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We investigate the two-terminal nonlinear conductance of a Coulomb-blockaded quantum dot attached to
chiral edge states. Reversal of the applied magnetic field inverts the system chirality and leads to a different
polarization charge. As a result, the current-voltage characteristic is not an even function of the magnetic field.
We show that the corresponding magnetic-field asymmetry arises from single-charge effects and vanishes in
the limit of high temperature.
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The Onsager-Casimir symmetry relations1,2 establish that
the linear-response transport is even under reversal of an
external magnetic field. It is then of fundamental interest to
investigate the conditions under which one can see devia-
tions from the Onsager symmetries as one enters the nonlin-
ear regime. Recently, it has been shown3,4 that in nonlinear
mesoscopic transport there arise magnetic-field asymmetries
entirely due to the effect of electron-electron interactions in
the nonlinear regime.5 These works have been focused on
quantum dots with large density of states and connected to
leads via highly conducting openings; typically, quantum
point contacts supporting more than one propagating mode.3

Recent experiments by Zumbühl et al.6 on large chaotic cavi-
ties are in good agreement with theory. In nonlinear transport
magnetic-field asymmetries can occur under a wide variety
of conditions.7–9 In particular, we considered3 a quasilocal-
ized level separated from the leads with tunnel barriers but
neglected single-charge effects. Therefore, it is natural to ask
whether magnetic-field asymmetries are visible in the
Coulomb-blockade regime.10–12 Since Coulomb energies can
be much larger than the energy scales for quantum interfer-
ence, magnetic-field asymmetries induced by single electron
effects should be visible at much higher temperatures.

The electrostatic approach used in the classical model of
Coulomb blockade11 predicts a potential �d in the quantum
dot �QD� that depends on the QD charge Qd,

�d =
Qd

C�

+ �ext, �1�

and on an external potential �ext related to the polarization
charge Qext externally induced by nearby reservoirs and
gates,

�ext =
Qext

C�

=
��

C�V�

C�

, �2�

where the sum extends over all leads. This model assumes a
uniform screening potential described by the QD �geometric�
capacitance couplings C� with the contacts. The total capaci-
tance of the equivalent circuit is thus C�=��C�.

Consider now a two-terminal sample in the quantum Hall
regime �see Fig. 1� with one edge state running along each
side �top and bottom�. With the help of gates it is possible to

create in the center a potential hill that behaves as a tunable
quasilocalized state coupled to edge states acting as source
and drain reservoirs. The resulting antidot13 connects the
edge states in two ways:3,14 �i� scattering coupling, in which
electrons tunnel from the edge states to the antidot, and �ii�
electrostatic coupling, in which the antidot screening poten-
tial feels the repulsion through capacitive couplings: C1 �C2�
between the dot and the upper �lower� edge state. The system
has a definite chirality determined from the magnetic-field
direction �upward or downward� since, e.g., the upper edge
state originates from the left terminal for a given field +B but
carries current from the right terminal for the opposite field
direction −B. Thus, the nonequilibrium polarization charge
becomes Qext�+B�=C1V1+C2V2 and Qext�−B�=C2V1+C1V2,
which is clearly magnetic-field asymmetric whenever the ca-
pacitance coupling is asymmetric. Thus, we expect that the
current traversing the dot is not an even function of B.

The qualitative argument above can be traced back to the
oddness of the Hall potential.3 We investigate now the effect
in detail to give precise predictions for the dependence of the
magnetic-field asymmetry on temperature, bias, and gate
voltages.

