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We present a quantum optics scheme of generating large-amplitude Schrödinger cat states and entanglement
in a weakly coupled nanomechanical resonator and single Cooper-pair box system. We show that the entangle-
ment in this system can be detected by a spectroscopic method and can be generated at finite temperature and
in the presence of environmental fluctuations.
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I. INTRODUCTION

The fabrication and probing of ultrasmall nanomechanical
resonators with secular frequencies of GHz and quality fac-
tors approaching 105 have been achieved in recent
experiments.1 These resonators are promising systems for
demonstrating the quantum mechanical nature of the me-
chanical degrees of freedom.2 One crucial step in studying
the nanomechanical systems will be the engineering and de-
tection of the quantum effects of the mechanical modes. This
can be achieved by connecting the resonators with solid-state
electronic devices,1,3–5 such as a single-electron transistor
�SET�. The SET couples with the resonator via electrostatic
interaction and measures the flexural oscillation of the reso-
nator with an accuracy approaching the quantum limit.1 Pre-
paring a resonator to a pure state—e.g., its ground state—has
been proposed using quantum feedback control via a SET
�Ref. 6� and sideband cooling via a quantum dot �Ref. 7� or
a single Cooper-pair box �SCPB� �Ref. 8�.

Quantum engineering of the resonator modes, which are
underdamped harmonic oscillators, can be achieved by ap-
plying the techniques in quantum optics. For example, con-
necting a resonator with a solid-state qubit forms a spin-
oscillator model that has been intensively studied in quantum
optics, especially in ion trap quantum computing.9 The tech-
niques of manipulating the motional state of a trapped ion by
laser pulses can be applied to studying the nanomechanical
resonators. One such system contains a nanomechanical
resonator capacitively coupled with a SCPB which acts as a
quantum two-level system—the superconducting charge
qubit—controlled by the gate voltage.10 In Refs. 3–5, this
system was studied and it was shown that entanglement be-
tween the resonator and qubit can be generated and detected
by interferometry when the coupling is stronger than the
frequency of the resonator. However, in experiments the cou-
pling is usually small, limited by both the geometry between
the charge island and the resonator and the maximal voltage
that can be applied8 and cannot meet the above condition.

In this paper, we present an approach that generates large-
amplitude Schrödinger cat states and entanglement in this
system even at small coupling by parametric pumping of the
SCPB. Given the large amplitude of the generated states, the
entanglement between the resonator and qubit can be ob-
served spectroscopically. When generalized to two or more

nanomechanical resonators, this scheme generates entangle-
ment between these resonators which has potential applica-
tions in the detection of weak forces, precision measurement,
and quantum information processing.11–13 The effects of non-
ideal pulses, noise, and finite temperature on this scheme are
also discussed. Moreover, this scheme can be generalized to
other systems involving generic spin-oscillator coupling. As
an example, we show that measurement of the states of an
electron spin14,15 can be achieved in the magnetic resonance
force microscopy �MRFM� system. This paper is organized
as follows. In Sec. II, we present the coupling between a
nanomechanical resonator and a SCPB in a rotating frame. In
Sec. III, we describe the parametric scheme that amplifies the
displacement of the resonator by pumping the charge qubit.
A detection scheme is then presented in Sec. IV, where a
spectroscopic approach is studied to detect the entanglement
in the system. In Sec. V, we study the effects of nonideal
situations on the realization of our scheme, including non-
ideal pulses, environmental fluctuations, and finite tempera-
ture. A generalization of this scheme to another spin-
oscillator system—detection of the states of single spin—is
studied in Sec. VI. Finally, we conclude in Sec. VII.

