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The transport in mesoscopic wires with large applied bias voltage has recently attracted great interest by
measuring the energy distribution of the electrons at a given point of the wire, in Saclay. In the previous
theoretical works of different authors extensive numerical calculations were presented, but the relative impor-
tance of the different effects was hidden. The main goal of the present paper is to break up the calculation and
show how the final result is formed step by step. In the diffusive limit with negligible energy relaxation the
energy distribution shows two sharp steps at the Fermi energies of the two contacts. Those steps are, however,
broadened due to the energy relaxation which is relatively weak if only a Coulomb electron-electron interaction
is assumed. In some of the experiments the broadening is more essential, reflecting an anomalous energy
relaxation rate proportional to E~2 instead of E~¥2 where E is the energy transfer. Later it has been suggested
that such a relaxation rate can be due to the electron-electron interaction mediated by Kondo impurities which
is, as has been known for a long time, singular in E. In the present paper the magnetic-impurity-mediated
interaction is systematically studied in the logarithmic approximation valid above the Kondo temperature. In
the case of large applied bias voltage Kondo resonances are formed at the steps of the distribution function and
they are narrowed by increasing the bias. An additional Korringa energy broadening occurs for the spins by
creating electron-hole pairs in the electron gas out of equilibrium. That smears the Kondo resonances, and the
renormalized coupling can be replaced by a smooth but essentially enhanced average coupling and that
enhancement can reach the value 8—10. Thus the experimental data can be described by formulas without
logarithmic Kondo corrections, but with enhanced coupling. In certain regions of large bias, that averaged
coupling depends weakly on the bias. In those cases the distribution function depends only on the ratio of the
electron energy and the bias, showing scaling behavior. The impurity concentrations estimated from those
experiments and other dephasing experiments can be very different and a possible explanation is also

mentioned.
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I. INTRODUCTION

In the last few years the study of inelastic electron scat-
tering mechanisms in mesoscopic metallic systems has at-
tracted considerable interest both experimentally and theo-
retically. The motivation is to identify the mechanisms
responsible for destroying the quantum coherence of the qua-
siparticles. In one kind of experiment the dephasing time is
determined from measurements of magnetoresistance,'™ uni-
versal conductance fluctuation,® and Aharonov-Bohm oscil-
lation in mesoscopic rings in magnetic fields.* In the other
kind of experiments on short wires with large bias voltage
the nonequilibrium distribution functions of the electron en-
ergies are measured’® which provides indirect information
about the energy relaxation of the electrons. The dephasing
and energy relaxation are due to inelastic scattering pro-
cesses; thus, we can obtain information on those from these
two kinds of experiments. The experiments were performed
at very low temperatures (below about 1 K) where the
electron-phonon scattering is weak; thus, the main inelastic
processes are the electron-electron scattering and the scatter-
ings by dynamical defects (e.g., magnetic impurities, two-
level systems).

In this paper we investigate theoretically the energy relax-
ation due to magnetic impurities in thin metallic wires with
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large bias voltage. Our motivation is that there are many
cases where deviations from the expectations of the theory of
Coulomb electron-electron interactions by Altshuler and
Aronov'? were found. The Saclay group’ analyzing the ex-
perimental data suggested a phenomenological anomalous
effective energy relaxation rate proportional to E~> where E
is the energy transfer. That differs from the one due to the
Coulomb interaction which varies like £~*2. That anomalous
relaxation rate was attributed to the presence of magnetic
impurities either implanted or contained by the starting ma-
terial as contamination or dynamical defects.!!~!6

The previous theoretical works'!~'® showed that the phe-
nomenon is rather complex and it is very hard to separate
and identify the role of the different effects. That is espe-
cially valid for the noncrossing approximation which is
based on extensive numerical work'>!> and many details are
hidden.

Considering the Kondo effect the different temperature
and energy ranges have very different characters. Below the
characteristic Kondo energy the Fermi liquid behavior is re-
covered. That range has been intensively studied even in the
nonequilibrium situation in the case of wires, but the situa-
tion in quantum dots shows strong similarities.!”-!® The most
difficult range is around the Kondo energy, while well above
that perturbative approaches are appropriate, known as the
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logarithmic approximation. The main idea is to apply pertur-
bation theory and to collect the terms with the highest power
of the characteristic logarithm in each order. That leading-
logarithmic approach is well established. It will be shown
that most of the experiments fall in that range.

In the nonequilibrium situation the voltage applied on the
short wire plays a crucial role which has to be incorporated
into that scheme.

The applied voltage U occurs in two different ways.

