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We examine whether the Mott transition of a half-filled, two-orbital Hubbard model with unequal band-
widths occurs simultaneously for both bands or whether it is a two-stage process in which the orbital with
narrower bandwith localizes first �giving rise to an intermediate “orbital-selective” Mott phase�. This question
is addressed using both dynamical mean-field theory and a representation of fermion operators in terms of
slave quantum spins, followed by a mean-field approximation �similar in spirit to a Gutzwiller approximation�.
In the latter approach, the Mott transition is found to be orbital selective for all values of the Coulomb
exchange �Hund� coupling J when the bandwidth ratio is small and only beyond a critical value of J when the
bandwidth ratio is larger. Dynamical mean-field theory partially confirms these findings, but the intermediate
phase at J=0 is found to differ from a conventional Mott insulator, with spectral weight extending down to
arbitrary low energy. Finally, the orbital-selective Mott phase is found, at zero temperature, to be unstable with
respect to an interorbital hybridization V and replaced at small V by a state with a large effective mass �and a
low quasiparticle coherence scale� for the narrower band.
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I. INTRODUCTION

The Mott metal-insulator transition plays a central role in
the physics of all strongly correlated electron materials. At a
qualitative level, localization of the electrons can occur when
the kinetic energy gain �typically given by the bare band-
width� is smaller than the cost in on-site repulsive Coulomb
energy �U�. In recent years, dynamical mean-field theory1–3

�DMFT� has provided a consistent theoretical framework
which has advanced our understanding of this
phenomenon,1,4 in particular through the study of simplified
models such as the one-band Hubbard model.

In real materials, however, such as transition-metal ox-
ides, several orbital components are involved. Crystal-field
effects and the Coulomb exchange energy �J� affect the en-
ergy of on-site atomic states, which no longer depend only
on the total local charge as in the orbitally degenerate case.
Furthermore, the intersite hopping amplitudes can be signifi-
cantly different for different orbital components �due, e.g., to
their relative orientations�. It is therefore essential to under-
stand how these effects can affect the Mott transition and
whether qualitatively new effects are possible when the or-
bital degeneracy is lifted.

Recently, this question has attracted a lot of attention. In
their study of Ca2−xSrxRuO4, Anisimov et al.5 suggested that
a partial localization could take place, in which some orbital
components �with broader bandwidth� are conducting, while
others �with narrower bandwidth� are localized �see also Ref.
6�. Following this proposal, several studies have been per-
formed in the model context, with controversial results.7–11

Liebsch7,10 initially challenged the existence of such an
“orbital-selective Mott transition” �OSMT� on the basis of
DMFT calculations. Koga and co-workers,9,11 on the other
hand, did find an OSMT within their DMFT calculations and
suggested that a unique transition is found only if J=0. A

symmetry argument was put forward to explain this finding.
In this paper, a clarification of this problem is attempted,

using DMFT and another, complementary approach. The lat-
ter is based on a representation of fermion operators in terms
of slave quantum spins, specifically forged to address mul-
tiorbital models �Sec. III�. A mean-field approximation based
on this representation, similar in spirit to the Gutzwiller ap-
proximation, provides a fast and efficient method in order to
investigate the Mott transition in a wide range of parameters
�Sec. IV�. In Sec. V, a detailed study of the previously unex-
plored regime in which one of the bands is much narrower
than the other and J=0 is presented, using exact diagonaliza-
tions and quantum Monte Carlo methods in the DMFT
framework. Finally �Sec. VI�, the effect of an interband hy-
bridization is considered.

II. MODEL

The model considered in this paper is a tight-binding
model for two bands coupled by local interactions. The
Hamiltonian reads H=H0+Hint, where H0 is the noninteract-
ing part:

H0 = − �
m=1,2

tm �
�ij�,�

dim�
† djm� + H.c. + �

i,m�

��m − ��dim�
† dim�,

�1�

in which dim�
† �dim�� creates �annihilates� an electron on the

site i, in the orbital m, with spin �. The �m’s are crystal-field
levels, and � is the chemical potential, kept here for gener-
ality. In most of the paper, however, we shall focus on the
case of the zero crystal-field splitting ��1=�2=0� and half-
filling of each band �i.e., one electron per site in each orbital,
which corresponds to �=0 given our normalization of the
interaction term�. At the end of the paper, we shall also con-
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sider the possibility of a nonzero interorbital hybridization.
The full interaction, in the case of degenerate bands in a

cubic environment,12,13 reads

Hint = U�
im

ñim↑ñim↓ + U��
i�

ñi1�ñi2�̄ + �U� − J��
i�

ñi1�ñi2�

− J�
i

�di1↑
† di1↓di2↓

† di2↑ + di1↓
† di1↑di2↑

† di2↓�

− J�
i

�di1↑
† di1↓

† di2↑di2↓ + di2↑
† di2↓

† di1↑di1↓� , �2�

where ñim��nim�−1/2. Following Castellani et al.,12 the re-
duction of the Coulomb interorbital Coulomb interactions U�
as compared to the interorbital U is related to the Hund’s
coupling J by

U� = U − 2J . �3�

In the case of vanishing Hund’s rule coupling J=0 the inter-
action vertex �=U�n1+n2−2�2 /2� thus depends only on the
total charge, while if J�0, the interorbital interaction is
weaker than the intraorbital one and becomes sensitive to the
spin configuration.

III. SLAVE-SPIN MEAN-FIELD THEORY

A. Slave-spin representation

In this section, we introduce a new representation of fer-
mion operators in terms of constrained �“slave”� auxiliary
fields, which proves to be particularly convenient in order to
study the multiorbital Hamiltonian above. The main idea at
the root of any slave-variable representation is to enlarge the
Hilbert space and to impose a local constraint in order to
eliminate the unphysical states. When the constraint is
treated on average, a mean-field approximation is obtained.
Different slave-field representations will lead to different
mean-field theories. The quality of the mean-field approxi-
mation can be improved by tailoring the choice of slave
fields to the specific problem under consideration. In general,
a compromise has to be found between the simplicity of the
representation, the number of unphysical states which are
introduced, and the possibility of an analytical treatment of
the resulting mean-field theory.

For finite-U Hubbard models, Kotliar and Ruckenstein14

have introduced a slave-boson representation which can be
used in the present context, when appropriately generalized
to multiorbital models �in the spirit of the Gutzwiller
approximation15�. However, this method introduces many
variational parameters. On the opposite, Florens and Georges
introduced a very economical representation of the N-orbital
Hubbard model with SU�N� symmetry based on a single
slave variable, taken to be the phase conjugate to the total
charge on a given lattice site �slave-rotor representation�.16,17

However, this method is not appropriate when the orbital
symmetry is broken, as in the present work.

Here, we introduce a new slave-variable representation30

especially suited for dealing with multiband models and ad-
dressing orbital-dependent properties. The basic observation
behind this scheme is that the two possible occupancies of a

spinless fermion on a given site, nd=0 and nd=1, can be
viewed as the two possible states of a spin-1 /2 variable, Sz

=−1/2 and Sz= +1/2. This representation has been widely
used in the case of hard-core bosons. In the fermionic con-
text, however, one needs to ensure anticommutation proper-
ties, and this is done by introducing an auxiliary fermion f ,
with the additional local constraint

f†f = Sz +
1

2
. �4�

In this manner, one obtains a faithful representation of the
Hilbert space, which reads

	0� = 	nf = 0,Sz = − 1/2� , �5�

	1� � d†	0� = 	nf = 1,Sz = + 1/2� . �6�

This constraint eliminates the two unphysical states 	nf
=0,Sz= +1/2� and 	nf =1,Sz=−1/2�. This representation is
easily extended to the multiorbital case by treating each or-
bital and spin species in this manner. Hence a set of 2N spin-
1 /2 variables Sm�

z and auxiliary fermions fm� is introduced
�m=1, . . . ,N is the number of orbitals�, obeying the local
constraint on each site:

n̂im�
f = Sim�

z +
1

2
. �7�

This constraint can, e.g., be imposed with Lagrange multipli-
ers fields �im����.