II. THE SYSTEM

The coupled system of a nanomechanical resonator and a
SCPB is shown in Fig. 1�a�, with the resonator undergoing
flexural vibration. The flexural mode is described by the
Hamiltonian Hm=��0â†â with �0 the frequency and â† �â�
the raising �lowering� operator of the mode. The resonator is
biased at a voltage Vx�t� and couples to the SCPB through a
capacitance Cx�x̂�=Cx0�1+ x̂ /d0� where Cx0 is the static ca-
pacitance, d0 the static distance between the resonator and
the qubit, and x̂=�x0�â+ â†� the displacement of the flexural
mode with �x0=�� /2m�0. The SCPB is a superconducting
island connected with Josephson junctions and is controlled
by the phase �x�t� and gate voltage Vg�t� via the gate capaci-
tance Cg. When CgVg+Cx0Vx�e�2n+1�+2e�n with n inte-
ger and �n small, the SCPB can be treated as an effective
quantum two-level system—the superconducting charge
qubit10,16—described by the Hamiltonian Hq=4Ec�n�z
+ �EJ�t� /2��x with EJ�t� the Josephson energy, Ec=e2 /2C�
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the charging energy, and C� the total capacitance connecting
to the charge island. Here �x,z are Pauli operators for the
two-level system. The Josephson energy includes a static part
EJ0 and a small ac part adjusted by the phase �x�t� which can
be controlled by external flux or bias current.16 To the lowest
order, the coupling between the resonator and SCPB is
−��t��â+ â†��z where ��t�= �2Ec /e�Vx�t�Cx0 �x0 /d0 with its
magnitude limited by the small ratio �x0 /d0 and the applied
voltage Vx. In our scheme, the resonator is biased with an ac
voltage Vx�t�=Vx0 cos��act� with amplitude Vx0 and fre-
quency �ac, and the gate voltage is Vg�t�=Vdc

+Vg0 cos��act�, including a dc part Vdc with CgVdc=e�2n
+1� and an ac part with amplitude Vg0 and the same fre-
quency �ac. The driving frequency satisfies �ac=EJ0 /�. In
the following we study the system in the rotating frame of
�EJ0 /2��x, where the Hamiltonian in the rotating-wave ap-
proximation can be derived as

Hrot = ��0â†â −
�0

2
�â + â†��z −

	z

2
�z +

	��t�
2

�x, �1�

where the coupling is

�0 = 4Ec
Vx0Cx0

2e

�x0

d0
,

	z =
4Ec

e
�CgVg0 + Cx0Vx0� 
 Ec,

and 	� is the small ac modulation of EJ0. Hence the dynam-
ics of the resonator is that of a shifted harmonic oscillator
with the Hamiltonian D0��z�HmD0

†��z� with

D0��z� = exp�− �â − â†�
�0�z

2��0
�

being the displacement operator. Typical parameters8 are
EJ0	10 GHz, Ec	50 GHz, Cx0	20 aF, and �0
	100 MHz. At Vx0	1 V, the coupling is �0	20 MHz.

III. AMPLIFICATION SCHEME

Below we show that by pumping the charge qubit with
stroboscopic pulses, large-amplitude Schrödinger cat states
and entanglement can be generated in this system. In an ideal
situation, we consider �-function pulse sequence

	��t� = �

n

��n�0�, with n 
 1, integer, �2�

where each pulse generates a transformation −i�x that flips
the charge qubit every half period �0=� /�0 of the resonator.
Here we assume zero charge bias 	z=0—i.e., working at the
degenerate point with a long coherence time.16 The
�-function approximation is valid when 	����0 ,�0. Let U1
be the free evolution between the pulses. We have U1

=D0��z�e−i�â†âD0
†��z�. After the nth pulse, the unitary trans-

formation on the system is U�n�0�= �−i�xU1�n. With the re-

lations �xD0��z��x=D0
†��z� and ei�â†âD0��z�e−i�â†â=D0

†��z�,
we derive

U�n�0� = �D0
2n�− �z� , n � even,

�xe
−i�â†âD0

2n�− �z� , n � odd,
� �3�

with the overall phase factors omitted. This transformation
generates on the resonator a spin-dependent displacement
�x=−�x0�2n�0�z /��0� when n is even and an opposite dis-
placement when n is odd. Hence entanglement can be gen-
erated between the qubit and the resonator.9