(i) Reduction of the Kondo temperature. In a short wire in
the diffusive limit with a weak energy relaxation the electron
comes from one of the two contacts without energy loss. The
distribution of those electrons is characterized by different
Fermi energies which are split by the applied voltage eU,
where e is the electronic charge. The Kondo effect arises
from those regions where there are sharp changes in the en-
ergy distribution functions, thus at the two Fermi energies. At
both places separate Kondo resonances develop, but the am-
plitudes of sharp changes in the distribution at both energies
are reduced compared to the equilibrium case, where the
change is the sum of those two. Therefore, in the wire the
equilibrium Kondo temperature for the step with, e.g., the
lower energy is reduced at position x as'*16:1°

T}(/(l—x)

= (eU x/(1-x) > (1)

TK(X)

which is valid for Ty <eU where x is measured in the units
of the length of the wire, L. The voltage U measures the
energy range where the nonequilibrium electron distribution
takes place. That reduction in Tk can be very essential—e.g.,
for Tx=0.3 K, eU=0.3 meV~3 K, and x=0.5, Tg(x=0.5)
=0.1T¢=0.03 K. Thus for a considerable voltage and for
Kondo temperature in a typical range (Tx=0.1-1 K) the re-
duced Kondo temperature is rather small compared to the
energy scale eU playing role in the electronic transport. That
ensures the applicability of the logarithmic approach as far as
Tx<<eU. In other cases, e.g., the noncrossing approximation
must be applied.'>!?

(ii) Enhanced Korringa relaxation rate. The Korringa
relaxation?® describes the impurity spin relaxation due to
electron-hole creations. The creation of those with almost
zero energy can be only in the energy range where the sharp
single-step (7T=0) electron distribution is modified. That can
be achieved by raising the temperature or applying the volt-
age. In the latter case the extra relaxation rate is

A =27S(S + 1)(po)2x(1 = x)eU (2)
27'[(

at T=0, where S is the spin of the impurity and pyJ is the
dimensionless electron-impurity spin coupling. In the equi-
librium case the Korringa relaxation rate is not part of the
logarithmic approach, but eU> Ty makes it non-negligible.

Namely, in the next-to-leading-logarithmic approximation
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the real part of the pseudospin particle self-energy contains a
single logarithm which is even lost in the imaginary part.
That logarithm is not contained by the simple logarithmic
approach. The effect of the imaginary part (the inverse life-
time of the spin) remains, however, very crucial. For spins
there are different relaxation rates—e.g., the 77" and 7' in
the electron spin resonance (ESR) and NMR experiments.
The actual values are consequences of a delicate balance
between the self-energy and vertex corrections, which can
modify the prefactors like S(S+1) in Eq. (2).2! Cancellation
of that type are very well known in the scaling equation of
the renormalized effective coupling, where the value of the
spin S drops out.?> Considering the paramagnetic-impurity
electron-spin resonance, which has been discussed earlier in
detail,2! it is found that in the Tgl relaxation rate the factor
(S+1) drops out. Thus the prefactor S(S+1) in Eq. (2) may
result in an essential overestimation for S=1. A systematic
study of that problem is not known in the present nonequi-
librium situation.”® Therefore, the consequences of the
present ambiguity are only demonstrated by introducing a
multiplying factor X of order of unity (1/2<\=<2) for the
relaxation rate given by Eq. (2) and the role of N will be
discussed. It is reasonable to assume that the factor N imitat-
ing those cancellations is more important for larger spins
S>1.

In the following the logarithmic approach is applied to the
nonequilibrium case and the anomalous Korringa relaxation
is additionally built in.

Considering the theoretical methods two ways can be fol-
lowed: (i) the Keldysh Green function technique devoted to
nonequilibrium'>!>!7 which may be combined with the per-
turbative calculation®® and also with the noncrossing ap-
proximation in the general case'> and (ii) direct calculation
of the scattering rate by the time-ordered perturbation theory
starting with an arbitrary state and taking into account the
actual distributions in the occupations of the intermediate
and final states.'*? Restricting ourselves to logarithmic ac-
curacy the second method is very easy to apply; in other
cases, one should turn to the first one.

The paper is organized as follows. In Sec. II the transport
phenomenon is imposed. In Sec. III the kernel in the trans-
port equation due to the magnetic-impurity-mediated
electron-electron scattering is determined using the leading-
logarithmic approximation. The electron distribution and ex-
change coupling renormalization are carried out in a self-
consistent way. In Sec. IV the Korringa relaxation is taken
into account in the kernel and in the smearing of the renor-
malized coupling, and then it is also determined in a self-
consistent way with the other quantities. In Sec. V the results
are analyzed from the point of view of the importance of the
different ingredients of the theory. In the Conclusion the re-
sults obtained are summarized also from the point of view of
Ref. 26, where the simplified method is applied for the case
where the magnetic surface anisotropy?” is included as a pos-
sible resolution of the discrepancy concerning the required
magnetic impurity concentrations to fit the different experi-
mental data.
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FIG. 1. The wire of length L. The arrow points to the position x
of the attached tunnel junction which is measured in units of L.

