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Theoretical studies of scattering phase and odd-even parity oscillations of the conductance are presented for
a finite atomic wire system, which is either connected with two single-channel leads or side-coupled to a
single-channel perfect wire. The effects of connected sites on the scattering properties are examined. For a
uniform atomic wire connected with two single-channel leads, it is found that when the number of atoms in the
wire, n, and the two sequence numbers of the connected atomic sites, n1 and n2 �1�n1�n2�n�, satisfy the
condition that �n+1� /gcd�n1 ,n+1−n2� is not an integer, the transmission coefficient, as a function of the
incident electron energy, has zeros of second order. At these zeros the transmission phase is continuous. The
zeros of the reflection coefficient, however, are always of first order, and the reflection phase has a lapse
precisely by � at each of these zeros. For an atomic wire system side coupled to a perfect lead, the conclusions
are reversed: the transmission zeros are always of first order, while the reflection zeros can be of high order. It
is also shown that in this side-coupled configuration, both the transmission zeros and the reflection zeros are
related to the generic properties of the isolated atomic wire system. The odd-even oscillations of the conduc-
tance have also been investigated for finite atomic wire systems in both configurations. It is found that the
transmission of a finite atomic wire system depends not only on the parity of the number of atomic sites in the
system, but also on the parity of the sequence numbers of the atomic sites through which the atomic wire
system is connected with the leads. Finally, by taking a simple one-dimensional quantum wire system with
several attached side branches as an example, we show that the transmission zeros of higher order can be found
in a quantum system built from one-dimensional wires.
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I. INTRODUCTION

The progress in the miniaturization of electronics has
stimulated numerous interest in discrete structures realized
with individual atoms. A typical example among them is an
atomic wire or chain, consisting of one or several atoms in a
series.1–3 The conductance through such an atomic wire
sandwiched by two contacts was predicted4–6 to show odd-
even parity oscillations with the number of atoms in the wire.
This feature, which has been confirmed by a recent exper-
iment,7 manifests the discrete characteristics of the atomic
wire system. Specific odd-even parity oscillations of the con-
ductance were also discussed for systems of a quantum dot
array8 and of a quantum ring,9 side-coupled to a quantum
wire. Very recently an atomic quantum point contact switch
was demonstrated to operate at room temperature and to be
entirely controlled by an external electrochemical voltage.10

All these findings illuminate the representations of quantum
effects in electron transport through atomic wire systems as
well as their intriguing applications. In addition, as indicated
in Ref. 11, the local probe methods allow us to build discrete
systems with more complexity than atomic wires.

The odd-even parity oscillations of the conductance in
atomic wire systems concern only the amplitude of transmit-
ted electron waves. The phase properties of the electron
waves are also of great importance in the characterization of
the scattering problem because they contain information
complementary to the scattering probability. Measurements
of the transmission phase have been carried out12,13 for a
quantum channel with an attached quantum dot. It was dem-

onstrated by Schuster et al.13 that when the gate voltage ap-
plied to the dot sweeps through a conductance peak, the
phase acquired by electrons traversing the quantum dot in-
creases smoothly by �, while in the tail of a resonant peak an
abrupt phase drop by � occurs. The continuous phase change
by � and its profile can be well described by the Briet-
Wigner resonant formula.13 The abrupt phase drop by � was
considered to be a striking phenomenon in the beginning.

Many theoretical efforts14–23 have been made to explain
the observed phase drop. Some theoretical models attempted
to associate the phase drop with specific properties of the dot
such as strong Coulomb repulsion,14 asymmetric deforma-
tion,15 and distinct difference between dot level widths.16 In
Ref. 17 a generic mechanism based on an approximate sum
rule was proposed for the situation of disordered dots. The
near-resonance phase lapse predicted in this model, however,
is a lack of experimental evidence. Other models for the
explanation of the transmission phase drop concerned the
transmission zeros. It was found that the discontinuous phase
change always accompanies an exact vanishing of the
transmission.18–22 It is the case even when the electron-
electron interactions in the dot are taken into account.23 In
fact, this phase drop results from the generic analytical prop-
erties of the transmission coefficient around its zeros. More-
over, an important fact about the scattering phase has been
clarified:20,21 the Friedel phase, associated with the charge
accumulation in the system, is not identical to the transmis-
sion phase at transmission zeros. In real systems the trans-
mission cannot vanish exactly due to the presence of inelas-
tic scattering. The phase drop is thus no longer sharply
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discontinuous, but occurs in a narrow range of energy.22,24