Electrons from lead � tunnel onto the dot via the edge
states with a transmission probability characterized by a
Breit-Wigner resonance with a width ��. We assume that
transport is governed by transitions between QD ground

FIG. 1. Sketch of the system under consideration. The antidot is
coupled to chiral edge states via tunnel barriers acting as leaky
capacitors. A back-gate contact controls the dot occupation with a
capacitive coupling Cg. When the magnetic field is reversed, both
edge states invert their propagating direction.
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states, which is a good approximation when both temperature
and bias voltages are much smaller than any excitation en-
ergy. Then, the scattering matrix12,15 S��

N for the transition
from Qd=N−1 electrons to Qd=N electrons when an elec-
tron is transmitted from lead � to lead �,

S��
N �E� = ��� − i

���
N��

N

E − �d�N� + i�N/2
, �3�

has a complex pole with a real part associated to the QD
electrochemical potential �d�N�. The total resonance width is
proportional to �N=����

N. The widths fluctuate according to
the Porter-Thomas distribution but in what follows we ne-
glect intradot correlation effects in � and take it as energy
independent, which works well provided bias variations are
much smaller than the barrier height.

We emphasize that the scattering matrix is not only a
function of the carrier’s energy E but also depends on the full
electrostatic configuration via ��N�=E�N�−E�N−1�, where
E�N� is the ground-state energy of an N-electron QD,

E�N� = �
i=1

N

	i +
�Ne�2

2C�

− eN�
�

C�V�

C�

. �4�

In Eq. �4�, E�N� consists of two terms. First, the kinetic
energy is a sum over QD single-particle levels Ek=�i=1

N 	i
arising from confinement. These levels may be, in general,
renormalized due to coupling to the leads: 	N→	N
+ ��N /
�ln��D−E� / �D+E�� with D the bandwidth assuming
flat density of states in the leads. The renormalization term is
a slowly increasing function of E and can be safely ne-
glected. Therefore, the kinetic energy is invariant under re-
versal of B. The second contribution to E�N� is the potential
energy U�N� that depends on the charge state of the dot and
the set of applied voltages including nearby gates. We as-
sume that the dot is in the presence of a back-gate potential
Vg, which controls the number of electrons at equilibrium via
the capacitance coupling Cg �see Fig. 1�. Then, the QD
charge, which is quantized to a value Qd=−Ne in the Cou-
lomb valleys, determines the QD potential from the dis-
cretized Poisson equation,

C1��d − V1� + C2��d − V2� + Cg��d − Vg� = − Ne , �5�

which amounts to the Hartree approximation, disregarding
exchange and pairing effects. These effects might be impor-
tant in certain situations12 but we shall see below that this
level of approximation already suffices to obtain a sizable
magnetic-field asymmetry.

Equations �1� and �2� are readily derived from Eq. �5�.
Then, we find that the QD potential energy reads

U�N, + B� =
N2U

2
− eN�C1

C�

V1 +
C2

C�

V2 +
Cg

C�

Vg� , �6�

where C�=C1+C2+Cg and U=e2 /C�. We now reverse the
magnetic field,

U�N,− B� =
N2U

2
− eN�C2

C�

V1 +
C1

C�

V2 +
Cg

C�

Vg� . �7�

From Eqs. �6� and �7� it is clear that the QD electrochemi-
cal potential shows a magnetic-field asymmetry, ��

= ���N , +B�−��N ,−B�	 /2, given by

�� =
C2 − C1

2C�

�V1 − V2� . �8�

Since ��N� determines the position of the differential con-
ductance resonance, it follows that the I-V characteristics of
the antidot is asymmetric under B reversal. We remark that
this model assumes full screening of the charges injected in
the dot, i.e., the local potential neutralizes the excess charge:
C��e2� with � the density of states of edge state �. De-
viations from this limit would probably decrease the size of
the asymmetry.3 Finally, we emphasize that magnetic field
asymmetries develop only to the extent that capacitive inter-
actions with surrounding contacts are considered.