II. NONEQUILIBRIUM ELECTRON ENERGY
DISTRIBUTION IN DIFFUSIVE WIRES

In the experiments the distribution of electron energies in
a wire with large bias was measured at different position by
attaching extra tunnel junction to the side of the wire (see
Fig. 1). According to that, we consider a wire with length L
and the distribution function at position x in the wire in units
of L for energy & and at time ¢ is denoted by f(e,x,t). The
nonequilibrium distribution function in the diffusive limit is
determined by the time-dependent Boltzmann equation

f(e,x,1) B L ﬁsz;;cx, 1) + ]w”({f}) =0, (3)

ot )

where 7,=L?/D is the diffusion time and D is the diffusion
constant. In the following the stationary solution is taken;
thus, the time dependence is dropped and f is assumed to be
independent of the spin. The collision integral 1,,;,({f}) due to
inelastic scatterings in Eq. (3) can be expressed by the scat-
tering rate W(e,E) of electrons of energy e with energy
transfer E as

Icoll({f}) = f dE{f(S)[l —f(g - E)]W(S,E)
-[1-fle)lfle-E)W(e-E~E)}.  (4)

In the absence of inelastic scattering processes, I,,;,({f})=0;
thus, the solution of Eq. (3) is a double-step distribution
function?®

f(o)(s,x)=(1—x)n,,-<s—%]) +an<s+%]), (5)

where U is the voltage between the ends of the wire. The
sharp steps are smeared due to the inelastic processes even at
very low temperature. Taking into account inelastic scatter-
ing in W and starting with the solution, Eq. (5), the Boltz-
mann equation can be solved self-consistently at least nu-
merically.

In the numerical calculation searching for the stationary
solution the Boltzmann equation is solved by iteration. In the
iteration we start with the solution in absence of inelastic
processes [Eq. (5)] and after at each step of the iteration the
collision integral is calculated from the actual distribution
function and scattering rate and then the new distribution
function satisfying the boundary conditions is determined.
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FIG. 2. The diagrams used for calculating (a) the kernel and (b)
the Korringa lifetime of the impurity spin. The solid lines denote
the conduction electrons, the dotted lines the impurity spin, and the
blob is the Kondo coupling.

The variables x and ¢ are discretized usually in 20-60 points.
The number of the necessary iterations depends on the ap-
proximations used in the calculation of the collision integral,
but usually the final solution is reached by 20-120 iterations.

For electron-electron interaction the scattering rate W can
be expressed as

W(e,E) = j de'K(E.e,e")f(e')[1 - f(e' + E)], (6)

where the kernel K(E,&,&’) is determined by the specific
interaction and &’ is the energy after the collision.

The predicted dependence of the kernel K on E in case of
the Coulomb electron-electron scattering'® is ~E~¥2 in the
one-dimensional (1D) regime which explains perfectly some
of the experiments,8 but in other cases other relaxation
mechanisms must exist. The Saclay group’ introduced phe-
nomenologically an extra interaction between the electrons
with K~ 1/E? singularity. It has been known for a long
time?’ that the interaction mediated by magnetic impurities is
singular in the energy transfer and recently Kaminski and
Glazman'! called attention to a similar 1/E? singularity in
the magnetic-impurity-mediated electron-electron interaction
kernel in the leading order of perturbation in the Kondo cou-
pling. At that time the authors of Refs. 11-16 suggested that
the energy exchange is mediated by Kondo impurities (mag-
netic and structural defects).

In the following we perform a systematic study of the
Boltzmann equation (3) for electron-electron interactions
mediated by Kondo impurities and the different approxima-
tions are built in step by step.

Assuming a low concentration of impurities we will use
the single-impurity Kondo model

H= E Skaltaaka' + JO E Saltoa-a'o’ak’o" ’ (7)
k.o Kk’

’
oo

where a;  creates a conduction electron with momentum k,
spin o, and energy &, measured from the Fermi level. The
conduction electron band is taken with constant energy den-
sity po for one spin direction, with a sharp and symmetric
bandwidth cutoff D, o stands for the Pauli matrices, J, is
the Kondo coupling, and S is the spin operator of the impu-
rity.
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From perturbation theory in the coupling J, the first non-
vanishing contribution to the kernel comes from the diagram
in Fig. 2(a) as'l12

, T C 1
K(E’S’S ) = EP_OS(S-*— 1)(21)0‘,())4?’ (8)

where c is the concentration of the homogeneously distrib-
uted magnetic impurities in the wire. That kernel gives back
the phenomenologically introduced energy dependence,’” but
its strength may be too small® according to the small bare
Kondo coupling Jj.

III. LEADING-LOGARITHMIC APPROXIMATION
To improve the calculation as the first step the renormal-

ization of the coupling in the presence of the applied voltage
is taken into account. The modified kernel reads

K@¢x0=%§ﬁ$@+U{%SG+UU@U@#E)

~J(e"J(e-E)+2J(e)J(g')J(e' + E)

- SE20=L

XJ(e' +E)J(e —E) - [J*(e - E)

{[(e) + ()]

+J(e’ + E)]J(s)J(e’)}}, )

where J(¢) is the renormalized coupling and the approxima-
tions are made in spirit of the logarithmic approximation
discussed in detail in the Appendix. Considering only the
most divergent terms proportional to 1/E> in the limit
E—0 and ignoring the E dependence in the arguments of J
in Eq. (9) we get back the result of Eq. (14) of Ref. 12 and
thus the kernel is proportional to J*(g)J?(¢)/E?. The agree-
ment with the result, Eq. (10), of Ref. 11 is also only after
taking the limit £— 0 in J. In general, however, this factor-
ization is not true; the kernel contains mixed terms as well.