Similar discussions can be applied to the reflection phase.
Numerical results in Ref. 25 indicate that both the disconti-
nuity in the transmission phase and that in the reflection
phase can occur in an atomic wire device with a cross bar
configuration. Experimental studies of the transmission
phase have also been made for quantum dots with Kondo
correlations.26 However, the question about a well-accepted,
fundamental model for the phase property observed in the
experiment by Schuster et al. �Ref. 13� still remains.

The vanishing of the scattering amplitude is a necessary
condition for the appearance of discontinuity in the scatter-
ing phase, but not a sufficient condition.20 It should be
pointed out that the phase behavior at a scattering zero actu-
ally depends on the multiplicity of the zero. In fact, from the
general formalism presented in Ref. 27, we can deduce that,
as a function of the complex energy, the scattering amplitude
is analytic everywhere in the complex energy plane except
for at the poles of the �retarded� Green’s function �GF� of the
whole system. Around a real zero, E0, the considered scatter-
ing amplitude s has a main part s=a�E−E0�n, where a�0
and n is an integer due to the analytic property of s. When
the complex energy E passes the zero E0 in the complex
energy plane28 from the left to the right of the real energy
axis, the phase will change by −n�. As a result, in the case of
an odd integer n the phase difference between s�E0+ � and
s�E0− � is � arg�s�=−�, while for an even integer n the
phase, arg�s�, has no physical change at the zero E0.

In this work we present studies of scattering properties of
a single-channel atomic wire system connected by two
single-channel leads and of a general atomic wire system
side-coupled to a single-channel lead. We will show that for
a finite atomic chain connected by two single-channel leads,
all of the following three situations can happen: �1� all trans-
mission zeros are of second order, �2� all transmission zeros
are of first order, and �3� some transmission zeros are of
second order, while the others are of first order. It is the
integer relations among the two sequence numbers of the
connected atomic sites and the number of atoms in the chain
that determine which situation can occur. For a finite atomic
wire system side-coupled to a single-channel lead, it will be
shown that all scattering zeros are related to the generic
properties of the isolated atomic wire system. The effects of
the connected atomic sites on the odd-even parity oscilla-
tions of the conductance will also be examined for these
atomic wire systems, and the study generalizes the results in
Ref. 8. Furthermore, it will be discussed whether zeros of the
order higher than 2 can be present in the transmission of a
finite quantum wire system.

II. MODEL AND FORMALISM

The system under consideration is a finite atomic network
�a chain, a ring, etc.� connected by two single-channel leads
on the left �L� and on the right �R�. In a tight-binding picture
the Hamiltonian of the atomic network is given by

HD = �
r

�r�r��r� − �
r,r�

�r�Vr,r��r�� , �1�

where �r� denotes the set of the atomic sites, �r is the on-site
energy at site r, and Vr,r� is the hopping energy from r� to r.

The GF of the isolated system, g�E�= �E+ i�−HD�−1, can be
expressed in terms of the eigenstates ��n� and eigenenergies
�En� of the system, where HD�n=En�n. In the real-space rep-
resentation it is written as

grr� = �r�g�E��r�� = lim
�→0+

�
n

�n�r��n
*�r��

E + i� − En
. �2�

As a function of complex energy E, grr� has poles of first
order only, located at E=En− i0+. Note that degenerate en-
ergy levels may be included in the summation of Eq. �2�
when the atomic system possesses symmetries.