The current around the N−1→N resonance for spinless
electrons reads

IN�B� = −
e

h

 dE�S12

N �†S12
N �f1�E� − f2�E�	 , �9�

where the scattering matrix S from Eq. �3� depends on B
because the QD potential response is asymmetric under B
reversal, as shown above. f�E� is the Fermi function and we
take V1=−V2=V /2. Our goal is to calculate the asymmetry,

�G =
GN�+ B� − GN�− B�

2
, �10�

of the differential conductance GN=dIN /dV.
In the classical Coulomb-blockade regime, one neglects

quantum fluctuations in Qd. Since the coupling to the leads
causes a finite lifetime of the QD charges, Qd is quantized
only when kBT��N. Furthermore, one assumes that there is
no overlap between the distinct resonances, thereby the mean
level spacing in the dot �	��. Hence, we expand Eq. �9� to
leading order in � and obtain GN�V� for B�0,

GN�V, + B� = −
e2

�

�L
N�R

N

4C�kBT�N �y2�V� + y1�− V�	 , �11�

with

y��V� = �C� + Cg/2�cosh−2� 	̃N + eV
C� + Cg/2

C�

2kBT
� , �12�

for �=1,2 where 	̃N=	N−EF+U�N−1/2�−eCgVg /C� with
EF the Fermi energy in the leads. For B�0 one must make in
Eq. �11� the replacement 1→2 and V→−V. Then, our ex-
pression predicts a magnetic-field asymmetry that arises only
in the nonlinear conductance �for voltages V�0� and only
due to electrostatic interactions with the leads. For V=0 we
reproduce the expression of the linear conductance G0
=G�V=0� as a function of Vg.11 G0 is independent on the
sign of B, thus fulfilling the Onsager relation. Sharp
Coulomb-blockade peaks are observed in the oscillating G0
as a function of Vg when kBT�e2 /C� �see inset of Fig. 2�.

We illustrate the behavior of �G in Figs. 2 and 3. We
define a capacitance asymmetry factor,
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� =
C1 − C2

C1 + C2
. �13�

Clearly, �G is nonzero only for asymmetric couplings. In
Fig. 2, we show �G as a function of the back-gate voltage Vg
for a finite bias and different temperatures. For simplicity, we
set EF=0 and take uniformly spaced levels: �=	N−	N−1 in-
dependent of N �in reality, levels are Wigner-Dyson distrib-
uted�. The curve is periodic since �G reflects the periodicity
of the conductance. The asymmetry vanishes exactly at the
degeneracy points, i.e., at gate voltages Vg=e�N−1/2� /Cg

+	NC� /eCg �or simply Vg=e�N−1/2� /Cg for ��U�, where
the conductance is maximum as 	̃N=0. Importantly, ��G�
reaches the maximum value on both sides of the degeneracy
point and then decreases in the Coulomb-blockade valley,
where the charge is fixed, because no transport is permitted.
For very low voltages �eV�kBT� a compact analytic expres-
sion can be found,

�G = −
e

�

�L
N�R

N

4�NkBT

�eV

kBT

C� − Cg

C�

cosh−2 	̃N

2kBT
tanh

	̃N

2kBT
.

�14�

We find that the maxima of ��G� take place approximately at
	̃N=kBT, i.e., for gate voltages of the order of kBT away from
the degeneracy point. This explains as well why the maxima
�minima� shift to lower �higher� values of Vg with increasing
T. Moreover, it is worthwhile to note that the asymmetry
effect vanishes overall in the high-T regime. This implies
that when temperature is higher than the interaction e2 /C�

transport is mediated by thermal fluctuations only, which are
B symmetric. We note in passing that our results are formally
related to the voltage asymmetry that arises in a quantum dot
that is more coupled to, say, the left lead than to the right
lead.15 As a consequence, the conductance measured at for-
ward bias differs from the backward bias case.16

Figure 3 presents the nonequilibrium conductance as a
function of the bias voltage at a fixed Vg corresponding to
one maximum in Fig. 2. The asymmetry increases rapidly
with voltage and this increase is sharper for increasing ca-
pacitance asymmetry.