In our nonequilibrium wire case the renormalized Kondo
coupling depends also on the position x in the wire. In the
leading-logarithmic approximation carrying out a similar re-
summation as in the equilibrium case, the leading-
logarithmic scaling equation is

L{S’Dx) =2pyJ*[f(e = D) - f(e + D)], (10)
07(111 —O)

where the original bandwidth cutoff Dy, is reduced to D. In
Eq. (10), || <D is assumed; thus, at the start the electron
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FIG. 3. The renormalized coupling (top) calculated from the
sharp double-step distribution function (bottom) at x=0.5; T
=0.01 K, Tx=0.15 K (pyJy=0.039, Dy=5x 10* K): (a) U=0 mV,
Tx=°. (b) U=0.15mV. Solid line: 7x=%. Dotted line:
fl27x=0.25 K. (¢) U=0.3 mV. Solid line: 7x=%. Dotted line:
h/27x=0.25 K.

band can be taken always symmetric to &, which assumption
is not applicable in general. On the right-hand side the actual
distribution functions occur which must be determined in a
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FIG. 4. The renormalized coupling (top) calculated from the
sharp double-step distribution function (bottom) at x=0.5;
T=0.01 K, Tx=0.3 K (pyJy=0.042, Dy=5 X 10* K): (a) U=0 mV,
1x=%. (b) U=0.15mV. Solid line: 7x=c. Dotted line: A/27
=0.4 K. (¢c) U=0.3 mV. Solid line: 7g=c. Dotted line: #/27g
=04 K.

self-consistent way. Assuming a single-step-like distribution
gives back the well-known result’® and with a double step
the ones in Ref. 14 and Ref. 16.

The renormalized Kondo coupling in the leading-
logarithmic approximation is the solution of Eq. (10):
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Jo

J(e,x) =

Dy D’ '
1—2p0J0f F[f(s—D')—f(8+D')]
0

(11)

It is important to note that due to the finite voltage the
width of the renormalized resonant coupling J(g) is essen-
tially reduced compared to the equilibrium values (see Figs.
3 and 4); thus, the logarithmic approach can be valid even
well below the equilibrium Kondo temperature 7 for large
bias U. Due to the finite voltage, separate Kondo resonances
are formed'3~'® at the two Fermi energies corresponding to
the two contacts and thus J(e,x) has two peaks (see Figs. 3
and 4). The validity of the logarithmic approach is restricted
by the condition p,J(e,x) <1 nearby the two Fermi energies
which was always checked in the calculation by plotting the
actual Kondo coupling with respect to the energy.

In the case of eU> Tk the Kondo temperature is reduced
and the singularity is smeared by the Korringa rate; thus, the
condition pyJ <1 is satisfied in most of the cases (see Figs. 3
and 4).

In the numerical calculation pyJ(e,x)>1 is replaced by
pol(e,x)=1 as pyJ(e,x)>1 is always an artifact of the ap-
proximation.

IV. KORRINGA RELAXATION RATE

In the leading-logarithmic order the self-energy correc-
tions (wave function renormalization and Korringa
lifetime?’) are neglected as they appear only in higher order.
At a finite voltage U, however, that inverse lifetime propor-
tional to U results in anomalous broadening which can be
very essential. Therefore, the effect of U is taken into ac-
count in the spin spectral function pg(e) by an energy-
independent Korringa lifetime 7y as

A
1 27
psle) = ———E—. (12)
™, h
e+ —
4y

The energy dependence of 7 leads to changes only in the
tail of the spectral function which is independent of U for
|w|>eU, and therefore it is neglected in the crude leading-
logarithmic approximation applied. The leading term of the
Korringa relaxation rate is calculated according to the self-
energy diagram in Fig. 2(b) as

L 27, R )
2me) - a8 ”)f deJ (e, 01 = fe ) 1f(e. ),
(13)

where in the self-consistent calculation the Korringa-
modified couplings Ji are used. In this way the effect of U
and the position dependence are taken into account.

To include the effect of Korringa broadening the calcula-
tion of K(E,&,&") given by Eq. (9) must be repeated using
the spectral function, Eq. (12), resulting in the following
form of the kernel:
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27rc 2
K(E,s,s',TK)=Tp8S(S+ 1) P
(o0 2
dry
+ ZJK(S)JK(S,)JK(SI + E)JK(S - E)} + (
E2

an,
[S(S+1)-1]E(e'—e+E)
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)2{5(5 + D k(e) (e’ + E) = J(e V(e - E)

)2{5(5 + Dk(e) k(e + E) + J(e") (e - E)

= 2Jx(e)Jile")Ji(e" + E)Jg(e — E)} +

(0 2

e ){[J%Js) +Jle)(e" + E)J(e - E)

r_ 2, 7
)((8 e+E) +47§(

2

h
[S(S+1)- I]F
K

~[Jile — E) + Jxle' + E)Ule) (e} - (

EZ

2 n’
47%)<(8 —&+E) +E{)

X{[Ji(e) + Jx(e") Vkle' + E)(e - E) + [Ji(e — E) + Jx(e' + E) () (e")} [ (14)

where for the sake of simplicity we suppressed in the nota-
tion the spatial dependence of the kernel and the Kondo cou-
pling. In Egs. (13) and (14), Jk(e) is the solution of the
leading-logarithmic scaling equation modified by the finite
Korringa lifetime:

e _ 2poJ§<(8)F de'pg(s —&')
ﬁ< Do) .

