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Some consequences of a strong lattice resonance in the working frequency region of a 2D photonic crystal
are investigated. It opens for two kinds of gaps in the dispersion relations: structure gaps and a polaritonic gap.
A transverse optical oscillator model for ceramic beryllium oxide has been used to simulate the dielectric
function of the polaritonic medium. The effective index of refraction is different on either side of the reso-
nance, which causes BeO to act both as a high index material and a low index material. Gap maps for two
kinds of triangular structures were calculated: BeO cylinders in air or in a high-index, nondispersive dielectric.
These gap maps show appearance and disappearance of the transverse electric, transverse magnetic, and
complete structure gaps as function of the packing fraction r /a, and the lattice constant a. The results illustrate
the importance of whether the dielectric or the polaritonic material has the higher effective dielectric function.
The effects of absorption, included by the damping parameter of the oscillator model, are briefly discussed.
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INTRODUCTION

In this work we shall report results from detailed calcula-
tions of the photonic band structures for a 2D periodic struc-
ture with lattice constants comparable to the wavelength of
infrared radiation. More specifically, one of the components
in the structure will be beryllium oxide �BeO�, which is char-
acterized by an infrared band with strong absorption and dis-
persion caused by the excitation of transverse optical
phonons in the lattice. The explicit cases will be a triangular
lattice of BeO rods in air or a silicon matrix, or the corre-
sponding inverse structures: holes of air or Si rods in a BeO
matrix. The major motivation for the study is that such sys-
tems may exhibit two kinds of photonic gaps: structural and
polaritonic.1 The first kind is an effect of coherent scattering
from periodically arranged structural units, while the second
is a consequence of the dielectric function of the polaritonic
component. In the polaritonic frequency range, i.e., �T��
��L, where �T and �L are the zero wave vector frequencies
of the transverse and longitudinal optical phonon branches
respectively, the dielectric function is negative, which pre-
vents propagation. This sort of structure is classified as a
polaritonic photonic crystal �PPC�. It is our ambition to
present gap maps for this 2D PPC system as a further devel-
opment of the 2D dielectric only gap maps presented by
Winn et al.2 Our study is limited to one specific material, but
the qualitative conclusions are valid for a large group of
polar compounds: oxides, carbides, nitrides, alkali halides,
etc. that have a Reststrahlen band.3

Numerical calculations on photonic crystals �PhC� have to
rely on simple models because calculations in these cases
with both strong dispersion and absorption are demanding
and require careful considerations.4 There are several pro-
gram packages available for calculations of photonic band
structure,5 but only some of them are suited in this case, and
even then considerable attention is needed. It is interesting to
compare the behavior of the two kinds of gaps when design

parameters of the photonic crystals are altered. In their early
work of this nature, Sigalas et al.1 calculated transmittance
spectra for an 8 layer slab of square structure of rods, having
a gallium arsenide model dielectric function, in air. The re-
sults consistently exhibited a strong minimum around the
lattice resonance, i.e., the polaritonic gap. Depending on the
value of the lattice constant, the positions of the structure
gaps are shifted. The authors introduced the name twin gaps
for split structure gaps, one on each side of the polaritonic
gap. Each such pair is traced back to one gap obtained with
a constant dielectric function instead of the GaAs model. The
clear identification of the different gaps is partly a product of
using a real dielectric function, i.e., without absorption. The
authors note that the introduction of absorption distorts the
gap edges to an extent that may make their identification
problematic. A short time after the results of Sigalas et al.
came out, the Irvine group and collaborators managed to
adapt the plane-wave method to calculations of the full 2D
band structure also for situations with strong dispersion, but
initially still without absorption.6,7 The appearance of a po-
laritonic gap and flat bands close to �T was noted even for a
low packing fraction of the polar component. A little later the
Nanjing group managed to implement the plane wave
method �PW� in a way that permitted calculation of the pho-
tonic band structure in the presence of strong dispersion.8,9

This represents a difficulty, since solutions � are obtained as
a result of the calculations using the wave vector K as input,
and at that stage the dispersive dielectric function ���� is
unknown. They used a model with a real ����, i.e., without
absorption, and even then they caution that the bands are
only reliable for frequencies ���T. Their band structures
include one characteristic flat band just under the polaritonic
gap. This result was more developed in recent MIT work in
which a new calculational method, based on vectorial eigen-
mode expansion, was used.10 In this scheme, no matrix in-
version is needed, so calculations around the resonance �T,
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where the dielectric function rapidly shifts from large posi-
tive to large negative values, suffer less from numerical in-
stability. With this method a fine structure of flat bands both
below and just above �T was resolved. The authors also
presented a detailed description of the rapid shifts in electric
field pattern that occurs in a narrow frequency range around
�T. Very recently, yet another technique was presented by
Toader and John.11 For a D-dimensional PhC the calculations
are performed in a �D+1�-dimensional space in which the
photonic band structure is obtained as the intersection be-
tween the dispersion surface and the function ����. Only the
case of zero absorption is considered, but it is observed that
a polaritonic component from a small density of independent
oscillators may synergetically enhance the photonic band
gap.