In Ref. 3 we distinguished between capacitive asymmetry
and scattering asymmetry, the latter arising from asymmetric
tunnel couplings �L

N��R
N. Both asymmetries can be varied

independently by changing the height and width of the tunnel
barrier separating the dot and the edge states. This distinction
was possible because the problem could be solved exactly at
all orders in the coupling �N �coherent tunneling�. When the
dot is Coulomb blockaded, tunneling is sequential and tunnel
couplings are treated to first order ��N is the lowest energy
scale�. Thus, the effect of a tunnel asymmetry is trivially
incorporated in our equations since �L

N�R
N /�N= �1−�2� /4�N

with the scattering asymmetry factor �= ��L
N−�R� /�N. How-

ever, in the classical treatment of Coulomb blockade given
here, the asymmetry �G vanishes when �=0 independently
of �. To include quantum fluctuations is a difficult task since
the charge Qd is not simply Ne and the self-consistent pro-
cedure to find the dot potential becomes involved. In the
absence of Coulomb blockade effects, but in the presence of
a Hartree potential, the task can be solved14 to all orders in �.

Cotunneling processes contribute to the conductance to
order �2. Thereby a residual asymmetry is expected around
the conductance minima.17 We consider elastic cotunneling,
which is the dominant off-resonance mechanism at low bias
when kBT��, as experimentally demonstrated.18 Elastic co-
tunneling consists of the virtual tunneling of an electron in a
coherent fashion without leaving the dot in an excited state.
Hence, our theory for transport between ground states is ap-
plicable. For definiteness, we investigate the minimum be-
tween the N=1 and N=2 resonances. Due to large denomi-

FIG. 2. �Color online� Magnetic-field asymmetry of the differ-
ential conductance vs gate voltage for different temperatures. We
set C1+C2=Cg=0.5 �C�=1�, asymmetry factor �=0.5, �=0.1U,
�=0.002U, and V=0.005U �U=e2 /C��. Inset: Coulomb-blockade
oscillations of the linear conductance �V=0� for the same param-
eters and kBT=0.01U.

FIG. 3. �Color online� Magnetic-field asymmetry of the differ-
ential conductance vs bias voltage for different capacitance asym-
metries. We set kBT=0.01U �U=e2 /C��, C1+C2=Cg=0.5, �
=0.1U, �=0.002U, and Vg=1.173e /C�, which corresponds to a
maximum in Fig. 2. The dotted line shows the low voltage result
given by Eq. �14�. Inset: Cotunneling magnetic-field asymmetry �in
units of �L�R /U2� vs bias for eVg /U=1.8,1.9,2.1,2.2 �on the left,
from top to bottom�. The full line is obtained from Eq. �15� for
eVg /U=1.9.
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nators in Eq. �3� we can use T=0 Fermi functions in Eq. �9�
and expand in powers of �. The resulting conductance goes
as �� /U�2. In the inset of Fig. 3 we plot the numerical result
of the asymmetry of the cotunneling conductance, �c, as a
function of V for gates voltages around the conductance
minimum, which represents the electron-hole �e-h� symme-
try point. Interestingly enough, �c changes sign about the
minimum and exactly vanishes �not shown� at the e-h sym-
metry point since charge fluctuations are quenched there �the
mean charge is 1 /2 per channel�. For EF=	1+� /2 the G0
minimum takes place at Qg=CgVg= +e. Then, to leading or-
der in �Qg /e−1� we find

�c = −
e2

h
�L�R

192��C� − Cg�UeV

C��� + U�4 �Qg

e
− 1� , �15�

valid in the limit eV�U and kBT�����U. This expres-
sion reproduces the effects discussed above and is in remark-
able agreement with the numerical results �see the inset of
Fig. 3�.

Thus far we have neglected the spin degeneracy. When T
is further lowered, spin-flip cotunneling processes lead to
Kondo effects and the corrections of the conductance be-
come of the order of e2 /h. Notably, a dependence on the bias

polarity19 due to asymmetric couplings20 has been observed.
Therefore, one might expect a large magnetic-field asymme-
try. However, recent works21,22 have emphasized the robust-
ness of the e-h symmetry point in the Kondo regime against
external disturbances, which would suggest that also the
magnetic-field asymmetry vanishes at this point.