In —
D

X[f(e' = D) - f(e' + D)]. (15)

The solution of Eq. (15) is the solution of the scaling equa-
tion (11) with infinite spin lifetime smeared by the spin spec-
tral function as

T (e)= f " ds'py(e - )7, (16)

Thus at each step of the iteration solving the Boltzmann
equation the smeared, renormalized Kondo coupling Jk(&,x),
the distribution function f(e,x), and the Korringa lifetime
7x(x) were updated.

The spectral function given by Eq. (12) has further ef-
fects. In the most of the previous calculations the Korringa
broadening is not taken into account (see, e.g., Ref. 23) in
the initial and final states. It is easy to show that including
those broadenings in the collision term can be taken into
account as an additional broadening in the singular part of
the kernel. As has already been discussed in the Introduction,

the vertex corrections should reduce that broadening. Thus
the broadening is intensified in that way, but after the reduc-
tion by the vertex corrections that cannot be very different
from the overestimated one given by Eq. (13). At the end the
amplitude of the relaxation rate is given by Eq. (13) and that
modification is taken into account by a phenomenological
factor N (1/2<\<2) and its influence on the results will be
discussed later.

V. RESULTS AND DISCUSSION OF THE
APPROXIMATIONS

In the numerical calculation at each step of the iteration
the position-dependent collision integral, Eq. (4), is calcu-
lated in terms of the actual distribution function and the ker-
nel defined in Eq. (6) in the following way: first the renor-
malized coupling J is calculated from the actual f smeared
[Eq. (16)] or not [Eq. (11)] by the Korringa relaxation rate
calculated from the preceding f and J. Then the new Kor-
ringa relaxation rate and after the kernel in terms of 7, and J
are calculated according to the Egs. (13) and (14). At the end
of the given iteration step the new distribution function is
determined from the old distribution function and the colli-
sion integral. The boundary conditions are satisfied at each
step of the iteration by construction.

In the following the results are presented and the impor-
tance of the different ingredients of the theory is analyzed.

A. Renormalized couplings

The renormalized couplings are calculated using Eq. (11)
or (16) without and with the Korringa relaxation for different

205119-6



ENERGY RELAXATION DUE TO MAGNETIC...

0.8
0.6 x=0.25
x=0.5

0.4
0.2

PoJ

-1 -0.5 0 0.5 1
e/el
1.2

0.8
=0.25

0.6 x=0.5 x(

0.4

0.2

(e)

-1 -0.5 0 0.5 1
eleU
(8) U =0.15mV, poJ = 0.35

0.8
0.6
0.4 x=05
0.2

PoJ

x=0.25

-1 -0.5 0 0.5 1
e/elU

-1 -0.5 0 0.5 1
e/eU
(b) U =0.3mV, pod = 0.23

FIG. 5. The coupling constant (top) and the distribution function
(bottom) obtained from the self-consistent calculation using the
leading-logarithmic renormalized coupling (solid line) and an ap-
propriate constant coupling poJ (dotted line). (a) U=0.15 mV,
po/=0.35 and (b) U=0.3 mV, poj =0.23. The other parameters are
p=1.8 ns, c=4 ppm, Tx=0.15 K, py=0.21/(site eV), S=1/2, and
T=0.05 K.

bias voltages. In Figs. 3 and 4 the couplings calculated from
the sharp double-step distribution function given by Eq. (5)
are shown together with the corresponding distribution func-
tions. Without Korringa relaxation the resonances formed in
the regions of the steps are very pronounced. Their widths
can be interpreted as the renormalized Kondo temperature.
For finite biases they are reduced due to the smaller steps
with sizes x or 1—x in the distribution function. The larger
the bias, the narrower the resonances are. At the overlap of
the resonances the coupling can be essentially enhanced.

In Figs. 3(b) and 3(c) [Figs. 4(b) and 4(c)] just for
demonstration a fixed value of the Korringa relaxation
f/27x=0.25 K [f/27x=0.4 K] is used. In reality the effect
of the Korringa broadening is larger for larger bias as T}l is
linear in U. As it can be seen in Figs. 3(c) and 4(c) with
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FIG. 6. The dependence of the averaged, approximating cou-

pling poJ on the voltage bias for Tx=0.15 K. The other parameters
are 7p=1.8 ns, c=4 ppm, py=0.21/(site eV), and T=0.05 K.

U=0.3 mV the peaks are almost completely smeared. In that
case the coupling can be well approximated by a constant
value py/, but it is enhanced compared to the bare one—e.g.,
in Figs. 5(a) and 5(b) J/Jy~9 and J/J,~5.5, respectively.
In that case the Korringa broadening can be estimated ac-
cording to Eq. (2). For §=1/2, x=0.5, eU=0.15 meV, and
pol=0.35 (eU=0.3 meV and pyJ=0.23) the relaxation rate is
h/27x=0.22 K (1/27,=0.19 K). For larger bias the depen-
dence of the approximating constant coupling on the voltage
is negligible (see Fig. 6). [That is the reason why the same
values of #/27 were chosen in Figs. 5(a) and 5(b) for the
different biases eU=0.15 and 0.3 meV.] In this way the Ko-
rringa broadening can exceed the width of the resonance re-
duced by the bias and that can be so effective that the reso-
nances disappear and the effect of the bias is only in the

averaged coupling poJ. In this way the dependence of the
final result on A/2 7 is very weak.