Assume an initial state �1/�2��
↑ �+ 
↓ ��
0� where 
0� is
the ground state of the resonator and 
↑,↓� are eigenstates of
the charge qubit in the �z basis. After even number of pulses
n, the state �1/�2��
↑ �
−2n�0�+ 
↓ �
2n�0�� is generated
where �0=�0 /2��0. The notation 
�� denotes a coherent
state of the resonator with amplitude �. When 2n�0�1,
maximal entanglement is generated between the resonator
and charge qubit. This scheme can be applied to an arbitrary
initial state of the resonator. An intuitive way of understand-
ing the process is to consider a classical particle with two
spin components in a harmonic potential that is shifted from
the origin to the left �right� at spin down �up�. The spin is
subject to flips every half period of the oscillator, as shown
in Fig. 1�b�. The oscillator starts from the origin with spin
down and oscillates to x�0 until the next flip. Each flip
changes the spin component and increases the energy of the
particle. Note that with the Hamiltonian in Eq. �1�, entangle-
ment can be generated between 
↑ �
�0� and 
↓ �
−�0� without
the pulses.4,5 However, in realistic situations �0���0, the
coupling only slightly shifts the resonator state and the reso-
nator is only weakly entangled with the charge qubit. With
our pumping process, an amplitude much larger than �0 can
be achieved even at weak coupling.

Writing the generated state in the 
�� basis with 
± �
=1/�2�
↑ �+ 
↓ ��, we have 1/2
+ ��
−2n�0�+ 
2n�0��+1/2

−��
−2n�0�− 
2n�0��. A measurement on �x of the qubit16

projects the resonator to the Schödinger cat states �1/�2��

−2n�0�± 
2n�0�� corresponding to the measured �x value �.
When generalized to multiple resonators and �or� charge qu-
bits, entanglement between the resonator modes can be gen-
erated. As an example, when two resonators couple with one

FIG. 1. �Color online� �a� The coupled system. The SCPB is
made of two Josephson junctions and biased by the gate voltage Vg.
The phase �x controls the Josephsen energy of the SCPB. The reso-
nator is biased at the voltage Vx. �b� The evolution of the resonator
starting from x=0 and 
↓�. The parabolic curves are the qubit-
dependent harmonic potentials U↑,↓�x�. The solid circles indicate
the position and energy of the resonator with the qubit state labeled
as ↑,↓. The dotted arrows describe the displacement and the in-
crease in energy of the resonator.
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charge qubit with the coupling 
��0i /2��âi+ âi
†��z, the state

�1/�2��
−�1�1
−�2�2± 
�1�1
�2�2� can be generated after the
flipping pulses. The index i=1,2 labels the two resonators
and �i=n�i /��0. Such states are maximally entangled states
of the resonators17 and are crucial elements in continuous
variable quantum computing.18 In addition, using N en-
tangled resonators for weak force detection, the sensitivity
can be improved by a factor of �N compared with that of N
independent resonators.12

IV. DETECTION OF ENTANGLEMENT

The entanglement between the resonator and charge qubit
can be detected by a spectroscopic method when the ampli-
tude of the resonator satisfies: 2n�0�1. Below we study the
detection of the state �1/�2��
↑ �
−2n�0�+ 
↓ �
2n�0��. Here
we divide the detection into two steps: the detection of the
correlation between the resonator and charge qubit and the
detection of the coherence between the spin-up part 
↑ �

−2n�0� and the spin-down part 
↓ �
2n�0��.

