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A scheme for the generation of a photocurrent in bent quantum wires is proposed. We calculate the current
using a generalized Landauer-Büttiker approach that takes into account the electromagnetic radiation. For
circularly polarized light, it is demonstrated that the curvature in the bent wire induces an asymmetry in the
scattering coefficients for left and right moving electrons. This asymmetry results in a current at zero bias
voltage. The effect is due to the geometry of the wire which transforms the photon angular momentum into
translational motion for the electrons. Possible experimental realizations of this scheme are discussed.
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Recently many schemes for photocurrent generation in
confined electron systems have been investigated.1–18 In par-
ticular, mechanisms of photocurrent generation by circularly
polarized radiation have been considered in quantum
rings15,17 and helical quantum wires.16 These geometries are
particularly interesting because they can transform angular
momentum �from the photon circular polarization� to trans-
lational motion �electron current�.15 The experimental real-
ization of these schemes has not yet been reported. In fact,
the detection of the photocurrent in isolated quantum rings is
experimentally challenging and helical quantum wires can-
not be fabricated using standard growth techniques.

In this paper, we consider the photocurrent induced in
ballistic quantum wires bent as in Fig. 1. Quantum wires of
this geometry can be easily fabricated using standard semi-
conductor growth techniques, like, for instance, V
grooving.19 The setup in Fig. 1 can also be realized by bend-
ing a single carbon nanotube on a surface. It is known that a
photocurrent can be generated in straight nanotubes by su-
perposition of single-photon and two-photon transitions.20

The effect we discuss here is due to single-photon transitions
and relies only on the particular curved geometry of the wire.
Using a generalized Landauer-Büttiker approach based on a
scattering theory, we show that the photocurrent can be
strong in this geometry. In a GaAs based quantum wire under
a radiation of 33 mW/cm2, we obtain a current of the order
of 10 pA, which is measurable with standard methods. The
circularly polarized radiation propagating perpendicularly to
the wire plane induces on the electrons in the curved region
a sliding potential of the form V�s /R±�t�, where s is the
position along the wire, R is the radius of curvature, and ��
is the radiation energy. This sliding potential is an asymmet-
ric scattering potential for left and right moving electrons,
and the difference in the transmission probabilities results in
a steady current. The classical interpretation of the effect is
that only the electrons moving in the same direction of the
sliding potential are accelerated. Moreover, we found that
quantum interference plays an important role in the current.
In fact, the energy dependence of the current shows not only
a peak at the Fermi energy, but also several additional peaks.
These additional peaks are due to the quantum interference
of transmitted and reflected waves at the points where the
curvature of the wire changes.

As shown in Fig. 1, we model the curved quantum wire in
the x-y plane using two straight quantum wires �regions 1
and 3� connected by an arc of a radius R �region 2�. On the
opposite side the straight quantum wires are connected to the
left �L� and right �R� electron reservoirs. The arc length is
given by L=�R, where � is the arc angle. We assume that a
circularly polarized electromagnetic radiation propagates in
the z direction, perpendicular to the x-y plane. Experimen-
tally, an electromagnetic cavity can be used to confine the
radiation, enhance the radiation-electron coupling, and in-
crease the current. A radiation acting on the straight seg-
ments of the wire will not generate a current, no matter what
polarization is used. We will, therefore, neglect the effect of
the radiation on the straight segments. The electron motion
along the curved wire is one-dimensional, and we define a
parameter s which indicates the position along the wire. For
simplicity, let us select the point s=0 at the contact of re-
gions 1 and 2.

The single-electron Hamiltonian in the effective-mass ap-
proximation is given by

FIG. 1. �Color online� Curved quantum wire irradiated by a
circularly polarized electromagnetic wave �EMW� with the electric
field component precessing in x-y plane. It is assumed in our model
that the curved quantum wire consists of two straight segments 1
and 3 connected by an arc 2.
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H = −
�2

2m*

�2

�s2 + „��s� − ��s − L�…�− dE − Ug� , �1�

where m* is the effective mass, ��. . .� is the step function,
and d=−er is the dipole moment. The electric field in the
radiation is written as E=E0 cos��t�x̂±E0 sin��t�ŷ, where E0

and � are the electric field amplitude and frequency, x̂ and ŷ
are unit vectors in the x and y directions, and � corresponds
to a �± circular polarization. The first term in Eq. �1� is the
kinetic energy, the second term is the dipolar interaction with
the radiation, and the third term is the geometrical potential
Ug=�2 / �8m*R2�, which describes the effect of the
curvature.24,25 The factor (��s�−��s−L�) makes the second
and third terms different than zero only in the bent segment
�region 2�. Moreover, we assume that the curved quantum
wire is narrow in the transverse directions, so that our model
is limited only to electrons within the lowest transverse sub-
band.