In Fig. 5 we show that the solution of the self-consistent
calculation using the leading-order renormalized coupling
(solid line) can be well approximated by a constant coupling
(dotted line). The parameters used in the calculation are
p=1.8ns, c¢=4ppm, py=021/(site eV), S=1/2,
T=0.05 K, and Tx=0.15 K.

Based on that observation, the approximation in which the
self-consistent calculation is performed by using an appro-
priate constant value for the coupling is applied in Ref. 26
where the surface magnetic anisotropy for the impurity spin
is included.

It is important to note, however, that the approximating
constant coupling depends on the voltage bias and on the
bare coupling (~Tk). The former is illustrated in Fig. 6 for
Tx=0.15 K.

The dependence of the distribution function on the impu-
rity concentration is shown in Fig. 7 for (a) U=0.15 mV and
(b) U=0.3 mV using the appropriate constant couplings ob-
tained from Fig. 5. The concentration-dependent correction
is linear only for lower concentrations.

B. Distribution function

The calculations are performed according to the iteration
scheme described above. In the case of 7x=% the kernel
given by Eq. (9) is singular in the energy transfer E as E~2.
There is, however, the cross term with the less singular de-
nominator E(e—g&’—E). That term is less important because
of the weaker singularity. Furthermore, that drops out when
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FIG. 7. The dependence of the distribution functions on the
impurity concentration is illustrated using the appropriate constant
couplings obtained (see Fig. 5). (a) U=0.15 mV, poJ=0.35 and (b)
U=0.3 mV, pyJ=0.23. The other parameters are 7,=1.8 ns,
Tx=0.15 K, py=0.21/(site eV), and 7=0.05 K.

the energy dependence of the couplings is neglected.

In the presence of finite Korringa relaxation the situation
is more complex [see the kernel given by Eq. (14)]. The
cross term does not disappear even for constant coupling, but
it has limited importance as it is demonstrated by calculating
the final distribution function without and with the cross
term. In Fig. 8 the role of the cross terms in the kernel given
by Eq. (14) is illustrated (a) where the solution of the self-
consistent calculation is plotted with (solid line) and without
the cross terms in the kernel (dotted line). The parameters
used in the calculation are 7p=1.8ns, c=4 ppm, pg
=0.21/(site eV), S=1/2, T=0.05 K, Tx=0.3 K, U=0.3 mV,
and x=0.5. The difference is minor which can be seen from
Fig. 8(b). Deviation occurs only in the vicinity of the steps.
Thus in most of the cases neglection of the cross terms is a
good approximation.

C. Effect of the ambiguity in the strength of the Korringa
relaxation

It has been pointed out earlier that the anomalously strong
Korringa relaxation in the nonequilibrium case is not treated
in a consequent way as the vertex corrections and the broad-
ening of the initial and final states are not taken into account
properly. In order to judge their importance a multiplicative
factor \ is introduced as 7/27x— Nh/2 7 [later the notation
y=AS(S+1) is used]. Two sets of curves are calculated for
biases 0.1 and 0.3 mV (see Fig. 9). In both cases vy is
changed in the wide interval 0.2=< y=<2. The differences are
relatively very small as y exceeds the value y~0.4. That is a
consequence of the large smearing in the coupling and even
more in the distribution function. Thus, the improper treat-
ment of the vertex corrections is not expected to show up as
drastic changes in the results.

D. Distribution function at points out of the middle

The calculation can be performed at any position in the
wire, and the results are demonstrated in Fig. 10. In these
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FIG. 8. Comparison of the solutions of the self-consistent cal-
culation with and without the cross terms in the kernel, Eq. (14). (a)
The distribution functions with (solid line) and without the cross
terms (dotted line) and (b) The difference between the two solu-
tions. 7p=1.8 ns, ¢=4 ppm, py=0.21/(site eV), S=1/2, x=0.5,
T=0.05 K, Tx=0.3 K, and U=0.3 mV.

cases the reduction in the widths of the Kondo resonances is
different at the two steps; namely, at the smaller step it is
more reduced. In the distribution function the height of the
steps is asymmetric according to the actual value of x.

E. Scaling in terms of the applied voltage bias

Already in the early experiments’ the scaling with respect
to the applied voltage has been observed; thus, the distribu-
tion function at a given position x was described by a single
variable function f,(e/eU). Since that time, the validity of
the scaling has played a central issue both in experimental®
and theoretical studies.!l!>13

1.2
1
0.8 |
g 06t
04+ =
0.2 | oo Te
CLy=2 L L
O-1 -0.5 0 0.5 1

g/el

-1 -0.5 0 0.5 1
g/el

FIG. 9. The distribution functions are illustrated where the Ko-
rringa relaxation rates are modified by a multiplying factor; y
=N\S(S+1). (a) U=0.1 mV and (b) U=0.3 mV. The other param-
eters are 7,=2.8 ns, ¢c=5 ppm, py=0.21/(site eV), Tx=0.3 K, and
T=0.05 K.
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FIG. 10. The coupling constant (top) and the distribution func-
tion (bottom) obtained from the self-consistent calculation at differ-
ent positions in the wire. The other parameters are U=0.3 mV,
7p=1.8 ns, c¢=4 ppm, py=0.21/(site eV), Tx=0.15K, and T
=0.05 K.

