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We consider a long quantum wire at low electron densities. In this strong-interaction regime a Wigner crystal
may form, in which electrons comprise an antiferromagnetic Heisenberg spin chain. The coupling constant J is
exponentially small, as it originates from tunneling of two neighboring electrons through the segregating
potential barrier. We study this exponential dependence, properly accounting for the many-body effects and the
finite width of the wire.
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I. INTRODUCTION

Quantum wires exhibit a plethora of interesting phenom-
ena. In particular, quantization of conductance, which is a
fundamental manifestation of the quantum nature of the elec-
tron, has been actively studied ever since its first observation
in quantum point contacts.1 The phenomenon presents itself
as very flat plateaus of linear conductance G at integer mul-
tiples of G0=2e2 /h, as a function of gate voltage which tunes
the electron density in the wire. Since the first observation of
the phenomenon, its various facets have been studied by
measurements of thermal transport,2,3 noise,4 and experi-
ments on systems with superconducting elements.5

A new generation of experiments in quantum wires has
revealed an unexpected structure at low electron densities: a
plateau at about 0.7G0 for short6–10 and at 0.5G0 for long
quantum wires.11–14 These new features have generated much
interest as they are likely caused by electron correlation ef-
fects. The origin of the new plateau has not yet been estab-
lished; however, the experiments6–8 point to the important
role played by the electron spins.

In recent experiments of a different kind, involving tun-
neling between two parallel ballistic quantum wires, map-
ping of the spectrum of spin and charge excitations was
achieved.15 In addition, unexpected behavior indicating elec-
tron localization was observed at low densities. Of particular
interest is the concurrence of the localization with the drops
in the conductance steps, which indicates15 a possible con-
nection with the 0.7 structure.6–10

Recent theoretical work suggests that qualitatively new
transport properties of quantum wires at low electron densi-
ties may be due to the formation of a Wigner crystal state of
electrons. The latter is expected to occur when the density is
low enough for the potential energy of the Coulomb repul-
sion to overwhelm the kinetic energy of the electrons in the
wire. Spin properties of the Wigner crystal are determined by
the exchange coupling constant J of two neighboring elec-
trons. Although exchange in the two-dimensional Wigner
crystal has been studied for over 20 years,16 the fundamen-
tally interesting case of the one-dimensional crystal has not
yet been carefully considered.

The exchange coupling can be viewed as arising from
tunneling of two neighboring electrons through the potential
barrier created by their mutual repulsion, and by the repul-
sion from all other electrons of the wire. As a result, J is

expected to be small compared to the Fermi energy EF. Un-
der this condition, and for temperatures in the range J�T
�EF, qualitatively new transport properties17–19 of the quan-
tum wires, such as the plateau at 0.5G0,20,21 are expected. In
addition to the conductance of the quantum wire, the param-
eter J controls the velocity of the spin excitations measured
in Ref. 15, and the transport properties of quantum wires in
the in-plane magnetic field.

In this article we study the exchange coupling in a quan-
tum wire at low electron density, when the electrons are in a
Wigner crystal state. Similarly to the case of a two-
dimensional crystal,16 the Coulomb interaction couples other
electrons of the wire to the tunneling of the exchanging pair,
thus turning the exchange into a many-body process. We
study this process, using a combination of analytic and nu-
merical tools in two distinct approximations. First we con-
sider a wire of zero width, and subsequently account for the
effect of a finite width.

II. ZERO WIDTH LIMIT

Disregarding the collective nature of the tunneling pro-
cess, an estimate of J can be made21,22 by considering a
single pair of exchanging electrons, with all the others held
in fixed positions separated by distance b�n−1. The only
dynamical variable in this case is the relative coordinate x of
the two electrons. Tunneling through the potential barrier
U�x�, created by their mutual repulsion and by the repulsion
from all the other electrons, lifts the ground-state degeneracy
caused by the inversion symmetry x→−x. The exchange en-
ergy J coincides with the exponentially small level splitting.
In the semiclassical approximation it is given by