Using the substitution y=R cos�s /R� and x=R sin�s /R�,
we can rewrite the interaction term in Eq. �1� as

− dE = 2eRE0 sin� s

R
± �t� . �2�

According to Eq. �2�, the electrons in the constant curvature
segment are subjected to a potential that moves forward or
backward depending on the helicity of the circularly polar-
ized light. A similar sliding potential describes the interaction
of electrons with a traveling acoustic wave.21 In our case, the
effective wavelength of the traveling wave is determined by
the quantum wire curvature and equals to 2�R.

We can write the electric current from the left �L� to the
right �R� reservoirs using a generalization5,21,22 of the
Landauer-Büttiker formula23 that takes into account the ra-
diation

I =
2e

h
�

n
�

0

	

�TR,L�E + n��,E�f
L
− TL,R�E + n��,E�f
R

�dE .

�3�

Here e is the electron charge and TR,L�E+n�� ,E� is the
probability that an electron of energy E in the left reservoir is
transmitted to the right reservoir in a state of energy E
+n��. Since we are going to study the current in the absence
of external bias, i.e., at 
L=
R=
, Eq. �3� can be rewritten
as

I =
2e

h
�

0

	

�T�E�f
dE , �4�

where

�T�E� = �
n

�TR,L�E + n��,E� − TL,R�E + n��,E�� . �5�

We first consider the time-dependent Schrödinger equa-
tion in region 2. Taking into account only single-photon ab-
sorption and emission processes, corresponding to
n=−1,0 ,1 in Eq. �5�, we write the electronic wave function
in the form

�2�s,t� = �
n=−1

1

fn�s�e−�i�E+n���t�/�. �6�

In what follows, we consider the case of �− polarization, as
shown in Fig. 1. The �+ case is analogous. Substituting �6�
into the time-dependent Schrödinger equation and neglecting
the terms related to multiphoton absorption and emission, we
obtain

�E − �� + Ug�f−1 +
�2

2m* f−1� = ieE0Re−i�s/R�f0, �7�

�E + Ug�f0 +
�2

2m* f0� = ieE0R�e−i�s/R�f1 − ei�s/R�f−1� , �8�

�E + �� + Ug�f1 +
�2

2m* f1� = − ieE0Rei�s/R�f0. �9�

By looking for solutions of the Eqs. �7�–�9� in the form f−1

=C−1ei�k̃−�1/R��s, f0=C0eik̃s, and f1=C1ei�k̃+�1/R��s, we obtain for
the coefficients the system of equations

�E − �� + Ug�C−1 −

�2�k̃ −
1

R
�2

2m* C−1 − ieE0RC0 = 0,

�10�

�E + Ug�C0 −
�2k̃2

2m* C0 + ieE0R�C−1 − C1� = 0, �11�

�E + �� + Ug�C1 +

�2�k̃ +
1

R
�2

2m* C1 + ieE0RC0 = 0. �12�

From the condition that the matrix in the linear system of
Eqs. �10�–�12� has the determinant equal to zero, we obtain

the six possible values of k̃. Therefore, the wave function in
the second region is given by

�2�s,t� = �
j=1

6

�
n=−1

1

Cn,je
i�k̃ j+n�1/R��se−�i�E+n���t�/�, �13�

where the coefficients C−1,j and C1,j can be expressed
through C0,j using Eqs. �10� and �12�.

In order to find the transmission probability TL,R, we solve
a scattering problem selecting the wave functions in the first
and third regions as

�1�s,t� = eik0se−��iEt�/�� + �
n=−1

1

rne−iknse−�i�E+n���t�/�, �14�

and

�3�s,t� = �
n=−1

1

tneiknse−�i�E+n���t�/�, �15�

where kn=	2m*�E+n��� /�2, and rn and tn are reflection
and transmission coefficients, respectively. Matching the

Y. V. PERSHIN AND C. PIERMAROCCHI PHYSICAL REVIEW B 72, 195340 �2005�

195340-2



wave functions and their derivatives at the boundaries s=0
and s=L, we obtain 12 linear equations for the coefficients
rn, tn, and C0,j with n=−1,0 ,1 and j=1, . . . ,6. These equa-
tions were solved numerically, and the total transmission co-
efficient from the left to the right reservoir at the energy E
was calculated as

�
n=−1

1

TR,L�E + n��,E� = 
t0
2 +
k1

k0

t1
2 + ��E − ���

k−1

k0

t−1
2.

�16�

Using a similar scheme, we obtained the total transmission
coefficient in the opposite direction and calculated the cur-
rent using Eq. �4�.