The atomic network couples to the left and right leads at
sites A and B, respectively, via parameters vL and vR. The
couplings are described by

HC = − vL�L��A� − vR�R��B� + H.c., �3�

where �L� and �R� denote the orbital states at the surface sites
of the left and right lead. The lead ��=L /R� is modeled as a
uniform, semi-infinite, one-dimensional �1D� wire with on-
site energy �� and nearest-neighbor interaction t�	0,

H� = �
n«�

���n��n� − �
n,n+1«�

�t��n��n + 1� + H.c.� . �4�

The diagonal element of the GF of lead � at its surface site is
given by

g� = �E − 
� − ���−1 = − t�
−1exp�ik�� . �5�

Here ��= �t��2g�=−t�exp�ik�� is the self-energy contribution
of the remanent part in the lead to the surface site and the
wave vector k� relates with the electron energy E through
E=
�−2t�cos k�. An electron can propagate along the lead
only when its energy falls into the window �
�−2t� ,
�

+2t��. In the following we always assume that the electron
energy E is within the region of ��=L,R�
�−2t� ,
�+2t��
without further specification.

For the case that electrons are incident from the left lead,
the transmission coefficient �= ���ei
t and the reflection coef-
ficient r= �r�ei
r are given by27

� = 2i	tRtLsin kRsin kLGRL, �6�

r = 2itLsin kLGLL − 1, �7�

where G is the GF of the whole system, described by the
Hamiltonian H=HD+HL+HR+HC, and GIJ= �I�G�J�. Once
the transmission probability ���2 is known, the linear conduc-
tance G at zero temperature can be obtained from the one-
channel Landauer-Büittker formula,

G = ���2G0, �8�

where G0=2e2 /h.
In the following we will express � and r in terms of the

matrix elements of the GF, g, through the Dyson equation.
The idea is to project the GF, G, onto the subspace spanned
by the states �L� and �R�. The procedure employed here is the
“elimination” of the center part of the system,29 rather than
the perfect leads. The effect of the center part on the electron
transport is expressed in terms of the self-energy �D, added
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to the connected sites of the leads, of the form

�D = vLgAAvL
*�L��L� + vRgBBvR

* �R��R� + vLgABvR
* �L��R�

+ vRgBAvL
*�R��L� . �9�

With the help of �D and �� one obtains

�
�,�

���G����� = 
�
�

�E − �� − 
�������� − �D�−1
. �10�

Using the relation E− �
�+���=−t�e−ik� and after a straight-
forward calculation the transmission and reflection coeffi-
cients can be written as

� = 2i	tLtRsin kRsin kL

gBAvRvL
*

�
, �11�

r = − �−1�gAA�vL�2tRe−ikR + gBB�vR�2tLeikL

+ tLtRei�kL−kR� + ��vLvR�2
 , �12�

where �=gAAgBB− �gBA�2 and �= tLtRe−i�kL+kR�

+gAA�vL�2tRe−ikR +gBB�vR�2tLe−ikL +��vLvR�2. Along the same
procedure it is possible to generalize Eqs. �11� and �12� to
multichannel situations.

Equation �11� implies that a discrete transmission zero
appears in two situations.30 One is that the electron energy E
coincides with a degenerate eigenenergy of the isolated sys-
tem. At this energy value the denominator � in Eq. �11� may
have a double pole so that the transmission vanishes. This
kind of transmission zero is of first order. The other is that
the electron energy is a zero of gBA. Transmission zeros in
this case can be either of first order or of high order. Note
that the zeros of gBA and the poles of � are completely de-
termined by the isolated system and are independent of the
details of the leads and the coupling parameters. Therefore,
in both situations, the transmission zeros are characteristics
of the isolated system, as pointed out in Ref. 22. Note that in
the cross-link configuration �A=B� transmission zeros come
only from the second situation.