We now explain how to rewrite the original Hamiltonian
�1� and �2� in terms of the slave spins and auxiliary fermions.
We consider first for simplicity the case J=0, since the case
J�0 requires an additional approximation, as discussed
later. For J=0, the interaction involves only the total electron
charge on a given site and therefore reads

Hint
J=0 �

U

2 �
i

�

m,�
ñim��2

=
U

2 �
i

�

m,�
Sim�

z �2
. �8�

In order to express the noninteracting part of the Hamil-
tonian, we need to choose an appropriate representation of
the creation operator of a physical electron, dim�

† . There is
some freedom associated with this, since different operators
in the enlarged Hilbert space spanned by the slave-spin and
auxiliary fermions can have the same action on the physical
�constrained� Hilbert space. We have not used the obvious
possibility d†→S+f†, d→S−f . This representation is correct
in the physical Hilbert space �i.e., when the constraint is
treated exactly�, but it can be shown that additional mean-
field approximations based on this representation will ulti-
mately lead to a problem with spectral weight conservation
because S+ and S− do not commute. Instead, we have chosen
the representation d†→2Sxf†, d→2Sxf , which is identical to
the previous one on the physical Hilbert space and involves
commuting slave-spin operators. With this choice, the non-
interacting part of the Hamiltonian reads
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H0 = − �
m

tm �
�ij�,�

4Sim�
x Sjm�

x �f im�
† f jm� + H.c.�

+ �
i,m�

��m − ��f im�
† f im�.

At this stage, no approximation has been made, provided the
constraint is treated exactly.

B. Mean-field approximation

Approximations will now be introduced, which consists
of three main steps: �i� treating the constraint on average,
using a static and site-independent Lagrange multiplier �m�,
�ii� decoupling the auxiliary fermions and slave-spin degrees
of freedom, and finally �iii� treating the slave-spin Hamil-
tonian in a single-site mean-field approach. This last step is
quite independent of the two previous ones and can be rather
easily improved on, as done in Ref. 17.

After the first two steps, one obtains two effective Hamil-
tonians

Hef f
f = − �

m

tm
ef f �

�ij�,�
�f im�

† f jm� + H.c.�

+ �
i,m�

��m − � − �m�f im�
† f im�, �9�

Hef f
S = − �

m

4Jm
ef f �

�ij�,�
Sim�

x Sjm�
x + �

i,m�

�m
Sim�
z +

1

2
�

+ Hint��S� im�
� , �10�

with Hint��S� im�
�=U /2�i��im�Sm�
z �2 for J=0. In these ex-

pressions, tm
ef f and Jm

ef f are effective hoppings and slave-spin
exchange constants which are determined from the self-
consistency equations

tm
ef f = 4tm�Sim�

x Sjm�
x � , �11�

Jm
ef f = tm�f im�

† f jm� + f jm�
† f im�� . �12�

The free-fermion Hamiltonian �9� describes the quasiparticle
degrees of freedom. Their effective mass is set by the renor-
malization of the hopping: tm

ef f / tm=4�Sim�
x Sjm�

x �. The quasi-
particle weight is associated with a different quantity:
namely,

Zm = 4�Sim�
x �2. �13�

Note that it depends in general on the orbital, a key feature
for the physics that we want to address with this technique.
Both the renormalization of the mass and the quasiparticle
weight are self-consistently determined from the solution of
the quantum-spin Hamiltonian �10�, which describes the
charge dynamics. As is clear from Eq. �13�, metallic behavior
for orbital m corresponds to long-range order in Sm

x , while
Mott insulating behavior corresponds to �Sm

x �=0.
At this stage, the slave-spin degrees of freedom are still

described by a quantum-spin Hamiltonian on the lattice, and
we therefore make the additional approximation �iii� of treat-
ing this model on the level of a single-site mean field. We

thus have to solve the single-site spin Hamiltonian

Hs = �
m�

2hmSm�
x + �

m�

�m
Sm�
z +

1

2
� + Hint�S�m�� , �14�

in which the mean field hm is determined self-consistently
from

hm = 2zJm
ef f�Sm�

x � , �15�

where z is the coordination number of the lattice. This equa-
tion can be combined with Eq. �12� to yield

hm = 4�Sm�
x �

1

N�
k

�km�fkm�
† fkm�� . �16�

In this expression, the fermionic expectation value is to be
calculated with the quasiparticle Hamiltonian �9�. Within this
single-site mean-field approximation, however, the renormal-
ization of the hopping becomes identical to the quasiparticle
residue since �Sim�

x Sjm�
x � factorizes into �Sim�

x �2. As a result,
the quasiparticle Hamiltonian reads

Hef f
f = �

k,m�

�Zm�km + �m − � − �m�fkm�
† fkm�, �17�

with �km�−tm /z� j,n.n�i�e
−k·�i−j� the Fourier transform of the

hopping. Equations �13�, �14�, �16�, and �17� and the con-
straint equation �7� self-consistently determine the varia-
tional parameters hm, �m, and Zm=4�Sm�

x �2. They are the
basic mean-field equations based on the slave-spin represen-
tation, which will be used below. Solving these equations
requires one to diagonalize the single-site spin Hamiltonian
�14�, corresponding to a 4N�4N matrix.

Let us finally discuss the case of a nonzero Hund’s cou-
pling J�0. The first three terms in Eq. �2� are easy to treat in
the slave-spin formalism, since they involve only density-
density interactions and are thus directly expressed in terms
of the Ising components of the slave spins. They read

U�

2 �
i

�

m,�
Sim�

z �2
+ J�

i,m

�

�

Sim�
z �2

−
J

2�
i,�


�
m

Sim�
z �2

.

�18�

In contrast, the “spin-flip” and �intrasite� “pair-hopping”
terms �last two terms in Eq. �2�� are more difficult to deal
with, since they involve both slave-spin and auxiliary fermi-
ons operators. As a result, four-fermion terms are introduced
which require additional mean-field decouplings. For sim-
plicity, we choose to mimic the effect of these terms by re-
placing them by operators which have exactly the same ef-
fect on the slave-spin quantum numbers of the Hilbert space:
namely,

− J�
i

�Si1↑
+ Si1↓

− Si2↓
+ Si2↑

− + Si1↓
+ Si1↑

− Si2↑
+ Si2↓

− �

− J�
i

�Si1↑
+ Si1↓

+ Si2↑
− Si2↓

− + Si2↑
+ Si2↓

+ Si1↑
− Si1↓

− � , �19�

Despite the fact that these terms connect the physical and
unphysical parts of the Hilbert space �and therefore would
strictly vanish if the constraint was implemented exactly�, it
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is reasonable to expect that they will qualitatively describe
the physics of the spin-flip and pair-hopping terms when the
constraint is treated on average, because their action on the
slave-spin quantum numbers is the correct one. Hence, we
shall use the following representation of the interacting part
of the Hamiltonian for J�0:

Hint �
U�

2 �
i

�

m,�
Sim�

z �2
+ J�

i,m

�

�

Sim�
z �2

−
J

2�
i,�


�
m

Sim�
z �2

− J�
i

�Si1↑
+ Si1↓

− Si2↓
+ Si2↑

− + Si1↓
+ Si1↑

− Si2↑
+ Si2↓

− �

− J�
i

�Si1↑
+ Si1↓

+ Si2↑
− Si2↓

− + Si2↑
+ Si2↓

+ Si1↑
− Si1↓

− � . �20�

C. Benchmarks

In this section, we perform some benchmarks of the slave-
spin representation and mean-field theory.

