, follow Ref. 14: namely, solve
that model and impose the self-consistency condition to the
impurity Green’s function, calculated through the Schrieffer-
Wolff canonically transformed fa�. To be consistent, one
should in principle expand the transformed fa� up to second
order in VL /U and impose the self-consistency requirement
in the whole energy range, including low and high energies.
In practice, even if the self-consistency is imposed only to
the low-energy spectrum, one still gets a faithful description
of the critical behavior near the MIT.14 An equivalent proce-
dure, which we have instead decided to follow, is to identify
a new two-orbital Anderson impurity model, coupled only to
the low-energy levels, which maps to the same Kondo
model, and next impose the self-consistency only to the low-
energy part of the impurity Green’s function:

ta
2Ga

L�i�n� = �
k

�Vka
L �2

i�n − �ka
L . �35�

Regarding the high-energy part of the self-consistency, since
we always model the high-energy levels with just four levels
at energies �a±

H = ±U /2, we need to impose an additional re-
quirement besides Eq. �35�, which, through Eq. �34�, is sim-
ply

Va±
H = ta	1 − Wa

2
, �36�

where Wa is the low-energy spectral weight obtained self-
consistently from Eq. �35�. The advantage of the projective
method is that we can now model the low-energy spectrum
with more levels, the cost being the additional self-
consistency condition �36�.

When we apply this projective technique to our two-
orbital model with J=0 and t1� t2, we end up with an effec-
tive Anderson impurity model

Heff =
U1

2
�n1 − 1�2 +

U2

2
�n2 − 1�2 +

U12

2
�n1 − 1��n2 − 1�

+ �
k,a,�

L�ka
L cka�

† cka� + �
k,a,�

LVka
L �fa�

† cka� + H.c.� , �37�

where U1, and U2 are found from the solution of the high-
energy problem �30�. Moreover, U12= �U1+U2� /2, which
assures the sixfold degeneracy of the isolated doubly occu-
pied impurity and we have that U1�U2 with U2−U1� t1
− t2. In other words, the high-energy levels provide a partial

screening of the Hubbard repulsion, more efficient within
orbital 1, which is more hybridized with the bath. Therefore,
the difference of bandwidths acquires in our projective
method a quite transparent role: while the bare Coulomb
repulsion does not care about the orbitals in which electrons
sit, this indifference is lost once the high-energy screening is
taken into account. In Fig. 11, we compare the imaginary
part of the Green’s functions in Matsubara frequencies �n as
function of �n as obtained by full DMFT or using the above
projective self-consistent technique �PSCT� at J=0. Note
that within the PSCT, we model the low-energy conduction
bath through five discrete levels. The agreement is satisfying,
and the additional levels clearly allow for a more accurate
description of the low-energy Green’s function.

In Fig. 12, we plot the PSCT values of the quasiparticle
residues Z1 and Z2 as a function of U at J=0 for D2 /D1

FIG. 11. �Color online� Imaginary part of the Green’s function
for D2 /D1=0.18, U /D1=2.00, and J=0 as obtained by DMFT
�circles� and with the PSCT �squares�.

FIG. 12. �Color online� Quasiparticle residues Za �triangles� and
low-energy spectral weights Wa �circles� as obtained by the PSCT
with J=0. Dashed lines refer to the wide band and solid lines to the
narrow one.
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=0.18, as well as of the full spectral weights W1 and W2
inside the Mott Hubbard gap. In agreement with standard
DMFT, we find a region where Z2 is zero within our numeri-
cal accuracy, while Z1 is still finite. Yet the total spectral
weights are both nonzero. In Fig. 13, we draw the DOS for
the two bands and various U’s. Note that the scale is differ-
ent from the one in Fig. 7 and the position of the largest
peaks found with the PSCT are in good agreement with the
low-energy peaks obtained by DMFT. Moreover, even
though the PSCT allows for two additional levels to model
the low-energy part of the spectrum, after the self-
consistency, no additional structure appears around the
chemical potential. Actually, the two supplementary levels
merge into the central or the lateral structures.