We have demonstrated that careful consideration of the
interaction between a quantum dot and the edge states to
which it is coupled leads to an out-of-equilibrium charging
that is asymmetric under magnetic-field reversal. Crucial to
this result is the chirality of the polarization charge. Obvi-
ously, any model generating an uneven polarization charge
would similarly and quite generally predict an asymmetry.
Importantly, the temperature scale of the magnetic field
asymmetry we find is determined by the Coulomb charging
energy. Consequently, the effect reported here should be
readily observable in a wide range of systems.

We thank R. López and M. Polianski for useful discus-
sions, and H. Bouchiat, H. Linke, and K. Ensslin, for private
communications. This work was supported by the RTN No.
HPRN-CT-2000-00144, the Spanish Contract No. PRIB-
2004-9765, the program “Ramón y Cajal,” the Swiss NSF,
and MaNEP.

1 L. Onsager, Phys. Rev. 38, 2265 �1931�.
2 H. B. G. Casimir, Rev. Mod. Phys. 17, 343 �1945�.
3 D. Sánchez and M. Büttiker, Phys. Rev. Lett. 93, 106802 �2004�;

M. Büttiker and D. Sánchez, Int. J. Quantum Chem. 105, 906
�2005�.

4 B. Spivak and A. Zyuzin, Phys. Rev. Lett. 93, 226801 �2004�.
5 M. Büttiker, J. Phys.: Condens. Matter 5, 9361 �1993�.
6 D. M. Zumbühl, C. M. Marcus, M. Hanson, and A. C. Gossard,

cond-mat/0508766 �unpublished�.
7 G. L. J. A. Rikken and P. Wyder, Phys. Rev. Lett. 94, 016601

�2005�.
8 J. Wei et al., cond-mat/0506275 �unpublished�.
9 C. A. Marlow et al., cond-mat/0510483 �unpublished�.

10 Mesoscopic Electron Transport, edited by L. L. Sohn et al.,
NATO Advanced Studies Institute, Series E: Applied Science
�Kluwer, Dordrecht, 1997�, Vol. 345, p. 105.

11 C. W. J. Beenakker, Phys. Rev. B 44, 1646 �1991�; D. V. Averin,
A. N. Korotkov, and K. K. Likharev, ibid. 44, 6199 �1991�.

12 Y. Meir, N. S. Wingreen, and P. A. Lee, Phys. Rev. Lett. 66, 3048
�1991�; I. L. Aleiner, P. W. Brouwer, and L. I. Glazman, Phys.
Rep. 358, 309 �2002�.

13 C. J. B. Ford et al., Phys. Rev. B 49, 17456 �1994�; G. Kirczenow
et al., Phys. Rev. Lett. 72, 2069 �1994�.

14 T. Christen and M. Büttiker, Europhys. Lett. 35, 523 �1996�.
15 C. A. Stafford, Phys. Rev. Lett. 77, 2770 �1996�.
16 E. B. Foxman et al., Phys. Rev. B 47, 10020 �1993�.
17 D. V. Averin and Yu. V. Nazarov, Phys. Rev. Lett. 65, 2446

�1990�.
18 S. De Franceschi et al., Phys. Rev. Lett. 86, 878 �2001�.
19 F. Simmel et al., Phys. Rev. Lett. 83, 804 �1999�.
20 M. Krawiec and K. I. Wysokinski, Phys. Rev. B 66, 165408

�2002�.
21 M.-S. Choi, D. Sánchez, and R. López, Phys. Rev. Lett. 92,

056601 �2004�.
22 P. S. Cornaglia, H. Ness, and D. R. Grempel, Phys. Rev. Lett. 93,

147201 �2004�.

D. SÁNCHEZ AND M. BÜTTIKER PHYSICAL REVIEW B 72, 201308�R� �2005�

RAPID COMMUNICATIONS

201308-4