One can also get the conditions for a reflection zero from
Eq. �12�, which is, however, cumbersome in general situa-
tions. For the symmetric coupling case of tL= tR= t, �vL�
= �vR�=v, and kL=kR=k, a compact form can be obtained. In
this case we have r� t2+gAAv2te−ik+gBBv2teik+�v4. As a re-
sult, the vanishing of the reflection occurs if and only if

gAA = gBB, �gBA� = �gAA +
t

v2eik� . �13�

It can be seen from this equation that the appearance of a
reflection zero, or equivalently a transmission unit, is deter-
mined by the properties of the isolated system, the leads, as
well as their couplings. Thus, reflection zeros belong to the
global properties of the whole structure rather than generic
properties of the isolated system.

III. ATOMIC CHAIN CONNECTED BY TWO
SINGLE-CHANNEL LEADS

A. Scattering zeros and phase

For the two-terminal case, one of the requisite conditions
for the appearance of discrete transmission zeros is the exis-
tence of two or more coherent paths25 connecting the sites A
and B. This can be visualized through the 1D chain model
depicted in the insets of Figs. 1 and 2. For the 1D chain
consisting of N identical atomic sites with a uniform on-site
energy �D and hopping integral V	0, the eigenstates can be
obtained from the boundary condition ��0�=��N+1�=0.
The results are

�n�m� =	 2

N + 1
sin

mn�

N + 1
,

En = �D − 2V cos
n�

N + 1
. �14�

The GF of the uniform 1D chain can be calculated analyti-
cally �see the Appendix�. The matrix elements associated
with the first and the last sites are

g11�E� = gNN�E� =
sin Nq

− V sin�N + 1�q
,

g1N�E� = gN1�E� =
sin q

− V sin�N + 1�q
, �15�

where q is given by

FIG. 1. �Color online� Transmission parameters �amplitude and
phase� as functions of the electron energy. The considered system
consists of an atomic chain of N=14 sites coupled to two single-
channel leads at the sites nA and nB=N+1−nA. In panels �a� and �c�
nA=4, while in panels �b� and �d� nA=5. The points with an asterisk
mark the transmission zeros. The insets in panels �c� and �d� give a
schematic illustration of the corresponding devices.
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q = cos−1���D − E�/2V
 . �16�

Note again that ��D−E��2V. From the above equation, one
can see that gN1 has no zero, while g11 has N−1 �first-order�
zeros at en=�D−2V cos �n� /N� , 1�n�N. The reason is
that for the 1D chain, g1N is contributed only by the path 1
→N, while g11 is contributed by different paths. Accord-
ingly, for the in-line configuration �A=1 and B=N� the phase
of the transmission changes continuously, while for the
simple cross-link �or side branch� configuration �A=B=1�
the transmission phase has an abrupt drop by � when the
electron energy passes through the value E=en.

More interesting is the case that the leads connect to one
or two atoms located inside of the wire with site sequence
numbers nA and nB �1�nA�nB�N�. In Fig. 1 both the am-
plitude and the phase of the transmission are plotted as a
function of the electron energy for a chain of N=14 atomic
sites connected by two single-channel leads through site nA
and site nB=N+1−nA. Two values of nA are considered: nA
=4 in panels �a� and �c� and nA=5 in panels �b� and �d�. The
parameters are chosen as tL= tR=V= t, vL=vR=0.5t, and �D
=�L=�R=2t. From the transmission spectrum we can see that
both the number of resonant peaks and the number of zeros
depend on the connected sites. It is known that for the in-line
configuration �nA=1�, there are 14 transmission resonances
and no transmission zeros.25 Here it is seen that for nA=4
there are 12 resonant peaks and 3 zeros, while for nA=5 there
are 8 resonant peaks and 4 zeros. The phase shift of the
transmission coefficient for nA=4 shows a rather different
variation with the electron energy E, in comparison with that
for nA=5 �see Figs. 1�c� and 1�d�
. In the case of nA=5, the
transmission phase drops by � precisely when the transmis-
sion coefficient passes through each of its zeros. This obser-

vation is in agreement with previous studies. As for the case
of nA=4, however, the phase changes continuously with the
electron energy E, even in the presence of transmission ze-
ros. This indicates that a zero of the transmission does not
necessarily lead to a lapse of the transmission phase.

