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We study a spinless hardcore boson model on checkerboard lattices by Green function Monte Carlo method.
At half filling, the ground state energy is obtained up to a 28�28 lattice and extrapolated to infinite size; the
staggered pseudospin magnetization is found to vanish in the thermodynamic limit. Thus the �� ,�� charge
order is absent in this system. Away from half filling, two defects induced by each hole �particle� may carry
fractional charge �±e /2�. For the one hole case, we study how the defect-defect correlation changes with t /J,
which is the ratio between the hopping integral and cyclic exchange, and is equal to V /2t when V� t.
Moreover, we argue that these fractional defects may propagate independently when the concentration of holes
�or defects� is large enough.
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I. INTRODUCTION

During the past decade materials experiencing geometric
frustration has been a topic of much interest, both on experi-
mental and theoretical sides.1 The rich behavior in such sys-
tems is due to a large ground-state degeneracy, which renders
them highly unstable to perturbations. A well known 3D
frustrated structure is the pyrochlore lattice which is the
backbone structure shared by many physically realistic ma-
terials. One may think of checkerboard lattices as a 2D ana-
log of pyrochlore lattices. This is the reason why a checker-
board lattice is often considered in theoretical studies instead
of the more realistic pyrochlore structure.

Up to now most work has been devoted to an understand-
ing of the magnetic properties of such frustrated lattices,
while the charge degrees of freedom is waiting for more
attention. Actually, the charge degrees of freedom may ex-
hibit fascinating physical properties in frustrated systems
such as pyrochlore and checkerboard lattices.2,3 Recently,
one of the fascinating predictions on charge degrees of free-
dom has been proposed: say, the geometric frustration
present on the pyrochlore lattices may give rise to fractional
charges in two or three dimensions based on strong nearest
neighbor repulsion close to half-integer filling. This proposal
comes from the so-called “tetrahedron rule” which is first
stated explicitly by Anderson4 to explain the metal-insulator
transition in the spinel Fe3O4,5 where the observed entropy
reduction is much less than expected from electrons without
the strong short range correlation. Both pyrochlore and
checkerboard lattices are made up of corner sharing units
which are tetrahedron or crisscrossed plaquettes. The nearest
neighbor repulsion will be minimized when each of the cor-
ner sharing units contains only two particles. If the kinetic
energy can be neglected, the system will possess a large
ground-state degeneracy, �4/3��3N/4� for checkerboard
lattices.6 Taking �putting� one particle from �into� the system,
two tetrahedra �plaquettes� will emerge, each of them con-
tains an extra particle �or hole�. We will call this kind of
tetrahedra �plaquettes� “defects.” A demonstration of the
configuration subject to “tetrahedron rule” and the formation

of “defects” is shown in Fig. 1. Provided that the perturba-
tion such as kinetic energy can be neglected, these two de-
fects induced by one particle �hole� will propagate indepen-
dently. If a particle carries charge e, one of the defects will
carry charge e /2. Thus, such defects are “fractional.” Note
that the above argument is valid for both hardcore bosons
and fermions as well as spinless and spin-S system. On the
other hand, current laser cooling and cold atom technique
make it possible to realize these systems on some artificial
optical lattices.7

However, the virtual processes induced by kinetic energy
will lift the high degeneracy and lead to different ground
states. Because of high degeneracy, any small perturbation
may change the low energy states violently. To study this
kind of quantum effects in spinless fermionic system on
checkerboard lattices, Ref. 3 used exact diagonalization �ED�
technique up to 32 sites. As a related problem to hardcore
bosons, XXZ Heisenberg model in the Ising limit was studied
by ED on small size lattices too.8 The ground state was iden-
tified as a nonmagnetic state of resonating square plaquettes.
Due to the limit of small size, there is lack of direct evidence
to address the issue of confinement or deconfinement.

In this paper, we will study spinless hardcore bosons by
the Green function Monte Carlo �GFMC� method which can
give precise results on larger lattices �up to 28�28�. The
ground state energy is obtained with high accuracy and
defect-defect correlation is present, which makes sense only
on larger lattices. Also, we will inspect the issue of charge
order. The outline of the paper follows. In Sec. II, we intro-
duce the extended Hubbard model and derive its effective
Hamiltonian subjected to tetrahedron rule in the strong repul-
sion limit. The relations between this model and XXZ
Heisenberg model is discussed. In Sec. III, a brief discussion
of GFMC method is present, we also compare some results
on small lattices with exact diagonalization. Section IV con-
tains the main numerical results. The final section is devoted
to conclusions.