TIME-DOMAIN METHOD FOR BAND STRUCTURE
COMPUTATION

The band structures obtained in this work were computed
by the finite-difference time-domain �FDTD� method.12 To
model polaritonic materials, time-domain auxiliary differen-
tial equations �ADEs� are utilized to link the polarization and
the electric flux density.13,14 A short description of the ADE
method is given below, and the details can be found in Refs.
12–14.

The time dependent Maxwell equation is

� � H =
�D

�t
+ J , �1�

where J���=�P /�t is a polarization current used to describe
the material response, and P is the associated time-dependent

polarization. In the frequency domain, the dielectric function
is described by the Lorentz model,

���� = ���1 +
�L

2 − �T
2

�T
2 − �2 − i��

� . �2�

Recall that the displacement field

D��� = �0����E��� = �0E��� + P��� �3�

and J���=−i�P��� if a harmonic time dependence e−i�t is
assumed. We can then equate the two expressions for P���:

i
J���

�
=

�0����L
2 − �T

2�
�T

2 − �2 − i��
E��� �4�

giving the equation

��T
2 − �2 − i���J��� = − i��0����L

2 − �T
2�E��� . �5�

Perform an inverse Fourier transformation of each term of
Eq. �5� using the differentiation theorem for the Fourier
transform12–14 one then obtains

�2J�t�
�t2 + �

�J�t�
�t

+ �T
2J�t� = �0����L

2 − �T
2�

�E�t�
�t

, �6�

which is the time-domain auxiliary differential equation.
Equation �6� together with �2� can then be easily adapted in
the standard FDTD method for solving the Maxwell equa-
tions.

The computational domain is chosen to be a primitive cell
for a square lattice and a rectangular unit cell which contains
two primitive cells for triangular lattice cases. Periodic
boundary conditions, which satisfy the Bloch theorem, are
used for the FDTD field components outside of the compu-
tational domain,15 as given below, e.g., for the magnetic
field:

H�r + L� = eikLH�r� , �7�

where k is the wave vector and L is the lattice vector related
to the primitive cell.

Special consideration should be given for the initial field
distributions to excite eigenmodes of PPCs. In particular,
since the computational domain contains two primitive cells
for triangular lattice cases, randomly chosen initial fields
could give a folded version of the band structure, containing
both band structures from two primitive cells. To overcome
this problem, an initial field which satisfies the Bloch theo-
rem in both primitive cells is used in our computations.15

FIG. 1. �Color online� The triangular lattice �left� and the cor-
responding first Brillouin zone with the high symmetry points indi-
cated �right�. The y axis is perpendicular to the plane of the paper.

FIG. 2. The TE �a� and TM �b�
band structure for a triangular lat-
tice of dielectric cylinders, �
=10.6, in an air matrix. The lattice
constant is a=2.5 	m and the
packing fraction is r /a=0.44. The
small omnidirectional gaps: TE
around 0.135 eV and TM around
0.105 eV are shaded.
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However, this safeguarding mechanism is not perfect; due to
numerical problems some erroneous solutions due to band-
folding from the use of a nonprimitive unit cell may appear.

For a given wave vector k, the electromagnetic fields
starting from the initial field distributions are evolved in the
time domain by the FDTD method. Fields recorded in some
randomly chosen points are then Fourier transformed into the
frequency domain. The peaks of the frequency spectra are
eigenmodes of the PPC at the specified wave vector k. The
band structures are thus obtained from the relation between k
and the eigenmodes.

RESULTS AND DISCUSSION

In this work all calculations were made using the FDTD
method described above. In Fig. 1 above the structure and
the corresponding first Brillouin zone are shown with the
conventional high symmetry point labels.