Can both the continuity and discontinuity of the transmis-
sion phase at the transmission zeros be observed in the same
device? The answer is shown in Fig. 2, where the amplitude
and phase of the transmission and reflection are plotted for
the same structure as in Fig. 1, but with different connected
sites, nA=6 and nB=9. From panel �c� one can see that the
transmission phase has a drop by � at some transmission
zeros, while at the other zeros it changes continuously. As a
comparison the reflection phase is presented in panel �d� for
the same structure. One can see that at each reflection zero
the phase of the reflection coefficient has a drop by �. This
observation agrees with the results in Ref. 25.

The numerical calculations presented above can be under-
stood analytically as follows. For the situation that the se-
quence numbers of the connected sites satisfy the condition
nA+nB=N+1 �which we call “symmetric link”�, the element
gBA is

gBA =
sin2�nAq�

− V sin��N + 1�q
sin q
. �17�

Thus gBA has zeros at �p=�D−2V cos�p� /nA�, with the inte-
ger p satisfying 1� p�nA. These zeros can be either of first
order or of second order: the zero of gBA at �p is of second
order when p�N+1� /nA�Z and is of first order otherwise.
According to this rule three situations can be identified for
the variation of the transmission phase with the electron en-
ergy. The integer relation between N+1 and nA determines

FIG. 2. �Color online� Scattering parameters
�amplitude and phase of the transmission and re-
flection� as functions of the electron energy. The
considered system consists of an atomic chain of
N=14 sites coupled to two single-channel leads
at the sites nA=6 and nB=9. The points with an
asterisk mark the transmission or reflection zeros.
The inset in panel �c� gives a schematic illustra-
tion of the corresponding device.
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which situation will occur. For the situation gcd�N+1,nA�
=1 all the zeros of gBA are of second order. The transmission
phase thus changes continuously at all of these zeros, as is
seen in Figs. 1�a� and 1�c�. For the situation �N+1� /nA�Z
all the zeros of gBA are of first order. The transmission phase
thus has a drop by � at each of these zeros, as is seen in Figs.
1�b� and 1�d�. For the situation 1�gcd�N+1,nA��nA some
of the zeros of gBA are of first order while the other zeros are
of second order. The transmission phase thus has a drop by �
at some of these zeros and changes continuously at the other
zeros, as is seen in Figs. 2�a� and 2�c�. These facts manifest
the complication of the destructive interference even for a
simple 1D chain. For the situation nA+nB�N+1, the loca-
tion and multiplicity of transmission zeros depend on three
integers, nA, nB, and N. From Eq. �A6� one can prove that for
the case of �N+1� /gcd�nA ,N+1−nB��Z, there exists at
least one transmission zero of second order. As for the re-
flection coefficient, since its zeros come from the poles of the
GF of the whole system, they are always of first order. As a
result, the reflection phase has a drop by � at each of these
zeros, as is seen in Figs. 2�b� and 2�d�.

B. Odd-even oscillations of the conductance

We discuss the odd-even oscillations only for the case of
symmetric coupling �vL=vR=v, tL= tR= t, and kL=kR=k� and
symmetric links �nA+nB=N+1�, and consider the transmis-
sion �or, equivalently, reflection� variation with the number
of atomic sites in the atomic chain, N, and the sequence
number of the coupling site, nA, at the fixed electron energy
E=�D. Equation �13� may be applied to determine whether
the reflection vanishes at E=�D. For the case of symmetric
links one always has gAA=gBB, which is the first condition in
Eq. �13�. Whether or not the second condition in Eq. �13� is
satisfied depends on the parity of N and nA. For an even N,
the second condition in Eq. �13� at E=�D becomes
sin2�nA� /2�= tV /v2, which can be satisfied only when the
coupling strength v is exactly �tV�1/2. When this is the case
and nA is odd, the reflection is zero and the transmission is
the unit. However, in the situations studied in Figs. 1 and 2,
v= t /2=V /2 and thus v� �tV�1/2. The transmission at E
=�D�=2t� should not approach the unit as is seen in Figs. 1
and 2. For an odd N and an even nA, gBA and gAA vanish at
E=�D. In this situation the second condition in Eq. �13� is
again not satisfied and thus the transmission cannot approach
the unit. For the situation that both N and nA are odd, Eq.
�13� cannot be applied to determine whether or not the re-
flection vanishes at the energy E=�D, because both gBA and
gAA have a pole at this energy. However, in this case, �
=gAAgBB− �gBA�2 is bounded, i.e., limE→�D