In the first step, a static bias 	z�0 on the charge qubit is
turned on and the Josephson energy is modulated with a
frequency �d for a duration of � /�d as 	d cos��dt��x. Here
instead of the �-function pulses in Eq. �2�, the magnitude of
	d is comparable to 8n�0�0 and 	z, while much larger than
�0. So the resonator can be treated as static during the de-
tection process. This condition is crucial for the detection
scheme, and nonideal situations are studied in the next sec-
tion. The effective Hamiltonian of the SCPB is

Hq

±2n�0� = −

	z ± 4n�0�0

2
�z + 	d cos��dt��x, �4�

where the energy splitting of the charge qubit depends on the
resonator states 
±2n�0�: E+=	z+4n�0�0 for the state 
2n�0�
and E−=	z−4n�0�0 for the state 
−2n�0�. The frequency of
the ac modulation is chosen to be ��d=	z−4n�0�0 in reso-
nance with E−. Hence the pulse flips the charge qubit in
Hq


−2n�0�, while not in Hq

2n�0�. This pulse is followed by a

�-function � /2 pulse that transforms the states of the charge
qubit from 
↑,↓� to 
�,��. The final state is then

−
i

�2

− �
− 2n�0� +

1
�2

�c↓
− � + c↑
 + ��
2n�0� , �5�

with c↑=−i sin��	̄d /2	d��	d / 	̄d� and

c↓ = cos��	̄d

2	d
� − i sin��	̄d

2	d
�8n�0�0

	̄d

,

where 	̄d=�	d
2+ �8n�0�0�2. For the state 
↓ �
2n�0�, the off

resonance with the magnitude 8n�0�0 between �d and E+
prevents the charge qubit from flipping. For the state 
↑ �

−2n�0�, the charge qubit flips to the state 
↓�. When 8n�0
�	d, this shows that 
c↓
	1 while 
c↑
	0. Note that the
states 
�� are of the rotating frame and in the laboratory
frame the �x eigenstates are 
± �s=e±iEJt/�
± �. A measurement
on the �x operator of the charge qubit16 gives the probabili-
ties of the states 
�� as p−= �1+ 
c↓
2� /2	1 and p+= 
c↑
2 /2
	0. When there is no correlation between the resonator and

charge qubit, 
c↓
�0 and p±	1/2. The correlation between
the resonator and charge qubit hence affects the probabilities
p± and can be revealed from this detection scheme.

In the next step, the detection starts by applying a
�-function � /2 pulse to the state �1/�2��
↑ �
−2n�0�
+ 
↓ �
2n�0��, which is followed by n pulses in Eq. �2�. Writ-
ten in the 
�� basis of the charge qubit, the state becomes
�1/2�2��
+ �
�+�+ 
−�
�−�� with


�+� = 
− 4n�0� + 2
0� − 
4n�0� ,


�−� = 
− 4n�0� + 
4n�0� , �6�

as the wave functions of the resonator. The probabilities of
the charge qubit on the states 
�� are p+=3/4 and p−=1/4,
respectively. While without the coherence—i.e., for a mixed
state of 
↑ �
−2n�0� and 
↓ �
2n�0�—p±=1/2 after the pulses.
Hence by measuring the charge qubit in the 
�� basis, it can
be shown that the system is in coherent superposition be-
tween the states 
↑ �
−2n�0� and 
↓ �
2n�0�. Combining the
above two steps, the entanglement between the resonator and
qubit can be demonstrated. This detection scheme only re-
quires measurement of the charge qubits and rf pulses that
can be applied to the charge qubit.

V. NONIDEAL PULSES, NOISE, AND FINITE
TEMPERATURE

In the above discussion, we assume ideal situations where
the noise is neglected, temperature is zero, and the energy
scales are well separated—i.e., 	��8n�0�0, �0 during the
amplification and 	z, 	d, 8n�0�0��0 during the detection.
Below we study the effect of these nonideal factors on the
amplification and the detection schemes and show that en-
tanglement can be generated in these nonideal situations.