II. THE EFFECTIVE HAMILTONIAN

We consider strong on-site repulsion U and nearest-
neighbor repulsion V between spinless hardcore bosons on
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checkerboard lattices, where the intrasite interaction has been
assumed to be a higher energy scale and ignored �see Fig. 1�.
Then the extended Hubbard Hamiltonian is of the form

H = − t�
�ij�

�bi
†bj + H.c.� + V�

�ij�
ninj + U�

i

ni
2, �1�

where bi�bi
†� denote annihilation �creation� operators at site i,

ni=bi
†bi, and �ij� refers to a pair of nearest neighbor. We shall

assume that U�V , t is large enough to ensure the non-double
occupancy condition, only empty and singly occupied sites
ar considered. Then we will focus on the strong interaction
regime V� t�0 around half filling where the average occu-
pation number per site is �ni�=1/2, more precisely, half of
the sites are occupied and the other half of the sites are
empty. In that case the tetrahedron rule is imposed by the
strong nearest neighbor repulsion,

�
i��

ni = 2, �2�

where i belongs to a same crisscrossed plaquette. In this way,
the intersite repulsion will be minimized. Thus, in the limit
V� t, we obtain the effective low energy Hamiltonian in the
subspace restricted by the condition �2�,

HJ = − J�
�

bi1
† bi2

bi3
† bi4

+ H.c., �3�

where J=2t2 /V, and � denotes a four-site loop without criss-
cross, formed by sites i1i2i3i4. Away from half filling, we
consider the hole doping only, due to the particle-hole sym-
metry at half-filling. Then the tetrahedron rule has to be
modified as the following,

�
i��

ni � 2, �4�

and the effective Hamiltonian in this subspace is given by

Hef f = − t�
�ij�

�bi
†bj + H.c.� + HJ. �5�

It means that if we take one particle from the half filling
system, there will emerge two defects where �i��ni=1 and
�i��ni=2 elsewhere. The hopping terms �proportional to t�
of �5� will change the defects position but HJ will not. Al-
though t /J=V /2t�1/2, we can generally consider an effec-
tive model in which the ratio t /J ranges from zero to positive

infinity. As pointed out in the former references,2,3,8 if the
virtual process at order J can be neglected, these two defects
will propagate as independent fractional objects. However,
quantum effects such as the cyclic exchange of the order of J
may or may not confine these fractional defects.

A hardcore boson model can be mapped onto a spin-1 /2
model in general. The occupation number ni corresponds to
the spin component Si

z+ 1
2 , and creation �annihilation� opera-

tors bi
†�bi� correspond to Si

+�Si
−�. The according spin-1 /2

model of �1� is an XXZ Heisenberg model. It is noted that
this XXZ Hamiltonian is different from an usual XXZ model
by the minus sign before spin flip terms, which cannot be
mapped to a positive one by an unitary transformation on a
frustrated lattices. The related effective Hamiltonian in the
Ising limit is a cyclic exchange which was studied by Shan-
non et al.8 through ED on small lattices. The authors argued
that spinons �defects� in the above XXZ model will be con-
fined due to the ground state correlation.9 In this paper we
confirm this argument through calculating the defect-defect
correlation directly by GFMC method up to 24�24 lattices
which are large enough to suppress the size effect. If only
one hole is present the two induced defects will be confined
together. However, as concentration of holes and the ratio
t /J=V /2t increase these defects may behave as independent
pointlike objects.

III. GROUND STATE WAVE FUNCTION AND GFMC
APPROACH

Note that both Hamiltonians �3� and �5� have only non-
positive off-diagonal matrix elements in the Fock represen-
tation �ni1ni2¯ �. It implies that the many-body boson wave
function can be chosen to be non-negative everywhere in the
ground state. This property of the wave function will be cru-
cial in applying the GFMC method to this system.

GFMC is a general scheme for finding the lowest eigen-
value of an operator. A trial eigenvector is subjected to a time
evolution whose effect is to enhance those components of the
solution with the lower eigenvalues of the operator. The
ground state energy can be obtained as a mixed estimate. We
choose the trial state ��T� as an equal amplitude superposi-
tion in an invariant subspace of Hamiltonian which contains
the ground state. For a local operator O whose matrix ele-
ments satisfy �R�O�R��=��R−R��O�R�, such as density-
density correlation function, which does not share eigen-

FIG. 1. Left: A typical configuration subject
to the tetrahedron rule at half filling. Right: Two
defects induced by one hole may be considered as
pointlike fractional excitations, whose motion is
driven by hopping Hamiltonian.
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states with the Hamiltonian, we use the “forward-walking”
technique, well known in many-body theory,10–14 to measure
the expectation values. In this way, at the nth step of itera-
tion, O�Rn

i � is evaluated for each configuration Rn
i in the en-

semble �Rn�. For the remaining m steps of the random walk,
a record is kept of the configuration of �Rn

i � from which each
subsequent ensemble member has evolved. At the end of the
�m+n�th step, �O� is evaluated by forming the weighted
summation11

�O� =
� j

�T�Rm+n
j �O�Rn

i�j��

� j
�T�Rm+n

j �
,

where the notation i�j� indicates that i is the progenitor of j.
In this paper, we will calculate density-density correlation
and defect-defect correlation, both of them are local opera-
tors and this method can be applied.