To establish a basis for comparisons we have calculated
the band structures for four triangular structures of nondis-
persive dielectric cylinders in an air matrix and the corre-
sponding inverse structures. Two with a highly refracting
medium, �=10.6, representative for GaAs in the IR range.16

In the other two cases we selected a lower value: �=2.99
which is the high frequency limit for the polaritonic material
we want to investigate later. The lattice constant was chosen
as a=2.5 	m and the packing fraction r /a=0.44 in all four
cases. The results above for the two direct structures, Figs. 2
and 3, show no complete gap, i.e., a common gap energy
interval for all directions and both transverse electric �TE�
and transverse magnetic �TM� modes. There are, however,
separate omnidirectional gaps for the two polarizations in the
high index case. These omnidirectional gaps are indicated in
Fig. 2 by the shaded areas, and they are consequences of the

high dielectric contrast between GaAs and air. This point is
illustrated by the following band structure in Fig. 3 calcu-
lated for the lower value of the dielectric function. There are
no omnidirectional gaps in these two cases because of the
much lower dielectric contrast.

The band structures for the corresponding inverse cases
are shown in Figs. 4 and 5. Figure 4 is remarkably different
from Fig. 2 in that there is a large TE gap that fully overlaps
with the TM gap that is much smaller. This growth of the TE
gap when shifting to the inverse structure is in agreement
with the the principle of selecting the distribution of modes
between the high and low index components of the PhC that
satisfies the variational principle.17 It implies that TM modes
are favoured when there is a connected lattice of low index
material, and TE modes when the high index material is
connected and separating islands of low index material. The
corresponding low-index pair of Figs. 3 and 5 demonstrate
the importance of the index contrast. In this case only the TE
mode of the inverse structure has a omnidirectional gap.

With the insight that the TE and TM are favored in the
inverse and direct structures, respectively, one realizes that
the packing fraction plays a very important role in terms of
complete photonic band gaps. First, the r /a value 0.44 is so
high that the average refractive index will be lower in the
inverse than in the direct structure. In the direct structure, the
r /a ratio has to be large enough for the TE gaps to open,
whereas it also has to be small enough to let the lattice re-
main connected by low index material. It was shown earlier
by gap map calculations2 that the direct structure of dielectric
cylinders in a low index matrix does not exhibit a complete
photonic band gap. The inverse structure with low index cyl-
inders in a high index matrix, however, does.

The introduction of a polaritonic material into a photonic
crystal has been studied previously.1 Marked effects on the

FIG. 3. The TE �a� and TM �b�
band structures for a triangular
lattice of dielectric cylinders, �
=2.99, in an air matrix. The lattice
constant a=2.5 	m and the pack-
ing fraction r /a=0.44.

FIG. 4. The band structure for
TE �a� and TM �b� modes of a tri-
angular lattice of air holes in a di-
electric matrix, �=10.6. The lat-
tice constant is a=2.5 	m and the
packing fraction is r /a=0.44, i.e.,
the inverse structure of that in Fig.
2. Note the presence of a small,
but complete, photonic band gap
around 0.21 eV.
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dispersion of the photonic bands was noted for filling frac-
tions as low as f =0.01.7 Specifically it was found that as
little as 1% polaritonic material in a 16 layer square photonic
BeO crystal yields an optical transmittance below 20% in the
polaritonic region.18 The Lorentz one-oscillator model, given
above in Eq. �2�, exhibits a dramatic behavior around the
resonance �T. The dielectric function ����
��0� when ap-
proaching �T from below. The dielectric function then has a
pole at �T, which results in very large positive values of � on
the low energy side—which is “useful” in photonic crystals,
since then a very large dielectric contrast can be reached in
this region. At the high energy side of the pole the real part
of � is strongly negative for �T����L, i.e., the material is
optically metal-like. For ���L it is positive, 0�����.
This implies that the polaritonic material can act both as low
and high index material in a photonic crystal, depending on
the frequency. Cylinders of a polaritonic material, embedded
in a dielectric matrix with �������0�, would be the low
index material above �L, and the high index material below
�T. The importance of whether the polaritonic material is the
high or low index material was recently discussed for a 1D
photonic crystal.19

In this work we have focused on beryllium oxide �BeO�
which is a polar material with strong dispersion around
0.1 eV. It can be modeled by the Lorentz one-oscillator
model with parameters20 listed in Table I below. The param-
eters given in Ref. 20 are for single crystalline BeO, which is
anisotropic. In this case, we prefer to treat ceramic BeO
which is isotropic, and which we have previously investi-
gated experimentally.21 The resonances for the parallel and
perpendicular components of the electromagnetic waves
have therefore been averaged in Table I. As mentioned in the
Introduction, our results can be generalized to a wide group
of polar compounds.