���E����, and Eq.
�12� can be simplified as

r = − e2ik �t + �v4/t�gAA
−1 + 2v2cos k

�t + �v4/t�gAA
−1 + 2v2eik = − eikcos k . �18�

When the atomic chain and the two leads have the same
on-site energy ��D=�L=�R�, one has k=� /2 at E=�D. Under
this condition Eq. �18� implies that the reflection is always
zero and the transmission is always one, independent of the

coupling strength. Also, in this situation the phase of the
reflection coefficient always has a drop by � at E=�D.

The above parity-dependent transmission and reflection
phenomena can clearly be viewed as a kind of odd-even
oscillation.4–6 Here the occurrence of odd-even oscillations
requires that at least one of the two conditions, v= �tV�1/2 and
�D=�L=�R, should be satisfied. The rules of the parity oscil-
lations under different situations can be summarized as fol-
lows. For the situation that both conditions mentioned above
are satisfied, the odd-even oscillations depend only on the
integer nA,

G�E = �D��=G0, odd nA,

�G0, even nA.
� �19�

Under the other two situations the parity oscillations are de-
termined by both nA and N. If only the condition v= �tV�1/2 is
satisfied, one has

G�E = �D��=G0, odd nA and even N ,

�G0, otherwise.
� �20�

However, if only the condition �D=�L=�R is satisfied, one
has

G�E = �D��=G0, odd nA and odd N ,

�G0, otherwise.
� �21�

IV. ATOMIC SYSTEM SIDE-COUPLED TO A
SINGLE-CHANNEL PERFECT WIRE

A. Scattering zeros and phase

In this subsection, we discuss the scattering problem for
the structure of a general finite atomic wire system side-
coupled to a perfect single-channel atomic wire as sketched
in Fig. 3�a�. In Sec. IV B we apply the results of this subsec-
tion to a simple case in which the finite atomic wire system
is simply a 1D atomic chain. In the perfect wire the on-site
energy is �0 and the hopping integral is t. The finite atomic
system and the perfect wire are coupled through site A in the
atomic system and site A� in the wire with the coupling
strength vC. To proceed, we add the site A� to the original
finite atomic wire system to get a larger one. Thus, Eqs. �11�
and �12� hold if the replacement, gAA→ �E−�0− �vC�2gAA�−1,
and the parameter settings, tL= tR=vL=vR= t and kL=kR
=k�
L=
R=
0�, are made. The simplified results are

� = e2ik 2it sin k

2it sin k − �vC�2gAA
, �22�

FIG. 3. �Color online� Schematic illustration of side-coupled
atomic systems: �a� general situation and �b� an atomic wire with a
finite atomic number N.
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r = e2ik �vC�2gAA

2it sin k − �vC�2gAA
. �23�

From these two equations we have the following conclusions
for the coherent electron transport through a side-coupled
system.

�1� In contrast to the in-line or crossbar configuration,
here all �discrete� transmission zeros occur at eigenenergies
En of the isolated system �the poles of gAA�. Note, however,
that the transmission is truly zero at E=En only if the local
density of states at the atomic site A, �A�En�=�m��Em

−En���m�A��2 with ��m� being the eigenfunctions of the iso-
lated atomic system, is nonvanishing. Some special examples
of this conclusion have been reported.8,9

�2� The vanishing of the reflection occurs at zero of gAA
�Eq. �23�
.