A. Comparison with exact diagonalization

GFMC is a very accurate method to obtain the ground
state and low-lying excited state property of many-body in-
teracting systems. In the past it has been applied successfully
to the ground state properties of helium, interacting electron
gas, small molecules, Heisenberg model on 2D square lat-
tices, and lattice gauge theories.10,11,15–17 To check the preci-
sion of the GFMC method in our system, we will compare
some results from the ED with those from GFMC at small
lattices with periodic boundary condition �PBC�. Hereafter
we will use PBC in this paper.

The ground state energy at half filling and at one hole
doped lattice are given in Tables I and II, respectively. The
digits in the bracket are statistics error bars.

Density-density correlation D�i , j�=D�i− j�	�ninj�− 1
4 at

half filling on 6�6 lattice have been examined too. The
results from ED and GFMC are present in Tables III and IV,
respectively. Each of the two tables contains a matrix
D�ix , iy� whose column and row indices ix , iy =0,1 ,2 ,3 cor-
respond to the displacements along two directions, respec-
tively.

The staggered pseudospin magnetization �7� on a half
filled 6�6 lattice given by GFMC is 0.1038�8�, while the
result from ED is 0.10417.

From the above, one sees that GFMC algorithm is an
effective method to deal with spinless hardcore bosons on
checkerboard lattices.

IV. RESULTS

Simulations were carried out for L�L lattices up to L
=28 �L=24 for correlations�. Time steps from 0.003 to 0.05
were used, depending on lattice size and the ratio t /J; here
we set J=1. In practice, we use about 100L2 generations to
reach the ground state distribution, then iterate about 1000L2

generations to measure the physical quantities. To avoid self-
correlation and improve the efficiency, we make an expecta-
tion value measurement only after every L2 iterations. It is
not advantageous to perform measurements at still larger in-
tervals, since the measured generations are already nearly
statistically independent. For ergodicity we should control
the population of random walkers large enough. Otherwise
they will be trapped in a higher energy state instead of the
ground state. According to our experience, keeping L3 ran-
dom walkers in each generation is enough to ensure ergod-
icity on L�L lattice.

A. Half filling: ground state energy and staggered pseudospin
magnetization

First, we calculate the ground state energy at half filling
which may serve as a standard to compare with other ana-
lytical or numerical study in this system. Figure 2 shows
ground state energies per site up to 28�28 lattice. We ex-
trapolated it to the thermodynamic limit through the follow-
ing formula,

E�L�
J

= E0 +
E1

L
+

E2

L2 + O
 1

L3� , �6�

where E0=−0.2591�4�, E1=0.008�9�, E2=−0.12�6�, and L is
the linear size of lattices.

TABLE I. The ground state energy E /J at half filling.

Size 4�4 4�6 6�6

ED −4.47214 −6.46995 −9.47393

GFMC −4.4717�12� −6.4695�19� −9.4739�22�

TABLE II. The ground state energy E /J of one hole doped 4
�4 lattice.

t /J ED GFMC

0.02 −3.52850 −3.5290�9�
0.2 −4.91215 −4.9119�16�
2.0 −22.92923 −22.9310�16�

TABLE III. Density-density correlatoin D�ix , iy� on 6�6 lattice
calculated by ED.

0.25 −0.13170 0.01933 −0.02527

−0.13170 0.07083 −0.01590 0.02185

0.01933 −0.01590 0.01584 −0.01920

−0.02527 0.02185 −0.01920 0.01998

TABLE IV. Density-density correlatoin D�ix , iy� on 6�6 lattice
calculated by GFMC.

0.25 −0.1319�7� 0.0196�12� −0.0254�11�
−0.1319�7� 0.0711�9� −0.0161�10� 0.0220�8�

0.0196�12� −0.0161�10� 0.0160�10� −0.0193�7�
−0.0254�11� 0.0220�8� −0.0193�7� 0.0200�7�
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Another issue that we shall address is whether there exists
charge density order in the thermodynamic limit. Although
density-density correlation D�i , j� exhibits �� ,�� charge-
modulation patterns on small lattices with PBC, as it behaves
in fermionic system,3 it may vanish in the thermodynamic
limit. To answer this question, we introduce the staggered
pseudospin magnetization m, which is defined as

m =
1

2N
�

�

i

�− 1�ini�2� , �7�

where N is the number of sites on checkerboard lattices. The
staggered pseudospin magnetization has its name because if
we map a hardcore boson model to a spin-1 /2 model this
quantity is nothing but the staggered magnetization. If the
system is charge ordered, m will not vanish in the thermody-
namic limit. By “forward walking” technique, we calculate
the pseudospin magnetization up to 24�24 lattice and ex-
trapolated it to the thermodynamic limit by the following
formula,

m�L� = m0 +
m1

L
+

m2

L2 + O
 1

L3� , �8�

with m0=0.000�4�, m1=0.55�9� and m2=0.6�5�. As shown in
Fig. 3, it results in a vanishing charge order at �� ,�� in the
thermodynamic limit. This result agrees with the claim of
nonmagnetic phase in Ref. 8. Similar conclusion was found
for spinless fermion.3