1. Atomic limit „J=0…

In the J=0 case we check explicitly that the atomic limit
�i.e., tm=0� of the degenerate N-band model with SU�2N�
symmetry is correctly reproduced. Indeed our equations sim-
plify drastically in this limit �t̃m=hm=0�, leaving only the

�m�= �̄ to be determined. The constraint equation �7� reads,
in this case,

nF�� − �̄� = Z−1�
Q=0

2N

NQQe−	��U/2��Q − N�2+�̄Q�, �21�

where nF��� is the Fermi function, Z��Q=0
2N NQ exp

−	��U /2��Q−N�2+ �̄Q�, NQ�� 2N
Q

�, and Q is the total num-

ber of particles. Solving numerically this equation for �̄ leads
to the correct “Coulomb staircase,” as shown in Fig. 1, as
long as T
U. At high temperatures the fact that we have
imposed the constraints only in average limits the accuracy,
but in practice T
U is not a severe limitation.

2. N-orbital Hubbard model with SU„2N… symmetry and large-N
limit

Here, we apply the slave-spin mean-field approximation
to the N-orbital model �m=1, . . . ,N�, in the case where all
bands have the same hopping, with J=0. The results for the
quasiparticle weight as a function of U, at half-filling, are
displayed in Fig. 2. A transition into a Mott phase is found
for U�Uc�N�. The exact large-N behavior of Uc�N� in the
limit of infinite coordination �DMFT� is known18 to be linear
in N, the slope being Uc /N=8	�̄	, where �̄��−�

0 d�D����.
This slope is correctly reproduced by the slave-spin mean-
field approximation, indicating that this approximation be-
comes more accurate as N is increased.

One can actually calculate analytically the critical value
of the coupling within this approach, for arbitrary N, by per-
forming a perturbative expansion around the atomic limit for
small hm. This yields

Uc = 8�N + 1�	�̄	 , �22�

which coincides with the numerical determination in the in-
set of Fig. 2. We also note that Eq. �22� is precisely the result
of the Gutzwiller �slave-boson� approximation in the multio-
rbital case.

D. Comparison with slave bosons and slave rotors

As suggested by the fact they yield identical values of Uc,
the slave-spin mean-field theory has many similarities with
the Gutzwiller approximation �GA�. In fact, as shown in Fig.
3, in the one-band Hubbard model the whole dependence of
Z on U is identical to that of the GA.

The slave-spin representation has several advantages over
the slave-boson representations that can be used to formulate
the GA. One advantage is that the number of variables is
smaller: 2N spin-1 /2 degrees of freedoms instead of 2N slave
bosons �one associated with each state in the Hilbert space,
in the absence of symmetries�. Another advantage is that the
number of unphysical states is smaller than in slave-boson
representations, because the Hilbert space spanned by the 2N

FIG. 1. �Color online� Filling vs chemical potential for a two-
orbital impurity �atomic limit of a particle-hole-symmetric Hubbard
model�, U=2, 	=50: within the slave-spin mean-field �solid line�
and exact �dashed line� results. The Coulomb staircase is correctly
reproduced up to temperatures of order �U.

FIG. 2. �Color online� Quasiparticle weight, obtained from
slave-spin mean-field theory, for the N-orbital Hubbard model at
half-filling �with, from left to right, N=1,2 ,3 ,4�. The noninteract-
ing density of states is a semicircle with half-bandwidth D. Inset:
Dependence of the critical U on N. The exact large-N behavior is
obtained.
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quantum spins is finite by construction, while the Hilbert
space associated with the slave bosons in the absence of the
constraint is an infinite-dimensional one. This might be use-
ful in considering finite-temperature properties and the en-
tropy of the model.

A similar remark applies when comparing the present
slave-spin representation to the slave-rotor representation re-
cently developed by Florens and Georges.16,17 This represen-
tation is specifically tailored to SU�2N�-symmetric models
and is very economical since it introduces only one slave
variable. Specifically, a �slave� quantum rotor and auxiliary
fermions are introduced on each site such that

dim�
† = f im�

† ei
i, dim� = f im�e−i
i, �23�

where the phase is conjugate to the local charge, correspond-
ing to the local constraint

�
m�


 f im�
† f im� −

1

2
� = L̂i, �24�

in which L̂i=1/ i� /�
i is the conjugate momentum to the
phase. It is clear from these expressions that there is a close
similarity between the slave-spin and slave-rotor formalisms.
Two important differences must be noted: �i� a single slave-
rotor variable is introduced for all orbitals and �ii� the Hilbert
space of the unconstrained rotor is infinite dimensional, con-
taining an infinite tower of charge states 	l� which are physi-
cal only for 	l	�N. As a result, mean-field approximations in
which the constraint is treated only on average are less ac-
curate when the contribution of these unphysical charge
states become sizable. This is particularly true in the weak-
coupling limit. In Fig. 3, we compare the slave-spin and
slave-rotor result for the quasiparticle residue in the one-
band case, in order to illustrate this effect.

On the whole, slave rotors and slave spins offer two use-
ful representations, the former being very economical and
well suited to situations in which only the total local charge
is involved �e.g., in Coulomb blockade problems19�, while
the latter is well suited to the investigation of orbital-
dependent properties, as in the present article. Both methods

are easy to implement at a very low numerical cost, hence
allowing for a fast and efficient investigation of the phase
diagram and phase transitions in a wide range of parameters.

IV. ORBITAL-SELECTIVE MOTT TRANSITION WITH
SLAVE-SPIN MEAN-FIELD THEORY

In this section, we use slave-spin mean-field theory in
order to study the two-band model with unequal hoppings.
The noninteracting density of states of each band is taken to
be a semicircle �of half-width D1=2t1 and D2=2t2�D1�,
corresponding to a Bethe lattice with infinite connectivity z
=� and nearest-neighbour hoppings t1,2 /�z. No crystal-field
splitting is introduced ��1=�2=0�, and we restrict ourselves
to the case in which both bands are half-filled ��n1�= �n2�
=1�. The model is thus particle-hole symmetric, implying
that the chemical potential �=0 and Lagrange multipliers
�1=�2=0. The parameter space was explored for U�0, J
=0 to 0.5U �i.e., U�=U−2J=0 to U� and the ratio between
the two bandwidths, t2 / t1=0–1.0. For the study of the Mott
transitions in this model we monitor the quasiparticle
weights Zm=4�Sm�

x �2.
Figure 4 displays the phase diagram within slave-spin

mean-field theory for the bandwidth ratio t2 / t1=0.5. Three
different phases are found: at small U both bands are metal-
lic �i.e., Zm�0�, at large U both are insulating �Zm=0�, and
in between an OSMP is found in which only the band with
largest bandwidth has Z1�0, while the narrower band has
Z2=0.

In the inset of Fig. 4, we reproduce for comparison the
result of Koga et al.9 obtained within DMFT. Qualitatively,
one sees that the slave-spin mean field compares rather well
to the DMFT results. There are quantitative differences in the
critical values of the couplings U and U�, a well-known fea-
ture of Gutzwiller-like approximations. Also, the linear de-

FIG. 3. �Color online� Quasiparticle weight of the one-band
Hubbard model, obtained with slave rotors �thin line�, slave spins,
and the Gutzwiller �slave-boson� approximations �thick lines�. The
latter two actually coincide. The small-U behavior of the slave-rotor
approach is due to the larger number of unphysical states �see text�.