We now return to the band structure calculations and in-
troduce BeO as one component in the photonic crystal. For a

unit cell constant a=2.5 	m, the photonic band gap is well
separated from the polaritonic gap. For this value, and a
packing fraction r /a=0.30, the band structure for a triangu-
lar structure of BeO cylinders in air was calculated. The band
diagrams for TE and TM modes are shown in Fig. 6 below.
In this case, there are structural gaps around 0.22 eV, but
none that is omnidirectional. There are, however, TE and TM
gaps within the very prominent polaritonic gaps, with a small
overlap. An interesting comparison to make is with the band
structure for the inverse of this structure, shown below in
Fig. 7, with air holes in a BeO matrix. The lattice constant
and the packing fraction are unchanged. In Fig. 7 there is a
small TE photonic band gap, but no TM gap, which is analo-
gous to the dielectric case discussed above. The structure is a
connected high index structure, which favors splitting of TE
modes into band gaps. In the TM case the polaritonic gap is
reduced in width because of penetration by bands from
above in a volume around �.

At this stage another comparison between Figs. 6 and 7
with dispersion, and the non-dispersive cases in Figs. 2–5 is
of interest, even if their r /a values are different. Taking the
direct structures first, we notice the similarities between the
behavior of bands at low frequencies ���T in the high-
index cases Figs. 2 and 6. One difference is that the intro-
duction of the polariton gap in Fig. 6 has the effect to depress
the lower energy bands further down. This is in agreement
with our previous observation of interaction between photo-
nic and polaritonic bands.18 In the high frequency range: �
��L it is the low-index dielectric case, Fig. 3, that is similar
to the dispersive case in Fig. 6, in accordance with the re-
marks above that a polaritonic material can act both as a
high-and low-index material. Again the frequency scale is
compressed in Fig. 6 because of the presence of a polaritonic
gap. An analogous comparison can be made when comparing
the bands for the inverse structures, i.e., Figs. 4 and 5 on one
side, and Fig. 7 on the other. In Fig. 7�b�, i.e., the TM mode,
the low energy bands, i.e., for ���T, are strongly flattened
by the polaritonic gap.

Previous work has shown that a large dielectric contrast is
needed to open a complete photonic band gap. One way of
achieving this is to use a triangular lattice of holes in BeO,
and fill the holes with a dielectric such as GaAs ��=10.6� or
Si ��=16.0�—cases to which we will return below.

We shall briefly discuss the influence of the absorption in
the polaritonic component. The absorption enters via the Lor-
entz parameter � which makes �2��� nonzero. In Figs. 6 and
7 we have used the tabulated value for �, given in Table I,

TABLE I. Lorentz one oscillator parameters for bulk crystalline
BeO, from Ref. 16. The parameters have been averaged as 1/3 of
the parallel +2/3 of the perpendicular components.

Parameter Value

�T 702 cm−1

� 12.2 cm−1

�� 2.99

��0� 7.65

FIG. 5. �Color online� The
band structure for TE �a� and TM
�b� modes of a triangular lattice of
air holes in a dielectric matrix, �
=2.99. The lattice constant is a
=2.5 	m and the packing fraction
is r /a=0.44, i.e., the inverse
structure of that in Fig. 3.
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which is much less than the resonance �T. This implies that
the resonance is “sharp” and the dispersion strong, as alluded
to above. This sharpness is of importance for the appearance
of flat bands, which is both of fundamental interest and a
difficulty in numerical calculations. It follows from the dis-
persion relation

� =
cK

��̃���
�8�

that a strictly flat band, i.e., d� /dK=0, appears when � is
real and →�. This corresponds to �T being a true pole, zero
damping and no absorption. In FDTD-calculations cases
with strong dispersion require calculations with high time
resolution in order to have sufficient frequency resolution
after the Fourier transformation. It is difficult to quantify the
resulting frequency resolution given an initial choice of time
steps, and it is furthermore obvious that in this particular
respect FDTD calculations cannot compete with the vectorial
eigenmode expansion method for which this problem is not
serious. We thus cannot hope to obtain the fine structure of
horizontal bands as calculated with the CAMFR-method.10

So far we have shown two different band structures where
a polaritonic material acts as one component of the photonic
crystal, either the cylinders or the matrix. We have also dis-
cussed the importance of the packing fraction for complete
gaps to open. If these two variations are combined, and the

TE and TM gaps are collected for various packing fractions,
we obtain a gap map. A gap map for the triangular structure
of BeO cylinders in air is shown below. The lattice constant
a=2.5 	m is kept constant, whereas the packing fraction
was varied.