B. One hole doping: ground state energy and defect-defect
correlation

One of the central questions is whether or not the defects
will be confined by the Hamiltonian �5�. To answer this ques-
tion, we calculate the ground state energy at one hole doping
and t=0 at first. When t=0, the two defects cannot move
away by hopping terms, so that we should calculate the
ground state energy with fixed defects. Figure 4 shows the
numerical results for L�L lattice, L=16,20,24. It turns out
that the ground state energy will increase linearly as the dis-

tance between two defects increases. The distance between
two defects is defined as the distance from one plaquette
center to another in units of the lattice constant a, say, it is �2
for two nearest neighbor plaquettes.

Even though we turn on the hopping term, the upper
bound of the gained kinetic energy is less than 2zt, z=6 for
checkerboard lattices is the coordination number. Since the
confinement potential increases linearly with the distance be-
tween the two defects, the two defects will be confined with
an average distance R.

Now we turn to t�0 case and study how the defect-defect
correlation will change as the ratio t /J varies. The defect-
defect correlation C�p ,q�=C�p−q� can be defined as

C�p,q� = 

2 − �
i	p

ni�
2 − �
j	q

nj�� , �9�

where p, q denote the crisscrossed plaquettes. The numerical
result is present in Fig. 5. One notices that when t /J is small,
the two defects will be linearly bounded. As t /J increasing,

FIG. 2. Ground state energy per site at half filling and extrapo-
lation to thermodynamic limit. Values are shown for L�L lattices,
L=8,10, . . . ,28.

FIG. 3. Staggered pseudospin magnetization, Eq. �7�, on finite
size lattices at half filling and extrapolation to thermodynamic limit.
Values are shown for L�L lattices, L=8,10, . . . ,24. Zero result for
m0 means charge order is absent here.

FIG. 4. �Color online� Cyclic exchange energy HJ will increase
linearly when the distance between two defects increases in the case
of t=0. Here E0 is the ground state energy at half filling.
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the defect-defect correlation will be more and more uniform
in a finite size lattice with periodic boundary condition.
Hence we expect that the average distance R�t /J� between
the two defects in the infinite lattice will increase monotoni-
cally with t /J. However, as shown in the inset of Fig. 5, it
will reach the saturation on a finite lattice due to the size
effect, the maximum will be ��2+ln�1+�2��L /6=0.3826L
on L�L lattice for a homogeneous distribution.

From the above we can conclude that the cyclic exchange
HJ provides a linear confinement potential between two de-
fects but the hopping term tends to increase this average
distance. If the concentration of defects �=2Nhole /N is large
enough as to satisfy

� 

a2

�R2�t/J�
, �10�

when the average area occupied by one defect, Na2 / �2Nhole�,
is smaller than the confinement area, �R2, the defects will

have a homogeneous distribution on the infinity lattice in-
stead of to be confined together in couples. It implies that it
is possible to treat these defects as independent pointlike
excitations.

V. CONCLUSION

In summary, we apply the GFMC algorithm to a spinless
hardcore boson model with strong nearest neighbor repulsion
on checkerboard lattices near half filling. To avoid any varia-
tional bias from the trial wave function, a “forward walking”
technique has been used to compute density-density correla-
tion and defect-defect correlations. At half filling, the ground
state energy is obtained and extrapolated to infinity size. It
turns out that the staggered pseudospin magnetization van-
ishes in the thermodynamic limit, thus charge order at �� ,��
is absent in this system. Away from half filling, two defects
induced by each hole �particle� may carry fractional charge
�±e /2�. In the case of one hole doping, we study how the
defect-defect correlation changes with the parameter t /J,
which equals to V /2t when V� t. The cyclic exchange is
found to provide a linear confinement potential between two
defects, while the hopping term as kinetic energy is tending
to separate them away. Moreover, we argue that these defects
may propagate independently when the concentration of
holes �or defects� is large enough.

Finally, confinement �deconfinement� is a subtle issue, al-
though we have presented some evidences for the possibility
of the existence of defects which may carry fractional charge
�±e /2� in this system, a lots of work remain to be done. This
issue should be treated by other analytical and numerical
methods. Especially, the effective field theories for the
present system are expected to describe the ground state and
low lying excitations well, thus a confident conclusion for
confinement or deconfinement will be achieved.
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