FIG. 4. �Color online� Phase diagram �U vs U�� for t2 / t1=0.5 at
T=0 within the slave-spin mean-field theory. Inset: same diagram
obtained with exact diagonalization dynamical mean-field theory
�ED-DMFT� in Ref. 9. The dotted line indicates J=0—i.e., U=U�.
In “phase I” both bands are metallic; in “phase II” both bands are
insulating. “Phase III” is the orbital-selective Mott phase.
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pendence on U� of the upper boundary of the OSMP phase is
due to the simplified treatment of the spin-flip and pair-
hopping terms discussed above �as indeed confirmed by the
results of Sec. IV C�.

There is, however, one significant qualitative difference
between the slave-spin results and those of Koga et al. �in-
set�. We find that the end point of the OSMP phase does not
lie exactly on the U=U� line. Hence, within the slave-spin
mean field, the Mott transition becomes orbital selective
�OSMT� only when J exceeds a critical value. This is a
rather significant finding, since for J=0 the interacting part
of the Hamiltonian �Hint� has full SU�4� spin-orbital symme-
try, while for J�0 the symmetry is lower. In Ref. 9, it was
argued that indeed the enhanced symmetry of the J=0 case
prevents an orbital-selective Mott transition from occurring.
Our finding that a critical value of J is needed to induce an
OSMT �for t2 / t1=0.5� suggests that symmetry considerations
on Hint may not be essential to the existence of an orbital-
selective transition. After all, the difference in bandwidths
breaks the SU�4� symmetry from the kinetic energy part of
the Hamiltonian. In order to study this issue in more detail,
we perform in the next section a detailed study of the J=0
case.

A. OSMT at J=0

In this section, we focus on the J=0 case, for which Hint
has full SU�4� symmetry, and explore the nature of the Mott
transition in the full range of bandwidth ratio from t2 / t1=0 to
t2 / t1=1.

We find that the two bands undergo a common Mott tran-
sition at a single value of U=Uc as long as the bandwidth
ratio exceeds a critical threshold: t2 / t1�0.2. In contrast, for
t2 / t1�0.2, an orbital-selective Mott phase is found, despite
the enhanced symmetry of the interaction term. Figure 5 dis-
plays our result for the phase diagram as a function of t2 / t1
and U / t1. All transitions are found to be second order when
J=0. In Fig. 6, the quasiparticle weights of each band are
plotted as a function of U for several values of t2 / t1. The
localization of the narrower band manifests itself as a kink in
the quasiparticle weight of the wider band. As U is increased
further, the wide band in turn undergoes a Mott transition.
We observe that, within slave-spin mean field, the quasipar-

ticle weight of the wider band in the orbital-selective Mott
phase coincides with that of a single-band model. This is
because the slave-spin mean field neglects charge fluctua-
tions of the localized orbital, so that the physical behavior of
the wide band becomes effectively that of a one-band model
as soon as the narrow band becomes localized.

Our finding of an orbital-selective Mott transition at J
=0 when t2 / t1 is small enough, within slave-spin mean-field
theory, raises two questions. First, is this finding an artifact
of the slave-spin approximation or does it survive a full
DMFT treatment �i.e., is it a genuine feature of the infinite-
coordination model�?. Second, does this invalidate the argu-
ment based on the symmetry of Hint? The first question will
be addressed in detail in Sec. V in which a DMFT study will
be performed, using exact diagonalization and quantum
Monte-Carlo techniques. We will show that, indeed, a tran-
sition does exist at J=0 when t2 / t1 is small enough, but that
the nature of the intermediate phase �OSMP� at low energy is

FIG. 5. Dependence of the critical U on the ratio t2 / t1 at J=0
and T=0. All transitions are second order.

FIG. 6. Zm at J=0 and T=0 for t2 / t1=0.5 �top�, 0.25 �middle�,
0.15 �bottom�.
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a rather subtle issue. In order to address the second question,
let us briefly recall the symmetry argument of Koga et al.9

The argument relies on the gap to charge-excitations in the
insulating phase. When J=0, charge excitations mix the two
orbitals because of the enhanced SU�4� symmetry. Instead,
for J�0, the charge excitations of lowest energy are inde-
pendent in each orbital sector. As a result, it is reasonable to
expect �at least when the kinetic energy term is treated in a
perturbative manner� that the system can sustain two differ-
ent charge gaps when J�0 while the gaps might coincide for
J=0. We observe, however, that this argument applies to the
instability of the large-U Mott phase �in which both bands
are gapped� when U is reduced and suggests that, for J=0,
the Mott gap closes at the same value of U for both bands
when U / t1 is reduced. It does not preclude, however, that a
transition into an intermediate phase does exist, in which the
“localized” band �with the narrower bandwith� is not fully
gapped. As we shall find below, there is indeed clear evi-
dence from the DMFT results that the orbital-selective Mott
phase at J=0 is not a conventional Mott insulator and that
the narrow �“localized”� band does have spectral weight
down to zero energy in this phase. Obviously, the slave-spin
mean-field approach is too rudimentary to be able to capture
these fine low-energy aspects, but it is remarkable that it
does allow us to infer correctly that an intermediate phase is
indeed present.

B. Dependence of OSMT on J

Having clarified the situation for J=0, we come back to
the effect of a nonzero J, still within the slave-spin mean-
field approximation. Figure 7 shows how the phase diagram
as a function of the bandwidth ratio t2 / t1 and of U / t1 is
modified for J�0. One sees that a finite J enlarges the
orbital-selective Mott phase and favors an OSMT. The criti-
cal ratio �t2 / t1�c below which an OSMP exists increases
significantly—e.g., t2 / t1�0.55 for J=0.01U. With increas-
ing J , �t2 / t1�c tends towards 1. Hence a common Mott tran-
sition for both bands is recovered for all values of J only
when t1= t2. For a given bandwidth ratio t2 / t1, the Mott tran-
sition is orbital selective for J /U� �J /U�c. The dependence
of this critical ratio upon t2 / t1 �i.e., the location of the en-

point of the OSMP phase� is displayed in Fig. 8. �It should be
noted, however, that this critical ratio �J /U�c is underesti-
mated by our simplified treatment of the pair-hopping and
spin-flip terms.� Finally, we found that for finite J, the
insulator-to-OSMP transition remains second order, while the
metal-to-OSMP transition becomes first order.

C. Role of the spin-flip and pair-hopping terms in the Hund
Hamiltonian

In order to clarify the role played by the different terms of
the interaction �2�, we have also studied the Hamiltonian in
which the spin-flip and the �on-site� interorbital pair-hopping
terms are dropped: namely,

Hint = U�
im

ñim↑ñim↓ + �U − 2J��
i�

ñi1�ñi2�̄

+ �U − 3J��
i�

ñi1�ñi2�, �25�

which is easily represented in terms of slave spins as

Hint =
U�

2 �
i

�

m,�
Sim�

z �2
+ J�

i,m

�

�

Sim�
z �2

−
J

2�
i,�


�
m

Sim�
z �2

.