�3� All the transmission zeros are of first order, the trans-
mission phase thus has a drop by � at each of them. There-
fore, measurements of the phase acquired by transmitted
electrons can give the energy level structure of the isolated
system. The reflection zeros, however, may be of high order
due to the complicated destructive interference. It should be
noted that for this side-coupled atomic system both the trans-
mission zeros and the reflection zeros are related to generic
properties of the isolated system.

�4� The wave function information of the eigenstates can
be detected through conductance measurements in the neigh-
borhood of the transmission zeros. In fact, at energy E
around a nondegenerate energy level En, the conductance has
the form

G�E� =
�E − En�2�4t2 − ��0 − En�2


�vC�4��n�A��4
G0, �24�

if the eigenfunction �n is nonvanishing at the coupling site A.

B. Side-coupled 1D chain

As an example, we reconsider a 1D atomic chain model,
which is now side-coupled to a perfect wire through the atom
located at site nA �see Fig. 3�b�
. In this case the diagonal
element of the GF, gAA, is of interest and is given by

gAA =
sin�nAq�sin��N + 1 − nA�q


− V sin��N + 1�q
sin q
. �25�

The transmission resonances and antiresonances can be eas-
ily determined from Eqs. �22� and �23�. There are N
−gcd�nA ,N+1� resonances at q=n� /nA �1�n�nA� or q
=m� / �N+1−nA� �1�m�N+1−nA�, and N+1−gcd�nA ,N
+1� antiresonances at q=n� / �N+1� �1�n�N ,n�gcd�nA ,

N+1� / �N+1��Z
. As a result, when the electron energy is
fixed at the value of E=�D, the odd-even parity oscillations
of the conductance can occur, but in a different fashion:

G�E = �D� = �0, odd nA and odd N ,

G0, otherwise.
� �26�

Accordingly, the reflection phase always changes by � at E
=�D when either of nA and N is even. The special nA=1 case
has been discussed in Ref. 8. Note that here both the trans-
mission zeros and the reflection zeros are of first order.

V. HIGH-ORDER TRANSMISSION ZEROS

So far, we have shown that the transmission of a finite
atomic wire system can have zeros of first order, second
order, or both. The question whether higher-order transmis-
sion zeros can occur in a finite quantum wire system is cer-
tainly of interest to study. Here we intend to provide an in-
tuitive answer to the question by considering a simple, well-
studied, 1D system with several identical side branch-
es,18–20,31 as depicted in Fig. 4. We will show that it is pos-
sible to observe zeros of high order �higher than 2� in the
transmission through a finite quantum wire system.

For a 1D lead attached by n identical side branches of
length LB with an equal distance LW between adjacent junc-
tions �Fig. 4�, the wave amplitudes �a1� ,an+1� are related with
�a1 ,an+1� � by a 2�2 scattering matrix Sn, whose off-diagonal
elements give the transmission coefficient �n. The scattering
problem for a 1D wire attached by a single side branch has
been studied and the scattering matrix S1 of the single side-
branch system has been derived.18–20,32 From Ref. 18 we
know that �1 has zeros of the first order at the wave vector
km=m� /LB, m=1,2,3,…. These transmission zeros are Fano-
type antiresonances, which are due to the interaction between
the discrete levels in the side branch and a continuous band
from the straight 1D channel.

For n	1, the composition law33 of the scattering matrix
gives �n=�1

n / fn, where fn can be a function of the transmis-
sion coefficient �1, the reflection coefficient r1, as well as LW.
The transmission thus may have zeros of an arbitrary order at
�km�. Here the actual multiplicity of transmission zeros is
determined by a single real parameter, LW /LB. Note that if
and only if exp�2m�iLW /LB�=1, the zero at km has an order
lower than n. In this situation the zero is actually of first
order. As a result, for an irrational LW /LB, all zeros at �km�
have the order of n. For an integer value of LW /LB, all zeros
at �km� are of first order. For the case that LW /LB is rational
but not integer, some of the zeros have the order of n, while
the others are of first order.

The atomic chain systems considered in Sec. III can be
viewed as a special kind of side-branch system �see the insets
in Figs. 1 and 2�. The part located on the left side of site A
and the part located on the right side of site B in each studied
atomic chain model in Sec. III can be considered as two
attached branches. Since there are only two side branches,
the highest order of transmission zeros in this model is 2, as
can be seen from Eqs. �11� and �A6�.