J = J* exp�−
S0

�
�, S0 = �

−b

b

dx�mU�x� , �1�

where m is the effective mass of the electrons.
Determining J for a given density amounts to calculating

the exponent S0 /�, with the prefactor J* being of secondary
importance for the problem at hand. The action in Eq. �1� is
easily brought to the form S0=��0 /�naB, and the constant
�0�2.817 is evaluated numerically.21 �Here � is the dielec-
tric constant, and aB=��2 /me2 is the effective Bohr radius of
the semiconductor host.� The precision of this estimate is
unclear, as only the two exchanging electrons were allowed
to move.
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To account for the motion of all the electrons, we treat the
tunneling using the instanton method, in which the action is
represented as an imaginary-time integral. By measuring dis-
tance and time in units of b and ��mb3 /e2�1/2, respectively,
we find the dimensionless action

�	
Xj����� = �
−�

�

d��

j

Ẋj
2

2
+ 


j�i

1

�Xj��� − Xi����
� . �2�

Here Xj is the dimensionless coordinate of the jth electron.
In this approach the exchange constant is given by

J = J* exp�−
�

�naB
� , �3�

where � is the action �2� minimized over the trajectories
Xj��� of all the particles.

The approximation �1� is equivalent to imposing a con-
straint Xj���� j for all j�0,1. By releasing this constraint
we minimize the action over more variables. Thus allowing
for the participation of all the electrons in the exchange pro-
cess will result in ���0.

In the course of the tunneling, near neighbors of the ex-
changing pair undergo displacements comparable to the in-
terelectron distance. The contribution of these electrons to
the tunneling action S0 can only be studied by numerical
means. By contrast, the displacements of remote electrons
are small and vary smoothly, allowing for a continuous de-
scription and analytic treatment of their contribution to �.
Combining the two contributions permits a reliable evalua-
tion of �.

We study the long distance contribution first. To this end,
we modify the problem as follows. Starting with the nearest
neighbors of the exchanging pair, a large number l�1 of
electrons are assumed to be constrained to their equilibrium
positions. As a result, all the moving neighbors are far from
the exchanging pair, which enables analytic treatment of the
problem. Furthermore, it will be convenient to assume that
only N� l of the subsequent electrons can move. Apart from
taking the limit N→�, this assumption will enable us to
study how this limit is approached at large N.

Since l ,N�1, we can treat the N mobile electrons as a
continuous string described by its displacement u�X ,�� from
equilibrium, l�X� l+N. Furthermore, the large value of l
ensures that the string is far from the exchanging pair, and
the resulting displacement is small, u�1. The variation of
the electric potential at a distance X in the string due to the
exchange is equal to

	
�X,�� � − 2f���
1

X3 + 6f���
u�X,��

X4 . �4�

Here the motion of the exchanging pair enters through the
function f���=X0���X1���.

The first term in Eq. �4� is independent of u�X ,�� and
describes the shift in the potential at the location of the ex-
changing pair, caused by remote electrons at distance X; it
has already been accounted for when calculating the total

potential barrier separating the exchanging electrons. The
second term contains the string displacement u�X ,��, thus
coupling the string to the tunneling process.

This procedure enables us to account for the coupling of
the string to the exchanging pair in linear order in u and
present the string contribution �s to the action �2� as

�s =� d�

2�



k
���2 + �k

2��uk��2 + 12f�uk�
* � 1

X4�
k
� . �5�

Here the parameter k labels the �normalized� eigenmodes of
the string 
k�X�, defined in the interval l�X� l+N, and �k

is the respective plasmon frequency. The function f� is the
Fourier transform of f���, and 	X−4�k denotes the expansion
coefficient of the function X−4 in the eigenmode basis.

According to Eq. �5� the coupling of a remote mobile
electron to the exchanging pair decays as 1/X4. This can be
understood by noticing that symmetric displacement of the
exchanging electrons, X1=1−X0, creates a quadrupole poten-
tial proportional to 1/X3 at large distances. To linear order in
u�X�, the displacement of a mobile electron is equivalent to
creation of a dipole at point X, whose interaction with the
quadrupole field decays as 1/X4 	cf. Eq �4��. Since X� l, the
coupling of the string to the exchanging pair is weak at l
�1. The feedback effect of the string upon the exchanging
pair is further reduced by the same parameter. Thus we ne-
glect the latter effect and substitute into Eq. �2� the function
f� computed with unperturbed functions X0��� and X1���.

We then minimize the action �5�, and find the string con-
tribution to the total action,

�s = −
9�f0�2

2 

k

1

�k
��

l

l+N

dX

k�X�

X4 �2

. �6�

Here we used the fact that at frequencies well below the
Debye frequency of plasmons the Fourier transform f� of
f��� smoothly approaches its zero-frequency limit f0.