�26�

This study is also motivated by a comparison to quantum
Monte Carlo treatments in which the spin-flip and pair-
hopping terms are not easily treated. In Fig. 9 we display the
slave-spin phase diagram found for t2 / t1=0.5 at zero tem-
perature. One sees that the OSMP shrinks dramatically �al-
beit the two transitions do not actually merge�. This finding
sheds light on the results by Liebsch in Refs. 7, 8, and 10.
Because this study was based on quantum Monte Carlo cal-
culations, hence neglecting the spin-flip and pair-hopping
terms, it is natural that the orbital-selective phase can be
found only in a very narrow range of parameter space. The
key role of spin-flip and interorbital pair-hopping terms for
the OSMT was actually pointed out in the recent work of
Koga et al.11

In Fig. 10, we display the region in t2 / t1 ,J /U parameter
space where the Mott transition is found to be orbital selec-

FIG. 7. �Color online� Widening of the OSMT zone with in-
creasing J /U at T=0. Transition lines are shown for �from left to
right� J /U=0 �dashed line�, 0.01, 0.1.

FIG. 8. �Color online� Dependence of the critical J /U above
which the Mott transition becomes orbital selective on the ratio
t2 / t1 at T=0.
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tive, analogously to Fig. 8. The critical ratio �J /U�c is found
to be roughly exponential in t2 / t1. In contrast to the case of
the full Hamiltonian �Fig. 8�, we find that no OSMT exists
when t2 / t1 exceeds a critical bandwidth ratio t2 / t1�0.6 for
any J /U. �Note that the upper critical line at large J /U cor-
responds, however, to the unphysical case of an attractive
Coulomb interaction due to U−3J�0.�

Finally, we emphasize that the orbital-selective Mott
phase, which exists only in a very narrow range of couplings
for the simplified interaction �25� at T=0, is actually en-
larged at finite temperature, as shown in Fig. 11.

V. DYNAMICAL MEAN-FIELD THEORY FOR J=0 AND
THE NATURE OF THE OSMT PHASE

In this section, we study the two-band model with J=0
using dynamical mean-field theory. Our goal is to determine
whether the transition into an OSMP found within the slave-
spin approximation at small enough t2 / t1 is indeed a robust
feature and to shed light on the possible low-energy physics
of this phase. Within DMFT, the lattice model is mapped

onto a self-consistent two-orbital Anderson impurity
model20,1 with effective action

− �
0

	 �
0

	

d�d���
m�

dm�
† ���Gm

−1�� − ���dm����� +
U

2
�

0

	

d��n1

+ n2 − 2�2. �27�

The hybridizations to the effective conduction bath are self-
consistently related to the local interacting Green’s functions
Gm through

Gm�i�n�−1 = i�n − tm
2 Gm�i�n� . �28�

These equations are exact for an infinite-connectivity Bethe
lattice �corresponding to a semicircular noninteracting den-
sity of states �DOS��. Particle-hole symmetry with one elec-
tron per site in each band has been assumed. We focus here
on the paramagnetic solutions only. The DMFT equations
will be solved in the following using both an exact diagonal-
ization �ED� and quantum Monte Carlo �QMC� technique.

A. Exact diagonalization study

Within the adaptative exact-diagonalization method,1,21

the effective conduction-electron bath is discretized using a
finite number of orbitals, Ns. Hence, one considers the two-
orbital Anderson impurity Hamiltonian:

HAIM = �
m�

�
l=1

Ns

�lmalm�
† alm� + �

m�
�
l=1

Ns

Vlm�dm�
† alm� + H.c.�

+
U

2
�n̂1 + n̂2 − 2�2. �29�

The operators alm�, alm�
† describe the discretized conduction

bath degrees of freedom. The effective parameters ��lm ,Vlm

have to be determined self-consistently, according to Eq.
�28�: namely,

�
l=1

Ns 	Vlm	2

i�n − �lm
= tm

2 Gm�i�n� . �30�

The ED method becomes an asymptotically exact solver of
the DMFT equations in the limit Ns→�. In practice, how-

FIG. 9. �Color online� Phase diagram �U vs U�� for t2 / t1=0.5 at
T=0 for a two-band Hubbard model without spin-flip and pair-
hopping terms in the interaction.

FIG. 10. �Color online� Critical J /U for the model without spin-
flip and pair-hopping terms as a function of t2 / t1. At small ratios of
the bandwidths, the system displays an OSMT above a critical J /U
ratio which vanishes at t2 / t1=0.2. In less anisotropic systems large
Hund’s couplings are needed to realize OSMP’s, whereas beyond
the critical bandwidth ratio of 0.6 no OMST is possible within this
model.

FIG. 11. �Color online� Same phase diagram as in Fig. 9 but in
the U-J plane at T=0 and at 	t1=40.
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ever, one can handle only a finite number of effective sites.
For the case at hand, we used a T=0 Lanczos algorithm, with
Ns=5 �i.e., 5 effective sites per orbital�. The self-consistency
�30� is implemented on a Matsubara grid corresponding to a
�fictitious� inverse temperature 	 �taken to be in practice in
the range 200–500, which ensures a good resolution on the
low-energy physics�. We monitor in particular the quasipar-
ticle weights, approximated as Zm= �1−Im �m�i�0� /�0�−1

�where �n=� /	�2n+1��.
Our ED results for these quantities are displayed in Fig.

12 and compared to the slave-spin results, both as a function
of U for fixed t2 / t1 and as a function of t2 / t1 for fixed U
�inset�. It is clear from this figure that, within the energy
resolution which can be reached with Ns=5, an orbital-
selective transition is indeed observed in the DMFT �ED�
results when t2 / t1 is smaller than a critical value �close to
0.25�, in remarkable agreement with the slave-spin mean
field. The quantitative value of the critical coupling U / t1 for
the localization of the wider band is overestimated, as usual
in Gutzwiller-like schemes.

The phase diagram obtained with ED, as a function of
t1 / t2 and U / t1, is displayed in Fig. 13. Good qualitative
agreement with the slave-spin mean field is found �Fig. 5�.
We also studied the hysteresis properties by performing runs
for increasing and decreasing values of U / t1. This results in
two almost parallel transition lines in Fig. 13, one corre-
sponding to the disappearence of the metallic solution �ob-
tained from a series of runs for increasing U�, the other cor-
responding to the loss of the insulating nature of the wide
band �from a series of runs for decreasing U�. In the region
between these two lines, coexistence of two types of DMFT
solutions is found: for small t2 / t1, one of the solutions is
orbital selective Mott and the other is fully insulating, while
for larger t2 / t1, one of the solutions is metallic and the other
fully insulating. The actual thermodynamic transition is
given by the crossing of the free energies of the two solu-
tions. In contrast, no hysteresis has been found at the transi-
tion between the OSMP and metallic phases. This suggests
that the transition from the metallic to the OSMP phase is of
a very different nature than the Mott transition of the wider
band. If only the gap closure is monitored, then only one

transition is found at J=0, in agreement with the symmetry
argument of Ref. 9. As we shall demonstrate below, there is
indeed strong evidence that the orbital-selective Mott phase
at J=0 does not display a sharp gap in either orbitals.

B. Low-energy nature of the orbital-selective Mott phase at
J=0, from ED and QMC techniques

In order to understand better the nature of the orbital-
selective phase found at J=0, we take a closer look at the
local Green’s function for each orbital in each phase. In order
to do this, we also solved the DMFT equations using the
quantum Monte Carlo algorithm of Hirsch and Fye.22 The
ED and QMC methods are quite complementary. The former
applies at T=0 but suffers from a limited energy resolution
due to the small value of Ns, while the latter is limited to
finite temperature but can be made very precise by increasing
the number of time slices and the number of Monte Carlo
sweeps �we used 128 slices in imaginary time and up to 5
�105 Monte Carlo sweeps in practice�. Also, using the QMC
technique allows for a reconstruction of the spectral func-
tions using a numerical analytic continuation based on the
maximum entropy algorithm.