FIG. 4. �Color online� Current amplitudes for the model of a
wire attached by n identical side branches of length LB with an
equal distance LW between adjacent junctions.
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VI. CONCLUSIONS

In summary, we have studied scattering phase properties
and odd-even parity oscillations of the conductance of finite
atomic wire systems with different configurations of the con-
nections to the perfect leads. For a finite atomic chain at-
tached with two single-channel leads we have shown that the
transmission has zeros of second order and its phase does not
have a drop at these zeros. In contrast, the zeros of the re-
flection of the system are always of first order and the reflec-
tion phase shows a lapse of � at each of the reflection zeros.
It has also been shown that the transmission zeros are char-
acteristics of the generic property of the isolated atomic wire
system, while the reflection zeros are related to the global
properties of the whole structure rather than the isolated sys-
tem alone. For an atomic wire system side coupled to a
single-channel lead, the conclusions for scattering zeros are
reversed: The transmission zeros are always of first order,
while the reflection zeros can be of higher order. Also in this
side-coupled configuration both the transmission zeros and
the reflection zeros are related to the generic properties of the
isolated atomic wire system. The odd-even oscillations of the
conductance have also been investigated for finite atomic
wire systems in both configurations. It is found that the trans-
mission of a finite atomic chain depends not only on the
parity of the number of atomic sites in the chain, but also on
the parity of the sequence numbers of the atomic sites
through which the atomic chain is connected with the leads.
Finally we have shown the existence of higher-order zeros in
the transmission through a 1D wire system with several iden-
tical side branches attached. It is shown that at certain given
electron energies the transmission of the system can have
zeros of the order identical to the number of side branches in
the system and, therefore, the phase drop at these zeros is
determined by the parity of this number.
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APPENDIX: GREEN’S FUNCTION OF A FINITE 1D
CHAIN

In this appendix we briefly show how to obtain the GF of
a uniform atomic chain with a finite length. This can be done
by using the following lemma twice.

Lemma. If a system described by the Hamiltonian H can
be divided into two subsystems described by the Hamilto-
nians, H0 and H1, so that interaction exists only between
their surface sites 0 and 1, the GF, G0= �E−H0�−1, can be
expressed in terms of the GF, G= �E−H�−1, through

Gmn
0 = Gmn − Gm1G11

−1G1n, �A1�

where m and n are site indices in the subsystem 0.
The lemma can be easily proved. By writing H=H0+H1

+V01�0��1�+V10�1��0�, one can obtain the following relations
from the Dyson equation:

Gmn = Gmn
0 + Gm0

0 V01G1n, Gm1 = Gm0
0 V01G11, �A2�

which immediately give Eq. �A1�.
The uniform chain with a finite length N is described by

the Hamiltonian

H1N = �
1�nÏN

�D�n��n� − �
1�n,n+1�N

�V�n��n + 1� + H.c.� .

�A3�

For the infinite uniform chain H−�� with a section H1N, the
GF can be evaluated directly from Eq. �2�,

gnn�
I = �

−�

� dk

2�

eik�n−n��

E + i� − �
D − 2V cos k�

=
eiq�n−n��

2iV sin q
, n,n� � Z , �A4�

where the wave vector q is given in Eq. �16�.
The semi-infinite chain H1� is a subsystem of H−��. By

means of the lemma, its GF can be obtained as

gnn�
SI =

eiq�n−n�� − eiq�n+n��

2iV sin q
, n,n� � 1. �A5�

Finally, viewing H1N as a subsystem of H1� and using the
lemma again, we arrive at the GF of H1N,

gnn� =
sin��N + 1 − max�n,n���q


− V sin��N + 1�q

sin�min�n,n��q�

sin q
,

1 � n,n� � N . �A6�

Some special cases have been given in the paper. The
method used here can easily be generalized to the two-
dimensional situation.
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