The results of our calculations are shown in Figs. 2 and 3.
Typically, the photocurrent is negative, in agreement with the
picture that the potential sliding to the right �for �− polariza-
tion� increases the transmission probability for right-moving
electrons, which results in a negative current because of the

negative electron charge e. However, it should be noted that
the current can be positive for small values of ��, as in the
�=3� /2 curve in Fig. 2�a�. �Note that this curve has been
shifted vertically by 1.210−11 A.� This behavior is due to
quantum interference phenomena in the reflection and trans-
mission of the electrons across the three regions. As illus-
trated in Fig. 2�a�, the length of the irradiated region has a
significant effect on the photocurrent. In quantum wires with
a shorter arc, the current as a function of the photon energy is
characterized by a single peak at ��=
. By increasing the
arc angle � additional peaks appear and the peak at ��=

decreases. We found that the position of these additional
peaks is determined only by the arc length �at a fixed R� and
does not depend on the radiation intensity. Figure 2�b� dem-
onstrates that the current at ��=
 is stronger in the wires
with larger R and its maximum shifts to smaller � with in-
crease of R.

The effects of the radiation intensity and finite tempera-
ture on the photocurrent are shown in Fig. 3. In Fig. 3�a�, we
see that the energy dependence of the photocurrent scales
with the radiation intensity without changing considerably in
shape. The finite temperature �Fig. 3�b�� smoothes the peak
at ��=
 and shifts it to a lower energy. However, this effect
becomes significant only at T�10 K, implying that very

FIG. 2. �Color online� �a� A photocurrent as a function of the
photon energy calculated for quantum wires having different arc
lengths at fixed R=25 nm. �b� A photocurrent as a function of the
arc length at ��=1 meV. These plots have been obtained using
E0=500 V/m, 
=1 meV, T=10 mK, and m*=0.067me. The elec-
tric field amplitude E0=500 V/m corresponds to 33 mW/cm2 ra-
diation power. All the curves other than �=� /4 in �a� have been
vertically shifted by steps of 0.310−11 A.

FIG. 3. �Color online� A photocurrent as a function of the pho-
ton energy calculated �a� for different radiation intensities at T
=10 mK and �b� for different temperatures at E0=500 V/m. The
other parameters values are as in Fig. 2 with �=� and R=25 nm.

PHOTOVOLTAIC EFFECT IN BENT QUANTUM WIRES… PHYSICAL REVIEW B 72, 195340 �2005�

195340-3



strict temperature requirements are not needed in the experi-
ment.

We note that in a real experiment, the situation can be
more complex; however, we believe that our theory gives a
right estimate for a single-mode transport. It is straightfor-
ward to modify our results in the case of wider quantum
wires, where several transverse subbands are occupied. In
this case, it is reasonable to assume that the circularly polar-
ized radiation does not mix different transverse subbands.
The electrons in these subbands can be considered indepen-
dently and the total current is determined by contributions
from all occupied subbands. Therefore, one can expect that
instead of a single peak at the Fermi energy, the current
dependence on the radiation frequency will show a set of
equally spaced peaks �for the case of the harmonical confine-
ment� corresponding to different transverse subbands.

The spin-independent effective mass Hamiltonian �1� is a
good approximation for quantum wires without �or with a
weak� spin-orbit interaction, not subjected to a static mag-
netic field, and with negligible effective magnetic fields due
to polarized nuclear spins or magnetic impurities. In all other
cases, additional terms should be included into the Hamil-
tonian. In fact, the ballistic transport through straight quan-
tum wires and quantum point contacts was studied recently
including some of these effects.26–29 Another known source
of spin splitting in semiconductors is strain.30 Basically, we

propose to directly grow quantum wires of the shape shown
in Fig. 1. The curved quantum wires obtained by this method
will be unstrained. Strain would be present in a bent carbon
nanotube, but spin-orbit effects are expected to be small in
this system. Furthermore, given the small ratio of the nano-
tube radius over the radius of curvature of the bending, this
strain is likely to be very small. The evaluation of the impor-
tance of this effect for photocurrent generation is out of the
scope of this paper.

In summary, we have demonstrated that circularly polar-
ized electromagnetic radiation induces a current in curved
ballistic quantum wires �photovoltaic effect�. The current
was calculated as a function of the photon energy and length
of the bent segment. We have investigated the temperature
and intensity dependence of the photocurrent. We found that
for a realistic set of parameters, a current of the order of
10 pA can be observed. In curved quantum wires with a
short curved segment, the current dependence on photon en-
ergy shows a single peak at the Fermi energy. Larger seg-
ments give rise to additional peaks due to the wave reflection
and transmission at different region boundaries.
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Science Foundation, Grant No. NSF DMR-0312491.
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