In Fig. 14, we display the ED results for the local Green’s
functions on the Matsubara axis, for a small bandwidth ratio
t2 / t1 and three different values of U corresponding to the
insulating, metallic, and orbital-selective Mott phases. In the
particle-hole-symmetric case, the Green’s functions are
purely imaginary on the Matsubara axis and related to the
spectral function Am��� of each orbital by

Im Gm�i�� = − 2��
0

+�

d�
Am���

�2 + �2 . �31�

When the spectral function Am��� has a gap, the integral in
the right-hand side of Eq. �31� has no singularity in the �
→0 limit, and hence Im Gm�i���� at low frequency. Fur-
thermore, Im Gm�i�� has a minimum for � of order �m /2,
with �m the gap in the mth orbital (as can be seen by replac-
ing Am��� by the simplified form 1/2����−�m /2�+���
+�m /2��, yielding Im Gm�i���−2� / ��2+�m

2 /4�). This is

FIG. 12. �Color online� Quasiparticle residues at J=0 in DMFT
�ED� for t2 / t1=0.1 �symbols�. For comparison, the slave-spin mean-
field approximation is also displayed �solid line�. Inset: same quan-
tities as a function of t2 / t1 at fixed U / t1=4.0. �The kinks in Z1 are
associated with the criticality of Z2.�

FIG. 13. �Color online� Phase diagram at J=0 and T=0 in ED
DMFT. The dashed line marks the disappearance of the Mott gap
�downward runs�. For U values around 5 there is coexistence be-
tween an OSMP and—depending on the bandwidth ratio—an insu-
lating or metallic phase.
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fully consistent with the ED results in the upper panel of Fig.
14, corresponding to a large value of U / t1=7, with both
orbitals insulating and having a gap of order U.

In the lower panel of Fig. 14, ED results are displayed for
U / t1=2, when both orbitals are metallic. In this case, the
low-frequency limit of Eq. �31� yields Im Gm�i�→0�
=−�Am�0�. This is consistent with the numerical results,
which also show that the Luttinger theorem is obeyed for
both bands: �Am�0�=1/ tm.

The central panel of Fig. 14 displays the ED results for an
intermediate coupling, corresponding to the orbital-selective
phase. One sees that the wider band has metallic behavior,
with A1��� still reaching the Luttinger value at �=0. In con-
trast, Im G2�i�� appears to vanish as �→0, within the en-

ergy resolution of ED. However, in striking contrast to the
upper panel �insulating phase�, the minimum in Im G2�i�� is
at a very-low-frequency scale which is obviously not given
by U. This strongly suggests that A2��� displays low-energy
peaks very close to �=0 and may even have spectral weight
down to arbitrary low frequency.

Figure 15 compares the ED and QMC results for
Im G1,2�i�� in the strongly anisotropic case t2 / t1=0.1 for a
relatively small Coulomb interaction U / t1=1.6, easier to
study with the QMC technique. These parameters also cor-
respond to the orbital-selective phase �Fig. 13�. Very good
agreement between the two methods is found, confirming the
above analysis �and confirming also the Luttinger value for
the wider band with greater accuracy than in ED�. The cor-
responding spectral functions obtained by the maximum-
entropy method are displayed on Fig. 16. The spectral func-
tion of the broader band is only slightly modified as
compared to the noninteracting DOS. Small shoulders are
visible, at the position of the lower and upper Hubbard
bands, the Luttinger theorem is obeyed, and some of the
spectral weight is transfered to higher energies as expected.
The narrow band, however, is obviously in a strong-coupling

FIG. 14. Imaginary part of the Green functions of the two bands
at low energy for t2 / t1=0.16. Upper panel: U / t1=7.0, both bands
are insulating. Central panel: U / t1=4.0, orbital-selective Mott
phase. Lower panel: U / t1=2.0, both bands metallic. The dashed
curves correspond to the orbital with narrower bandwidth. All en-
ergy scales are in units of t1.

FIG. 15. �Color online� Imaginary parts of the Green’s functions
in Matsubara space for t2 / t1=0.1, U / t1=1.6. Solid and dashed lines
represent the exact diagonalization results for the wide and narrow
bands, respectively. Circles and squares represent QMC data for the
same quantities at 	t1=40.

FIG. 16. �Color online� Spectral function for t2 / t1=0.1, U / t1

=1.6 at 	t1=40 in QMC DMFT. The solid and dashed red lines
denote the narrow and wide bands, respectively. The DOS of the
noninteracting system �wide band only� is given for comparison.
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regime, with well-marked upper and lower Hubbard bands.
The most striking features, however, are the two narrow
peaks at low frequency, which can be interpreted either as a
split quasiparticle resonance or as the sign of a pseudogap
�partially filled by thermal excitations since the QMC calcu-
lation is for T / t1=1/40�.

Hence, the general conclusion of this analysis is that the
orbital-selective phase found for J=0 at small enough t2 / t1 is
not a conventional Mott phase in which the �“localized”�
orbital with narrower bandwidth would display a sharp gap.
Instead, two narrow peaks exist near �=0 and finite spectral
weight is found down to low energy. Our numerical data are
consistent with a pseudogap behavior, but a precise charac-
terization of the low-energy nature of the phase will require
further effort, using highly precise techniques at low energy
such as the numerical renormalization group. This is left for
future work. Such a study should also clarify in which pre-
cise sense the narrower band is “localized” in this phase and
whether the orbital-selective transition is a true phase transi-
tion or rather a sharp crossover.

VI. INSTABILITY OF THE ORBITAL-SELECTIVE MOTT
PHASE UPON INTERBAND HYBRIDIZATION

To what extent an orbital-selective Mott phase may occur
in practice depends on its stability with respect to perturba-
tions. This is an important issue in view of the fact that the
Hamiltonian considered in this paper has a rather high degree
of symmetry. In this last section, we consider the effect of an
hybridization between the two orbitals �also recently consid-
ered in Ref. 25�—i.e., of a local nondiagonal term

Hhyb = V�
i�

�di1�
† di2� + di2�

† di1�� . �32�

We note that this term could be eliminated by diagonalizing
the noninteracting Hamiltonian. However, in the new basis,
the interaction terms will be modified: terms will be gener-
ated which will have the same physical effect than a hybrid-
ization �and will involve nonlocal contributions in general�.
Indeed, as emphasized in Ref. 23, the existence of an OSMT
is a basis-independent issue. In a general two-band model, a
Mott transition is signaled, when approached from the me-

tallic side, by a low-frequency singularity in �Î− �̂���
= Ẑ−1�+¯, where �̂ and Ẑ are the self-energy and
quasiparticle-weight matrices, respectively. An OSMT is

characterized by Ẑ having one zero eigenvalue while the
other one remains finite. Being associated with the rank of

the Ẑ matrix, it is a basis-independent notion. Our choice of
basis is such that the interaction terms have the form speci-
fied above.