The amplitudes of the pulses 	�, 	d are limited by various
energy scales in the system: the Josephson energy EJ0, the
resonator frequency, and the coupling. Typical parameters
are EJ0=20 GHz, �0=100 MHz, and �0=20 MHz. We nu-
merically simulate the amplification and the detection
schemes with these parameters. The fidelity of the amplifi-
cation process is calculated as f�	��= 
��id�t� 
��t��
2, where

�id� is the target wave function by the ideal pulses and 
��t��
is the wave function by pulses of the above parameters, as is
shown in Fig. 2. It can be seen that at 	�=10�0, the fidelity
is very low with f =0.7 after n=12 pulses. However, the
fidelity increases significantly with increasing 	�. At 	�

=60�0, corresponding to 	�=6 GHz, the fidelity is f �0.99
after n=12 pulses. We also simulate the detection process at
various static bias 	z and 	d� �0.5�0 ,10.5�0�. After n=12
pulses, 8n�0�0	1.9�0. In the inset of Fig. 2, p− is plotted
versus 	d at 	z=3.2�0 and 	z=4.0�0. At 	z=4.0�0, a maxi-
mum of p− appears at 	d=1.9�0 with p−=0.80, very different
from that of the mixed state. This shows that the entangle-
ment can be generated and detected with the given param-
eters.

Another factor is the environmental noise which can af-
fect the coherence of the system and hence the realization of
the scheme. With given parameters �0=0.1 and n�20 flips,
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a duration of 100 nsec are required to have 2n�0�1. It is
crucial to have the decoherence time longer than this dura-
tion to successfully generate the entanglement between the
resonator and SCPB. One source of decoherence is the
charge noise of the qubit, dominated by the low-frequency
charge fluctuations.10 In our scheme, the qubit is operated at
the degenerate point where a decoherence time as long as
microseconds16 has been observed. In the rotating frame of
Eq. �1�, this can be explained as a spectral shift that screens
the low-frequency noise: in this frame the noise spectrum is
S0 ��±EJ0 /�� shifted from the spectrum S0 ��� in the labo-
ratory frame by EJ0. The low-frequency noise is screened by
the Josephson energy and only has a higher-order effect on
the qubit. Another source of decoherence is the mechanical
noise of the resonator which is characterized by the quality
factor Q. The decoherence rate is �dec

−1 = �2�n�+1��0 /Q with n
the average phonon number.20 At temperature T, we have

�dec
−1 	�

8�n�0�2��0

Q
, 2n�0 �� kBT

��0
,

2kBT

Q
, 2n�0 �� kBT

��0
.� �7�

With n=20, T=20 mK, and Q=104, we derive �dec	3 nsec,
which allows coherence during the realization of our scheme.

At finite temperature T, the resonator mode is in a mixed
state with the density matrix ��=
pm
m��m
 with pm

=e−�m�1−e−��, where �=��0 /kBT. This thermal distribution
broadens the distribution of the resonator in phase space and
is another factor that may affect the generation of entangle-
ment. After applying the pulses in Eq. �2�, the density matrix
becomes



m

pm�
↑�D + 
↓�D†�
m��m
�D†�↑ 
 + D�↓ 
� , �8�

where D=D0
2n�↓� is the shift operator. It has been shown that

the state in Eq. �8� is a nonseparable state19 under the con-

dition of 2n�0��kBT /��0. Hence entanglement between
the resonator and SCPB can still be generated at finite tem-
perature. At the same time, the entanglement can be shown
experimentally, with the detection scheme studied in the pre-
vious section. For 2n�0��kBT /��0, the detection pulse flips
the charge qubit selectively and prepares the SCPB to have
probabilities p−	1 and p+	0, the same as for the pure state.
And the pulse sequence for observing the coherence brings
p+	3/4 and p−	1/4, also the same as for the pure state.

VI. DETECTION OF THE STATES OF SINGLE
ELECTRON SPIN

As the above scheme involves a generic spin-oscillator
model,9 it can be generalized to other physical systems. Be-
low, we show that this amplification scheme can be a useful
approach in the detection of the quantum states of a single
electron spin in the magnetic resonance force microscopy14,15

system. In MRFM, the spins on or near a surface interact
with the magnetic particle attached to a cantilever and can be
detected by observing their influence on the cantilever.15 It is
a potentially promising technique for both spin manipulation
and spin detection in quantum computing. In recent state-of-
the-art experiments,14 the presence of single electron spin
has been detected by measuring the frequency shift of a can-
tilever due to its coupling with the spins.