In the present calculation the distribution function at po-
sition x is a function of the energy e and voltage bias U and
it is a functional of the self-consistently determined coupling
J(e,eU;x); thus, it can be written as fiy(e,eU;x). It has
been demonstrated in Sec. V A that the coupling J(g,eU;x)
is a slowly varying function of the energy for a fixed value
eU in the relevant energy window with width eU, which is
the dominant one concerning the nonequilibrium Boltzmann
equation (3) case. Thus in the case of slowly varying J
shown in Figs. 3-5 the coupling J(&,x) can be approximated

by an averaged one J(eU), which is independent of x as it is
also illustrated in Fig. 5. In that case the distribution function

is simplified as fi;(e,eU;x) =f(e/eU,J(eU);x). Now, if J
only slightly depends on the voltage bias U (see Fig. 6 for
Tx=0.15 K), then the bias dependence can be dropped for a

limited interval of eU and J=const can be used. Then the
distribution function is f,(e,eU;x) = f(e/eU,J;x) which
exhibits the scaling observed experimentally in several cases
and illustrated in Fig. 11.

VI. CONCLUSION

In this paper the nonequilibrium transport is studied in the
presence of magnetic impurities representing the one-
channel Kondo (1CK) problem. The results can be general-
ized to the 2CK problem which may be realized by dynami-
cal structural defects.>! In the logarithmic approximation
scheme applied in the present paper there is no difference in
the leading-logarithmic order as the channel index silently
follows the continuous electron line. The first differences oc-
cur in the next approximation as closed electron loops appear
where summation is required with respect to the channel in-
dex; thus, the Korringa relaxation and the vertex corrections
are multiplied by the number of channels. As has been dis-

PHYSICAL REVIEW B 72, 205119 (2005)

Us0smy

1+ U03my ——
Uy e

08t U=0.5my e 4

f(e)
o
[o2]

U158 mV

0.5 1

UMY T
it Us.3mV
UsBamy

O. 8 [ U=0.5mV

1.2

U=0.15mV
U=0.3mv

Uso.amy e

08 ' U=0.6mv

= o6}
04+t
g2t

O '

-1 -0.5 0 05 1

e/el
(b)z =05

FIG. 11. The coupling constant (top) and the distribution func-
tion (bottom) obtained from the self-consistent calculation for
different biases. (a) x=0.25 and (b) x=0.5. The other parameters
are 7p=1.8ns, c¢=4 ppm, Tx=0.15K, py=0.21/(site eV), and
7=0.05 K.

cussed previously, no drastic effects can be expected.

There is an other drawback of the application of the loga-
rithmic approximation in the leading order as that overesti-
mates the Kondo temperature by missing the prefactor
(2peJ)"%. In general the contribution of the next-to-leading-
logarithmic approximation can be essential, but only nearby
the Kondo temperature. The Korringa broadening reduces

also that effect by reducing the averaged coupling p,J. On
the other hand, if the Kondo temperature is comparable with
the applied voltage, then the effective Kondo temperature is
less reduced; thus, the present method cannot be applied.'>!”

In the present scheme the kernel of the effective
magnetic-impurity-induced electron-electron interaction is
determined. That kernel is governed by the singularity E~2 in
the energy transfer, and the less singular cross term results
only in minor changes. For determination of the distribution
function a completely self-consistent calculation is carried

9,99

out where in the framework of the “poor man’s” version of
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the renormalization group the couplings are modified by re-
ducing the bandwidth which also modifies the Korringa rate
and the electron distribution function.

For an arbitrary set of the parameters the distribution
function can be determined using the method developed for
the weak-coupling limit, where T is small compared to the
applied voltage. The relative importance of the different in-
gredients can be judged as the method is applied step by
step. In the present formulation some details could be more
easily followed, than, e.g., in the noncrossing approximation
which is more powerful but many details are buried by the
huge machinery.

Considering the comparison with the experiments an es-
sential dilemma has been earlier realized. The required im-
purity concentration to fit the experiments in the case of spin
S=5/2 magnetic impurities is in good accordance with val-
ues obtained by other experiments determining the dephasing
time. On the contrary, the cases with presumably integer
spins show drastic discrepancies. The dephasing requires
sometimes less than 1% of the impurity concentration; there-
fore, even the role of magnetic impurities was questioned in
spite of the observed sensitivity on the external magnetic
field.> In Ref. 26 that was attributed to the surface
anisotropy?’ which will be the subject of further
investigation.*? The preliminary results show that the revised
version of the form of the surface anisotropy?’ makes the
effect on the electron distribution much weaker, due to its
smaller amplitude at larger distances measured from the sur-
face. As in Ref. 26 it is shown that the surface anisotropy has
a weak effect on the shape of the distribution; thus, the re-
duced number of impurities with large anisotropy very likely
cannot change the distribution in an essential way.