A. Physical considerations

Some statements about the effect of a finite hybridization
can be made on general physical grounds �focusing for sim-
plicity on the J=0 case�. First, for small values of U when
both orbitals are itinerant, it is obvious that a hybridization
will not change qualitatively the low-energy nature of the

metallic phase. Also, at very large U, when both orbitals are
localized and a gap exists in both orbital sectors, we expect
the presence of a gap to be a robust feature which persists in
the presence of V. However, it is also clear that introducing V
into this gapped insulator allows the local moments formed
in the Mott insulating state at V=0 to screen each other. This
occurs through the formation of on-site bonding and anti-
bonding “molecular” levels mixing the two orbitals. As a
result, the local-moment Mott insulator is expected to be
replaced by a Mott insulator in which local singlets are
formed on each site. Note that this is true even at finite J, but
only as long as J�V. When J�V, a triplet groundstate �S
=1,Sz=0� is rather expected based on the analogue crossing
of groundstates that is found in the atomic limit. The
intermediate-U regime, in which the system is in the OSMP
at V=0, is more delicate. Because orbital 1 is itinerant, a
Kondo screening process can take place, which will screen
the local moment �formed by orbital 2 when V=0�. The re-
sulting state can a priori be either a heavy-fermion metallic
state involving quasiparticles with a large effective mass or
�because we are considering the half-filled case� a Kondo
insulating state in which a gap is formed in the low-energy
quasiparticle spectrum. Below, we study this question using
the slave-spin approach and find that both phases can be
obtained, depending on the value of U and V. A larger V
favors the opening of a gap, as expected. Using a general
low-frequency analysis, we also demonstrate that, for small
values of V, the heavy-fermion metallic state, and not the
Kondo insulating phase, is induced. We note, finally, that
both the Kondo-insulating phase and the phase obtained at
large U when J=0, in which on-site local moments in differ-
ent orbitals screen each other have a singlet ground-state. It
is therefore not obvious a priori whether these two phases
are continuously connected,25 as found in Ref. 26 and 27 for
a related �but different� model, or whether a phase transition
between them can exist. We return to this point at the end of
this section.

In any event, these physical arguments imply that the
orbital-selective Mott phase is unstable with respect to the
introduction of a nonzero hybridization at zero-temperature.
Of course, for temperatures above the Kondo scale, the phys-
ics of the OSMP can be recovered. This is an important point
in view of the possible experimental relevance of the OSMP.

B. Slave-spin mean-field study

We now turn to a more quantitative study of the effect of
a finite hybridization �32� using the slave-spin mean-field
approximation. Our aim is not to establish a full phase dia-
gram for all values of the parameters U, J, and V, but rather
to investigate whether this approach does support the physi-
cal expectations discussed above. A more extensive investi-
gation will be presented in a future publication.

In Fig. 17, we display the quasiparticle residues Z1 �for
the broad band� and Z2 �for the narrow band� as a function of
U and for increasing values of the hybridization V. It is seen
that, starting from the OSMP in which Z1�0 and Z2=0 for
V=0, one obtains either a phase in which both Z1 and Z2 are
nonzero �i.e., Kondo screening takes place� or an insulating
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phase in which Z1=Z2=0. This demonstrates that the hybrid-
ization is indeed a singular perturbation on both the J=0 and
finite-J orbital-selective Mott phases, in agreement with the
physical arguments above.

In order to check whether the Kondo-screened phase is a
�heavy-fermion� metal or whether it is gapped �Kondo insu-
lator�, we have plotted in Fig. 18 the band gap of the auxil-
iary quasiparticles found within slave-spin mean-field theory
�the plot is for J=0, the J�0 case being similar�. Note that
due to the factorization of the Green’s function,

�d���m�dm�
† �0�� = 4�Sx�0�m�Sx���m���fm����fm�

† �0�� ,

�33�

the physical gap in the insulating phase will be of the order
U. For small and intermediate values of V, the phase with
Z1�0 and Z2�0 is metallic �gapless� �see Fig. 18�. The
orbital-selective Mott phase is replaced by a heavy-fermion
regime, as shown in Fig. 17, in which the orbital with nar-
rower bandwidth acquires a very large effective mass �corre-
sponding to a very low quasiparticle coherence scale Z2�.
This is also in qualitative agreement with our recent study of
the periodic Anderson model with direct f-electron
hopping.23 Only beyond a critical value of V is a gapped

Kondo insulator found. As discussed below, this can in fact
be proven generally, beyond the mean-field approximation
used here.

At small to intermediate values of V, the two Mott tran-
sitions associated with the OSMP at V=0 are therefore re-
placed by a single nonselective transition from a �heavy-
fermion� metal to an insulator as U is increased. Within the
slave-spin mean field, this unique metal-to-insulator transi-
tion is found to be first order and to occur at a critical value
of U which lies in between the critical interactions of the
metal-OSMP and OSMP-insulator transitions.

For larger values of V, the OSMP phase is replaced by a
Kondo-insulating phase with Z1 ,Z2�0 but a finite quasipar-
ticle band gap �lower plot in Fig. 17�. Within slave-spin
mean-field theory, a phase transition takes place, as U is
increased, towards another insulating phase with Z1=Z2=0
�corresponding to the fact that the Kondo effect does not take
place when V is turned on starting from a Mott phase for
both orbitals with a large gap�. As pointed out above, how-
ever, the large-U insulating phase at J�V also has a singlet
ground state, however, due to interorbital screening. Whether
this phase transition is an artifact of the slave-spin mean field
or whether it is indeed present in a more accurate DMFT
treatment is a question to which we shall return below.

C. General low-frequency analysis

In order to understand better the nature of both the metal-
lic and insulating phases to which the OSMP is driven for

FIG. 17. �Color online� Quasiparticle residues Z1 and Z2 within
slave-spin MFT for finite V. Top: t2 / t1=0.5, J=0.25U for �from
right to left in the upper manifold, wide band; from left to right in
the lower manifold, narrow band�: V=0 �OSMT system�, V / t1

=0.1,0.15,0.2,0.3. Bottom: t2 / t1=0.1, J=0 for �from right to left
in the upper manifold, wide band; from left to right in the lower
manifold, narrow band� V=0 �OSMT system�, V / t1=0.05,0.1,0.2.
Insets show the same graph in logarthmic scale.

FIG. 18. �Color online� Gap amplitude of the auxiliary fermions
�see text� and quasiparticle residues within slave-spin MFT for two
values of V. Top: t2 / t1=0.1, J=0 for V / t1=0.1 �upper panel� and
V / t1=0.6 �lower panel�. The corresponding critical V for the non-
interacting system is �D1D2�0.63 in this case.
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V�0, we perform here a low-energy analysis in terms of a
renormalized quasiparticle band structure �see also Ref. 27�.
We focus on the case in which the Kondo effect does take
place as V is turned on, resulting in both quasiparticle resi-
dues being finite. We thus keep the following terms in the
low-frequency expansion of the self-energy:

�11��� = ��1 − 1/Z1� + ¯ ,

�22��� = ��1 − 1/Z2� + ¯ ,

�12��� = �12�0� + ¯ . �34�

The low-energy quasiparticle band structure is then given by

�� − Z1�1�k���� − Z2�2�k�� − Z1Z2�V + �12�0��2 = 0.

�35�

From this expression, it is easily seen that a gap is present
whenever

Veff � �D1 effD2 eff. �36�

In this expression, Veff is the effective hybridization between
low-energy quasiparticles and D1 eff ,D2 eff the renormalized
quasiparticle half-bandwidths given by

Veff = �Z1Z2�V + �12�0��, D1 eff = Z1D1, D2 eff = Z2D2.

�37�

Remarkably, Z1 and Z2 drop out from �36�, and the condition
for a quasiparticle band gap therefore reads

V + �12�0� � �D1D2. �38�

If this condition is satisfied �and Z1 ,Z2�0�, one has a Kondo
insulator phase, with a quasiparticle band gap given by

�g = ��D1 eff − D2 eff�2 + 4Veff
2 − �D1 eff + D2 eff� . �39�

In the opposite case, a heavy-fermion �gapless� metallic
phase is formed.