Here we apply our amplification scheme to this system.
We use the same notations as in Eq. �1�. The cantilever
couples along the z axis with an electron spin as ��0 /2��â
+ â†��z, where the coupling �0=2�BG�x0 is decided by the
local magnetic field gradient G and the quantum width of the
cantilever �x0. The dimensionless coupling magnitude can be
derived as �0=�BG /2m�0

2�x0. The bias 	z of the spin in the
z axis results from a total magnetic field including the field
from the magnetic tip on the cantilever and an optional ex-
ternal field. The spin can be pulsed in the x axis by time-
dependent rf pulses 	x�t�. In our scheme following the pulses
described in Eq. �2�, for a local spin-1 /2 particle near the tip
of the cantilever and after n spin flips, the cantilever is dis-
placed by ±4n�0�x0, corresponding to the two states of the
spin. With the parameters in experiments,14 �0=5.5 kHz,
�x0=1.3�10−13 m, and a magnetic field gradient as high as
G=2�105 T/m, we have �0=0.15. After n=5000 flips, the
distance between the two resonator states corresponding to
the two spin states is 8n�0�x0	8�10−10 m. This distance is
well within the resolution of optical interferometry, and the
state of the spin can then be determined from the detection of
the cantilever. In this scheme, it is necessary for the spin flips
to be much faster than the period of the cantilever. Given the
kHz frequency of the cantilever and magnetic resonance
pulses of GHz, this can be easily realized. Hence, this
scheme provides a measurement of the state of the spin by
increasing the magnitude of the signal from the cantilever,
which will be hard to resolve without the amplification.

To detect the state of the spin, the signal of the cantilever
has to overcome the noise from environmental fluctuations.
The displacement of the amplification is limited mainly by
the dissipation of the cantilever and the spin correlation time.
With a quality factor Q, the maximal displacement is

FIG. 2. �Color online� Main plot: the fidelity of the amplification
versus 	�. The curves from top to bottom are for n=4,8 ,12 pulses.
Inset: the probability p− after the detection pulses versus 	d at 	z

=4.0�0 �solid line� and 	z=3.2�0 �dotted line�. The axes of 	�,d are
in units of �0.
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�8�0�x0Q /�, which corresponds to a maximal number of
nmax�Q /� flips. The spin correlation time also limits the
maximal number of flips. With Q=5�104 and the measured
correlation time on the order of 10 sec,14 our scheme with
n=5000 and a duration of �0.5 sec can be realized. Mean-
while, the displacement is broadened at finite temperature
with a width of �x0

�kBT /��0 with kBT /��0�1. To resolve
the spin states, it is required that 8n�0��kBT /��0. At T
=1 K, the broadening is 2�10−10 m and this condition is
satisfied by the parameters above.

Hence a measurement of the electron spin states can be
performed directly in the z basis with this scheme. While in
the conventional cyclic adiabatic inversion technique15 �CAI�
widely used in MRFM, the spins are locked or antilocked
with the local magnetic field in the rotating frame and adia-
batically follow the rotation of the field. Furthermore, the
displacement of the cantilever is significantly increased by
applying parametric pulses to the spin, which results in the
increase in the magnitude of the signal. This enables the
signal to overcome environmental fluctuations14 and the de-
tection of the quantum state of single electron spin.

VII. CONCLUSION

We have studied a quantum optics scheme of generating
and detecting Schrödinger cat states and entanglement in the
weakly coupled resonator and SCPB system. By applying
parametric pulses to the SCPB, amplification of the displace-
ment of the nanomechanical resonator can be achieved and
entanglement can be generated between the resonator and
SCPB or between resonators. We also studied the effect of
nonideal pulses by numerical simulation and analyzed the
effects of environment and finite temperature on this scheme.
In addition, we point out that this idea can be generalized to
other systems. We studied the application of this scheme to
the detection of the quantum state of single electron spin in
the MRFM system.
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