VII. DISCUSSION AND CONCLUSIONS

In this work, we have studied by several techniques the
properties of the Mott transition in an infinite-dimensional
Hubbard model with two bands having the same center of
gravity but different bandwidths, both in the presence and in
the absence of the Hund’s exchange splitting J. We have
shown that a variational calculation based on a Gutzwiller
wave function predicts that the two bands may undergo dif-
ferent metal-insulator transitions for both J=0 and J�0: by
increasing U, the narrower band ceases to conduct before the
wider one. The necessary condition for this orbital-selective
Mott transition is that the bandwidth ratio be lower than a
critical value which increases with J, being 0.2 when J=0;
see Fig. 3. The behavior of the quasiparticle residues as ob-
tained by DMFT using exact diagonalization as impurity
solver confirms, even quantitatively, the variational results,
showing that the residue of the narrower band may vanish
before the one of the wider band if the bandwidth ratio is
sufficiently small, for both J=0 and J�0. Actually, an
OSMT which occurs both in the absence and in the presence
of an exchange splitting is somehow more conceivable, be-

cause the role of J is model dependent. We notice that, in
more general situations where the number of orbitals is
greater than 2 and different from the number of electrons, as,
for instance, in the case of t2g orbitals occupied by two or
four electrons on average, the Coulomb exchange would in-
stead compete against the angular momentum quenching
which occurs in the OSMT scenario. Therefore we suspect
that the role of the Coulomb exchange might actually depend
on the specific model.

However, a closer inspection of the low-energy spectral
properties of the narrower band in the region where it is
apparently insulating while the wider band still conducts
poses doubts to the above simple scenario. The reason is that,
in spite of a quasiparticle residue which is zero within our
numerical accuracy, the narrower band has spectral weight
inside the Mott-Hubbard gap, which scales like the quasipar-
ticle residue of the wider band. In other words, the charge
fluctuations which still occur in the wider band are trans-
ferred to the narrower one, as one can expect. This low-
energy spectral weight is concentrated in two peaks sym-
metrically located around the chemical potential. Roughly
speaking, the distance of each peak from the chemical poten-
tial is 2J plus a quantity of the order of the quasiparticle
resonance width of the wider band. Due to our limited nu-
merical resolution, we cannot establish rigorously whether
these two peaks �a� signal a narrow-gap semiconducting be-
havior, �b� signal a semimetallic behavior, with a power-law
vanishing density of states, or �c� coexist with an extremely
narrow resonance at the chemical potential, with a spectral
weight well below our numerical accuracy, just like the
single impurity does. Although the elements at our disposal
do not definitely allow us to discriminate among these three
scenarios, yet one can recognize that some of them are more
plausible than others.

The first possibility �a� of a narrow-gap semiconductor
seems very unlikely. Indeed, in this case, the gap between the
two low-energy peaks would open large and then diminish as
the quasiparticle resonance width of the wider band, by fur-
ther increasing the repulsion U. Therefore, the insulating
character of the narrower band would weaken by increasing
U, which seems a bit odd.

Let us consider instead the scenario �b� of a semimetal. If
taken literally, it would imply a vanishingly small local mag-
netic susceptibility, while we actually find a very large one,
much larger than the local susceptibility of the wider band.
However, a semimetallic behavior would imply, in our
particle-hole-symmetric case, a breakdown of Fermi-liquid
theory.16 Therefore, a power-law vanishing single-particle
DOS might not necessarily conflict with almost-free-spin ex-
citations in a scenario in which Fermi-liquid theory breaks
down and, for instance, spin-charge separation emerges. Al-
though it might represent a quite interesting circumstance,
yet we could not find any physical arguments justifying such
a non-Fermi-liquid behavior. Therefore, we are tempted to
discard it in favor of the more conservative scenario �c� in
which the two peaks coexist with a narrow resonance which
remains tied at the chemical potential, its spectral weight
being smaller than our numerical accuracy. This resonance
should disappear right at the same U where the wider band
ceases to conduct.

FIG. 13. �Color online� Low-energy part of the density of states
of the wide band �left panels� and the narrow band �right panels�
obtained within the PSCT for different U /D1. The ratio of the band-
width is D2 /D1=0.18 and J=0.
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We end by noticing that, whatever is the correct zero-
temperature scenario, either �b� or �c�, there should exist a
finite-temperature interval where the narrower band loses its
coherence, unlike the wider one, which might display un-
usual properties.

Note added. During the completion of this paper, we
learned about the work by L. de’ Medici, A. Georges, and S.
Biermann, which leads to similar conclusions.17
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