From �38�, it is seen that it is the off-diagonal component
of the self-energy �induced by V� which plays the key role in
deciding whether a gap opens or not. From the same equa-
tion, it is also clear that a band gap cannot open for arbitrary
small V. Indeed, at small V ,�12 grows at most proportionally
to V, and hence the left-hand side of �38� is small, while the
right-hand side �RHS� is finite �note that the RHS involves
the bare bandwidths�. Hence, a critical value of V is required
to open a band gap and enter the Kondo insulating phase,
starting from the OSMP. Note that this analysis is general
and relies only on Fermi-liquid considerations, indepen-
dently of the specific method used to solve the model. Note
also that the situation is very different when one of the bare
bands is dispersionless �D2=0�, as is the case of the periodic
Anderson models considered in Refs. 26 and 27. In this case,
it is clear from �38� that an arbitrarily small V induces the
Kondo-insulating state. The formation of a heavy-fermion
metallic state induced by a nonzero hybridization in a gen-
eralized periodic Anderson model with D2�0 �direct
f-electron hopping� was also investigated in our recent
work.23

The slave-spin mean-field results presented above can be
placed in the context of this general low-frequency analysis.
Within this approach, one has

Z1 = 4�S1
x�2, Z2 = 4�S2

x�2, Veff = 4�S1
xS2

x�V . �40�

It is important to realize that this approach does provide an
off-diagonal component of the physical electron self-energy,
which, using Eqs. �37�, is given by

�12�0�
V

=
�S1

xS2
x� − �S1

x��S2
x�

�S1
x��S2

x�
. �41�

Note that in more conventional slave-boson approaches, the
physical electron operators are related to the quasiparticles
by a slave-boson condensation amplitude which is a c num-
ber �dm

† =�Zmfm
† �. As a result, Veff=�Z1Z2V, and no off-

diagonal component of the self-energy is present. In such
slave-boson approaches, the condition for the presence of a
quasiparticle band gap is therefore entirely unrenormalized
by interactions and reads V /�D1D2�1. This is an oversim-
plification which is not present in the slave-spin approach.
There, the criterion for the opening of a gap reads

V
�D1D2

�
�S1

x��S2
x�

�S1
xS2

x�
. �42�

However, despite the renormalization of the hybridization by
the off-diagonal self-energy, we find that in practice this cri-
terion is very close to the noninteracting one, which gives a
reasonable approximation of the critical hybridization neces-
sary to open a band gap.

Finally, we comment on the phase transitions between the
different phases induced by a nonzero hybridization. At
small V, it is clear that there must exist a phase transition
between the metallic �gapless� heavy-fermion phase and the
insulating �gapped� phase, as U is increased �as indeed seen
in Fig. 18, top panel�. The situation is less clear at larger V.
There, if J�V, an actual transition is expected as U is in-
creased, owing to the fact that a singlet groundstate is re-
placed by a triplet one, as soon as the system becomes insu-
lating. When V�J instead, we always expect an insulator
with a singlet ground state. However, the mechanism behind
this singlet formation is rather different at smaller and larger
values of U. In the former case, Kondo screening dominates
and the singlet is formed by screening the local moment in
orbital 2 by the electrons in orbital 1. At larger U, the Kondo
coupling is smaller, and it is the formation of an interorbital
molecular bonding level �due to V� which is responsible for
the singlet formation. Within slave-spin mean-field theory,
we find a phase transition between these two kinds of insu-
lator as U is increased, the latter one being signaled by Z1
=Z2=0 �Fig. 18, bottom panel�. However, it is not clear
whether this phase transition is a real feature or an artifact of
the slave-spin approximation. In Ref. 25, Koga et al. recently
suggested that these two phases should be adiabatically con-
nected, as found also in the study of the periodic Anderson
model with correlated conduction electrons26,27 �note, how-
ever, that the present model is different, in that both bands
have a dispersion and that an interorbital interaction is
present�. The problem is qualitatively similar �but not
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equivalent, because of the interorbital interaction� to the two-
impurity Kondo problem,28 in which the interimpurity singlet
�RKKY� fixed points and the Kondo singlet fixed points are
in general adiabatically connected �except in the special case
of particle-hole symmetry, where a phase transition does oc-
cur�. Note that it is well known29 that for this latter model,
slave- boson approximations do lead to spurious first-order
transitions. A full answer to this question is beyond the scope
of this paper and is left for a future investigation, together
with a complete phase diagram as a function of interaction
strength and hybridization.

VII. CONCLUSION

In this article, we have studied whether the Mott transition
of a half-filled, two-orbital Hubbard model with unequal
bandwidths occurs simultaneously for both bands or whether
it is a two-stage process in which the orbital with narrower
bandwidth localizes first �giving rise to an intermediate
“orbital-selective” Mott phase�. In order to study this ques-
tion, we have used two techniques. The first is a mean-field
theory based on a new representation of fermion operators in
terms of slave quantum spins. This method is similar in spirit
to the Gutzwiller approximation, and the slave-spin represen-
tation has a rather wide range of applicability to multiorbital
models. The second method is dynamical mean-field theory,
using exact diagonalization and quantum Monte Carlo solv-
ers.

The results of the slave-spin mean field confirms several
aspects of previous studies,9,11 and, in particular, the possi-
bility of an orbital-selective Mott transition. However, some
of the conclusions differ from those of previous work. Spe-
cifically, the slave-spin approximation suggests that a critical
value of the bandwidth ratio �t2 / t1�c exists, such that the
Mott transition is orbital selective for an arbitrary value of
the Coulomb exchange �Hund coupling� J when t2 / t1
� �t2 / t1�c. When t2 / t1� �t2 / t1�c ,J, has to be larger than a
finite threshold for an OSMT to take place. This suggests that
the existence of an OSMT is not simply related to the sym-
metry of the interaction term only. In particular, an interme-
diate phase is found for J=0 at small t2 / t1.

We have studied whether DMFT confirms these findings
and found that the main qualitative conclusions on the exis-
tence of the orbital-selective phase are indeed the same, but
that the nature of the intermediate phase at J=0 is a rather
subtle issue. Indeed, the narrow band does not have the prop-
erties of a gapped Mott insulator in this phase and displays

finite spectral weight down to arbitrary low energy. This is,
for example, consistent with a pseudogap behavior but re-
quires further studies to be fully settled �using, e.g., low-
energy techniques such as the numerical renormalization
group�.

We note also that our study emphasizes the key role of the
exchange and �on-site� interorbital pair hopping terms in the
Coulomb Hamiltonian in stabilizing the orbital-selective
phase, in agreement with Koga et al.11

Finally, we found that the orbital-selective Mott phase is
generically unstable with respect to an interorbital hybridiza-
tion V. In the presence of such a term, two possible phases
are obtained, depending on the strength of U and V. Either
the narrow orbital acquires a large �but finite� effective mass,
corresponding to a heavy-fermion metallic state. Or the sys-
tem is an insulator with a gap. This insulator differs from the
Mott insulator at V=0 since it has a singlet ground state. This
is due to screening processes, involving both Kondo ex-
change and the formation of an on-site molecular �bonding�
level. Whether one has in fact two different insulating phases
separated by a phase transition �each phase being dominated
by one of these screening processes�—as obtained by slave-
spin mean-field theory—or whether one has a simple
crossover25 is an open question which deserves further study.

Of course, at intermediate temperature �above the quasi-
particle coherence scale of the narrower band, but below that
of the wider band�, a physics similar to the orbital-selective
Mott phase can be recovered even in the presence of a finite
hybridization. This orbital-selective heavy-fermion state
might be relevant to the physics of Ca2−xSrxRuO4. This is
indeed supported by the recent angular magnetoresistance
oscillations experiments of Balicas et al.24

Note added. During the completion of this paper, we
learned of the work31 by M. Ferrero, F. Becca, M. Fabrizio,
and M. Capone, reaching similar conclusions.
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