The eigenmodes 
k�X� are essentially standing plasmon
waves in the string with wave number k; only near the edges
does their shape slightly deviate from the sinusoidal one.
Using the proper plasmon dispersion

�k = k�2 ln k−1, �7�

we find the following asymptotic behavior in the limit of
large N:

�N = � +
�

N2�ln N
. �8�

The expressions for the two constants � and � involve pa-
rameters f0 and 
�k�l� which are easily found numerically.
As a result we obtain

� = �0 −
0.020

l6�ln l
, � =

0.011

l4 . �9�

In the limit of large number of mobile particles N→�, the
numerator of the exponent in the expression �3� for the ex-
change constant takes the limiting value �; as expected, �
��0. Somewhat surprisingly, however, the total effect is nu-
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merically small: even at l�1 we find �0−��0.02, i.e., the
total correction is of the order of one percent of the unper-
turbed value �0�2.817.

It is important to note that the above approach relies on
the large parameter l�1, which is the number of immobile
electrons between the mobile ones and the exchanging pair.
In the actual exchange process, all electrons move and con-
tribute to the action. Fortunately, the contribution to the tun-
neling action from a few near neighbors of the exchanging
pair can be found numerically. To this end, we minimize the
action �2� with a finite number N of mobile electrons on each
side of the exchanging pair, while keeping the remaining
electrons at their equilibrium positions. Mathematically, this
procedure is equivalent to solving a system of N+1 second-
order differential equations of motion with the boundary con-
ditions X1�−��=1, X1�+��=0, and Xj�−��=Xj�+��= j for j
=2,3 , . . . ,N+1. In practice, we were able to perform this
calculation for up to N=10; the results for the respective
action �N are shown in Fig. 1.

Since the expressions �9� for the coefficients � and � in
Eq. �8� were derived under the assumption that a large num-
ber l�1 of electrons next to the exchanging pair are immo-
bile, they are inapplicable in the physically interesting limit,
in which all electrons can move. However, the general
asymptotic form �8� can still be used to fit the numerical
results for �N at large N. For instance, using the last six
calculated values �5 , . . . ,�10, we find an excellent fit with
fitting parameters �=2.7981, and �=0.0221. In order to ob-
tain a more accurate result and estimate uncertainty bounds,
we considered a series of two different kinds of fitting
schemes. One consisted of fits using various numbers of �N
points; for the other, we introduced a third fitting parameter,
namely an offset to N. Note that the latter does not contradict
the predicted asymptotic behavior �8�. By combining the
analytical treatment with numerical calculation in this fash-
ion we have obtained the exponent �=2.798 05±0.000 05 in
Eq. �3� in the limit when all the electrons participate in the
exchange process.

In experiments, metal gates positioned at a distance d
�n−1 from the quantum wire screen the Coulomb interac-

tion, thus restricting to N�nd�1 the number of electrons
effectively contributing to �. According to Eq. �8�, this in-
troduces only a small correction to the already small overall
correction given by Eq. �9� at l�1.

III. EXCHANGE IN A QUANTUM WIRE OF
FINITE WIDTH

Since the effect of neighboring electrons on � in Eq. �3� is
fairly weak, it is important to consider other corrections
which may potentially affect the exchange coupling in quan-
tum wires. The most important correction is due to the fact
that quantum wires have finite width w. As a result, the ex-
changing electrons can utilize the dimensions transverse to
the wire to minimize the Coulomb repulsion at short separa-
tions. The implication is that the action should be further
reduced.

There are two limits for which we can calculate the finite-
width corrections to the action. The small-width limit, w
�aB, implies that the typical electron interaction energy
e2 /�w is much smaller than the subband spacing in the wire
�2 /mw2. Then the processes of electron scattering to higher
subbands are negligible, and the effect of the finite width of
the wire amounts to small smearing of electron density in
transverse direction. Thus we calculate an effective one-
dimensional interaction Uw�x� as an average of the three-
dimensional Coulomb interaction over the transverse
coordinates,23 using the ground-state wave function in the
confining potential

Uw�x� =� dy1dy2dz1dz2
e2�
w�y1,z1��2�
w�y2,z2��2

��x2 + �y1 − y2�2 + �z1 − z2�2
.