In Fig. 8 one can note the existence of a TM photonic
band gap for moderate packing fractions, and also the in-
crease of the TM gaps as the packing fraction increases. The
overlap between the photonic gaps inside the polaritonic gap
appears at a packing fraction r /a=0.26, and remains open
even for a close packed structure, r /a=0.50.

We now compare the pattern in Fig. 8 with the corre-
sponding results for a dielectric-only photonic crystal: Fig. 5
in Ref. 2. Our results show one structural TM gap around
0.25 eV which corresponds to 0.5 in normalized units. The
dielectric results include many gaps going to higher energies,
and furthermore the dielectric constant of the matrix has a
different value. Nevertheless, our TM gap corresponds fairly
well in slope and shape with the lower TM gaps for the
dielectric case.2 In contrast, the TM and TE areas obtained
inside the polaritonic range are almost horizontal. The polari-
tonic effect is to rotate them and “squeeze” them together,
thus giving the complete gap shown. A possible interpreta-
tion of their horizontal orientation is that close to �T the
dielectric function assumes such high values that the varia-
tion of r /a is of minor importance.

For the inverse case, a corresponding gap map was con-
structed and is reproduced in Fig. 9. Again, the symmetry is

FIG. 6. �Color online� The TE
�a� and TM �b� band structures for
a triangular lattice of BeO cylin-
ders in air. The lattice constant a
=2.5 	m and the packing fraction
r /a=0.30. The polaritonic gap is
situated between the frequencies
�T and �L, which are indicated by
horizontal lines.

FIG. 7. �Color online� The
band structure for TE �a� and TM
�b� modes of a triangular lattice of
air holes in a BeO matrix. The lat-
tice constant a=2.5 	m, and the
packing fraction r /a=0.30. The
small TE photonic band gap has
been indicated in diagram �a�.
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triangular, and the lattice constant is a=2.5. The overall
shapes are very different: the gap widths inside the polari-
tonic gap decrease with increased packing fraction. We also
note the presence of a TE photonic band gap. In this case an
increase in packing fraction yields less polaritonic material,
hence the decrease in gap size. Again, comparing with the
dielectric case, Fig. 6 in Ref. 2: the slope and shape of the TE
gap areas are similar. However, in the polaritonic area, the
structure gaps grow in width with increasing packing frac-
tion.

To achieve a complete photonic band gap, the previous
structure was replaced with a similar structure of BeO cylin-
ders in a high index dielectric matrix. For a=2.5 	m and
r /a=0.44, the band structure for a triangular lattice of BeO
cylinders in a dielectric with �=10.6 was calculated. The
band diagrams for TE and TM modes are shown in Fig. 10
below. In comparison with Fig. 6, we notice closing of the
TM gap and the opening of an omnidirectional TE gap. In

this case, the matrix acts as high index material at energies
above the polaritonic gap since ���10.6. The appearance of
a large TE gap is not surprising since the cylinders, i.e., the
low index material, forms isolated “islands” in the high in-
dex surrounding. However, if the matrix dielectric constant is
increased further, a TM gap will open up again due to the
increased contrast in �, and we obtain a small complete gap.
This is shown in Fig. 11 below where �=16.0, typical for Si
in the thermal infrared range.

To investigate the behavior of this complete gap, a gap
map for this case was constructed. Figure 12 gives the gap
map for the triangular lattice of BeO cylinders in a dielectric
matrix with �=16.0. The lattice constant is a=2.5 	m. In
this case, some structure gaps are above the polaritonic gap.
If, for a given r /a value, the lattice constant a is increased,
these structure gaps will shift to lower energies and approach
the polaritonic range. A new gap map to illustrate this pro-
cess can be created. It shows the interaction between the
structure gaps and the polaritonic gap, and some interesting

FIG. 8. �Color online� A gap map showing the TE and TM gaps
as a function of packing fraction, r /a, for a triangular lattice of BeO
cylinders in air. The lattice constant a=2.5 	m was kept constant.

FIG. 9. �Color online� A gap map for an inverse triangular struc-
ture: Air holes in a BeO matrix. The lattice constant a=2.5 	m was
kept constant.