Considering the dephasing rate, that effect may, however,
be stronger, as the relevant energy range of the electrons is
much smaller, as the applied voltage eU is replaced by the
temperature (eU>>kT). Thus, for more impurities, the aniso-
tropy can dominate over the thermal energy and the dephas-
ing rate can be more reduced.
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APPENDIX

The derivation of the result, Eq. (9), is outlined in the
nonvanishing leading-logarithmic order. The Abrikosov’s
pseudofermion technique®* is applied where the b, operators
create spin states with index « and then S:Eaﬁblsaﬁb g For
simplicity the time-ordered diagrams are used with real time.
That technique can be applied starting with arbitrary states
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FIG. 12. The two-electron and one-pseudofermion scattering
amplitude I'. The solid and dotted lines represent the electrons and
the pseudofermion, respectively. One of the electron lines connects
continuously the upper corners in the amplitude I" and the other the
lower corners.

(e.g., nonequilibrium) and the transition amplitude between
states |i) and (f| is given as

1

————H,] |i), Al
w+id—H, ‘) U (A1)

AT, = E} <f|H1<

where w is the energy of the initial state.

The scattering rate can be calculated in two different
ways: (i) The scattering amplitudes I" (see Fig. 12) are evalu-
ated using Eq. (Al), and then those are inserted into the
golden rule. (ii) The imaginary part of the scattering ampli-
tude is combined with the optical theorem (that method is
used in Ref. 14).

In the first method the direction of the spin lines coincides
with the time evolution as only one spin state can be present
at a given time. In the second method the two-electron scat-

€ € € €
(o)
. 1—'1 F->--. e S~ “
e g g Joy))| ¢
(e£)" time
€ € € €
J(w,)
// _>___
S 1—‘2 L_>--. — //,7
e g e I(wy) g
(€Y'

FIG. 13. The two basic diagrams providing singular terms in the
energy transfer. The solid and dotted lines represent the electrons
and the pseudofermion, respectively. The square box represents the
logarithmic electron-pseudofermion vertex correction J(w) and the
dotted line the position of the energy denominator.
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tering amplitude is determined like in the original work of
Sélyom and Zawadowski?® and the spin line is closed.

In the following the first method is used like in the papers
by Kaminski and Glazman'! and Goppert and Grabert.!> The
two basic diagrams providing singular terms in the energy
transfer E=g—¢ can be seen in Fig. 13 where the logarithmic
vertex corrections J(w) with two-electron and two-
pseudofermion legs are represented by square boxes. In these
amplitudes the energy is conserved, and thus e+&'=g+¢&".
The energy denominators indicated by dotted lines in Fig. 13
separate the two vertex corrections J; and J, and they are
e—&=F and &¢'—&'=g—-e=—F where in the latter energy
conservation is used. These are singular in the energy trans-
fer E.

As in case of the absence of a magnetic field and surface
anisotropy the spins do not carry energy and the incoming
and outgoing electrons are on the energy shell; thus, the en-
ergy variables of the vertices are w,=¢, w,=&'=g+&'-¢&
=¢g'+EinI'; and w,=¢’, w;=€=¢—FE in I',. In terms of the
energy-dependent vertex J(w) which is real in the logarith-
mic approximation the contributions are proportional to
J(e)J(e'+E) and J(¢')J(e—E), respectively.

Applying the golden rule the sum of the contributions of
these two diagrams must be squared. In order to visualize the
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FIG. 14. The two forward-
scattering diagrams coming in the
golden rule. The solid and dotted
lines represent the electrons and
the pseudofermion, respectively.
The square boxes represents the
appropriate vertexes (I'; or I'),

and the arrows show from where
* the imaginary parts are taken.

[e2]

result of the detailed calculation we show the two forward-
scattering diagrams in Fig. 14 in the spirit of the optical
theorem where the arrows indicate from where the imaginary
parts are taken; thus, the energy is conserved. Considering
the second “crossing” diagram in the vertex on the right-
hand side the energy variables of the final states £« &’ are
interchanged in comparison to the first diagram (see Fig. 14).
That results also in changing the energy denominators like
e—e=FE—¢e-&'=—e'+€=e—-¢'-F and ¢'-8'=—-E—¢'-¢
=—(e—¢'—F) and also w,=¢'+E— w,=g=¢—F in I'} and
w=¢-E—w=e+e'-=¢'+E in I',.

In the “noncrossing” term the energy denominators
lead to a 1/E? singularity. The vertex corrections
corresponding to the terms proportional to 1"%, I2, and
r,r, (C,r,) are J(e)J(e'+E)?, J(g')?J(e—E)* and
J(e)J(e'+E)J(e")J(e—E) and occur in Eq. (9).

In the “crossing” contribution, however, the singularity
has the form [E(e—&'—E)]"!. The corresponding
vertex corrections are J(e)J(e'+E)J(g)J(e-E),
J(e)J(e'+E)J(e")J(e'+E), J(&')J(e—E)J(e)J(e—E), and
J(g")J(e—E)J(g')J(e'+E) in the terms F%, r,r, r,r;,, and
F%. The vertex corrections with these energy variables occur
in Eq. (9), as well.
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