This procedure modifies the interaction potential in Eq. �1�
only at distances �x � �w. Thus the correction to the action

�S = �
−b

b

dx	�mUw�x� − �mU�x��

is determined by interactions at distances �x � �w, where the
integrand can be estimated as −�me2 /�w. As a result we
obtain

FIG. 1. �Color online� Triangles and circles
represent the calculated exponents. Only the val-
ues represented by the circles �N=6→11� were
used to fit to the analytically predicted asymptotic
behavior �8�. The horizontal line indicates the
value of the exponent in the limit when all elec-
trons participate in the tunneling. For this particu-
lar fit we obtained �=2.7981.
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�S = − ��� w

aB
, �10�

where only the numerical prefactor � is sensitive to the de-
tails of the confining geometry.

As an illustration, we consider an axially symmetric qua-
dratic confining potential and define w as root-mean-square
deviation of the electron from the axis in the ground state. At
short distances �x � �b, we find an effective interaction

Uw�x� =
e2��

2w�
e�x/2w�2�1 − erf� �x�

2w
�� , �11�

which, of course, coincides with e2 /� �x� at �x � �w. Substi-
tuting this expression into Eq. �10�, we find ��2.99. We
estimated the corrections to �S from small admixture of
higher subbands to be of order �w /aB�5/2.

In the large-width limit, w�aB, we can once again con-
sider a semiclassical approximation analogous to the one-
dimensional one we employed previously. Indeed, in the in-
stanton approach the trajectories of two exchanging electrons
behave as shown in Fig. 2. The electrons pass each other at a
distance r0, at which the Coulomb repulsion is of the order of

the confining potential. For example, in the case of quadratic
potential we estimate e2 /�r0���2 /mw2��r0 /w�2 and find r0

��w4 /aB�1/3. Since r0�w, the quantum particles always stay
close to the instanton trajectory, and the semiclassical ap-
proach is applicable. Furthermore, since the two electrons
pass each other at a distance of the order of r0, their interac-
tion potential is regularized at that length scale. This reduces
the tunneling action in a way similar to the small-width case
�10�, except that instead of w one should substitute r0. Thus,
at aB�r0�n−1, we estimate �S�−��r0 /aB. Substituting
r0��w4 /aB�1/3, we obtain the correction to the exchange ac-
tion �1� at w�aB in the form

�S = − ��̃� w

aB
�2/3

. �12�

The correction grows faster as a function of w than in the
regime w�aB. This generic feature of the problem occurs for
any shape of the confining potential �other than the hard-wall
one�. However, the 2/3 power-law dependence is valid only
for quadratic potential.

To find the coefficient �̃, we compute the instanton for the
exchange of two particles numerically by solving the classi-
cal equations of motion in the inverted potential. In the low-
density regime, n�r0

−1, the trajectories deviate from straight
lines only at short distances �r0, Fig. 2. We thus evaluate the
correction to S0, by finding the difference of the two corre-
sponding actions calculated up to a large distance cutoff.
This calculation gives �̃�2.03.

We are now in a position to calculate the exchange con-
stant as a function of density for both the one-dimensional
wire, and wires of various representative widths. The two
corrections to the action, Eqs. �10� and �12�, have compa-
rable magnitudes at w�11aB. Considering that for typical
confinement geometries in realistic devices w does not ex-
ceed aB, we use the finite-width correction in the form �10�.
In Fig. 3 we show the corresponding curves as a function of
density.

Summarizing, we have found the exchange energy in a
Wigner crystal of electrons in a quantum wire in the expo-
nential approximation. The tunneling process involves many
electrons neighboring the exchanging pair. Their effect was
accounted for by combining a numerical calculation for
the near neighbors of the exchanging pair with an analytic
calculation of the asymptotic behavior for the distant ones.

FIG. 3. �Color online� The calculated action as a function of
density for various wire widths w. Inset: the exchange energy J in
kelvin as a function of density for the same set of wire widths as in
the main figure, using the estimate of the prefactor obtained in Ref.
21 and parameters pertaining to GaAs.

FIG. 2. �Color online� The
classical exchange trajectories ob-
tained by solving numerically the
equations of motion for two elec-
trons �zero-density limit� in a wire
of width w�aB with a quadratic
confining potential. Arrows indi-
cate the direction of motion. The
unit of length is r0=2aB�w /aB�4/3.
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Finally, we found the substantial corrections due to a finite
width of the wire in both small- and large-width limits.

Note added. Recently, we also learned of an independent
calculation by Fogler and Pivovarov,24 who found �
=2.7978�2� in the zero-width limit.
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