FIG. 10. �Color online� TE �a�
and TM �b� band structures for a
triangular photonic crystal with
lattice constant a=2.5 	m, r /a
=0.44 consisting of BeO cylinders
in a dielectric matrix, �=10.6.
Note the presence of an omnidi-
rectional TE gap.
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features appear in Fig. 13 with a packing fraction r /a
=0.46. We observe for small a values the two complete gaps
at high energies indicated in Fig. 12. At larger a values and
for energies just above �L, there are complete gaps for
ranges of a values up to a=7 	m. The wide TE gap progres-
sively moves into the polaritonic gap for a values in the
range 3–7.5 	m. The narrower TM gaps drop steeper, ex-
cept for the low-lying TM gap just above �T that does not
shift in the a range 2.5–4.5 	m. The structure gaps reappear
below �T and merge to a large area with a complete gap that
is only weakly a dependent. At energies slightly below �T,

the dielectric function of BeO is very large—which makes
the �=16.0 matrix act as the low index material—and thus
the much wider TM gap, as discussed previously.

SUMMARY AND CONCLUSIONS

In this work, we have studied the behavior of a polaritonic
gap and structure gaps in triangular photonic crystals. Where
meaningful comparisons can be made we have discussed ear-
lier results for triangular, dielectric-only photonic crystals.2

The polaritonic material in our case has been BeO, it is dis-
persive and has a strong resonance around 0.1 eV. The di-
electric function is very different on the two sides of this
resonance. For frequencies lower than �T, the dielectric
function is large and positive near the resonance, but de-
creases towards ��0�=7.65 for lower frequencies. On the
other side of the resonance, �����0 for an interval in which
it exhibits metal-like properties—this is the polaritonic gap.
Above the frequency where ����=0, denoted �L, the dielec-
tric function increases towards ��=2.99. Thus, over a large

FIG. 11. �Color online� TE �a�
and TM �b� band structures for a
triangular lattice of BeO cylinders
embedded in a dielectric, �=16.0.
The lattice constant a=2.5 	m,
and r /a=0.44. In �b� the photonic
band gaps are indicated with ar-
rows. Note the overlap between
the lowest TM and the TE struc-
ture gaps—i.e., a complete gap.

FIG. 12. �Color online� A gap map of TE and TM gaps in a
triangular lattice of BeO cylinders embedded in an �=16.0 matrix.
The lattice constant a=2.5 	m, and the packing fraction was varied
in small steps from 0.38 to 0.50, the region where the complete
gaps were found in the calculations. The polaritonic gap is
indicated.

FIG. 13. �Color online� A gap map showing the photonic gap
interactions with the polaritonic gap. The lattice constant was varied
from 2.5 to 11.6 	m, whereas the packing fraction remained con-
stant r /a=0.46. The structure is a triangular lattice of BeO cylin-
ders embedded in a dielectric matrix with �=16.0.
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frequency interval, including the resonance frequency, the
refractive index contrast is strongly varying. We have noticed
in several cases that, just like in a 1D case, it is of impor-
tance whether the polaritonic material is on “the average” the
high or low index material in comparison to the matrix.19 A
polaritonic material such as BeO can act as the high index
material at all frequencies below �T and above �L, and are
metal-like in between. We have therefore compared the BeO
PPC’s with two different nondispersive dielectric cases and
noticed that the high index case show similarities with the
���T behavior of the PPC, while the ���L region is in
better agreement with the dielectric case having �=��.

A gap map shows the polaritonic and the structure gaps as
a function of packing fraction, r /a. No complete gap except
for the polaritonic was obtained. Secondly, the inverse case
was studied: air holes in a BeO matrix, and as in the first case
no complete structure gaps were present. In the third case,
the BeO cylinders were embedded in a dielectric matrix with
�=10.6, and calculations on the structure with lattice con-
stant a=2.5 	m and a packing fraction r /a=0.46. This re-
sulted in a large TE structure gap, but no TM gap outside the

polaritonic gap. The dielectric function of the matrix was
increased further to �=16.0 and then the corresponding gap
map shows the presence of a complete photonic gap for
packing fractions 0.38�r /a�0.48. In this case, it was also
investigated in what fashion the complete structure gap shifts
across the polaritonic gap. To achieve this, the packing frac-
tion was kept constant at r /a=0.46, whereas the lattice con-
stant was increased from 2.5 to 11.8 	m. The TE and TM
gaps then shifted down in energy into the polaritonic gap.
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