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We suggest an approach for transport through finite systems based on the Liouville equation. By working in
a basis of many-particle states for the finite system, Coulomb interactions are taken fully into account and
correlated transitions by up to two different contact states are included. This latter extends standard rate
equation models by including level-broadening effects. The main result of the paper is a general expression for
the elements of the density matrix of the finite size system, which can be applied whenever the eigenstates and
the couplings to the leads are known. The approach works for arbitrary bias and for temperatures above the
Kondo temperature. We apply the approach to standard models and good agreement with other methods in their
respective regime of validity is found.
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I. INTRODUCTION

Transport through nanosystems such as quantum dots and
molecules has received enormous interest within the last
decade.1–3 Typically this problem is treated within one of the
two following different approximations: �i� Rate equations4

for electrons entering and leaving the system, which can also
take into account complex many-particle states in the central
region.5,6 Here broadening effects of the levels are entirely
neglected. It can be shown that these rate equations become
exact in the limit of high bias.7 �ii� The transmission formal-
ism, which is usually evaluated by Green function
techniques8,9 �alternatively, scattering states can be calcu-
lated directly10�, allows for a consistent treatment of level
broadening due to the coupling to the contacts. In principle,
many-particle effects can be incorporated into this formal-
ism, but the determination of the appropriate self-energies is
a difficult task, where no general scheme has been found by
now. Thus, many-particle effects are usually considered on a
mean-field basis including exchange and correlation
potentials,11–14 which are of particular importance for the
transport through molecules. Mean-field calculations are well
justified for extended systems, such as double-barrier tunnel-
ing diodes,15,16 which exhibit many degrees of freedom �e.g.,
in the plane perpendicular to the transport�. However, the
bistability frequently obtained for such structures is question-
able for systems with very few degrees of freedom as studied
here. See, e.g., the discussion in Sec. III B 4 of Ref. 17.

In our paper we want to bridge the gap between these
approaches by considering the Liouville equation for the dy-
namics of the central region coupled to the contacts. The
approach works within a basis of arbitrary many-particle
states, thus fully taking into account the interactions within
the central region. While the first order in the coupling re-
produces previous work using rate equations,18 the second
order consistently takes into account broadening effects. This
is analogous to the consistent treatment of broadening for
tunneling resonances in density-matrix theory.19

The paper is organized as follows: We first present the
formalism in Sec. II. Then we demonstrate its application to
the simple problem of tunneling through a single level, Sec.
III. We show explicitly that the exact Green function result is

recovered for all biases and temperatures. In Sec. IV we give
results for the double-dot system with Coulomb interaction
where both standard approaches fail. Finally we consider the
spin-degenerate single dot in Sec. V to investigate Coulomb
blockade as well as the limit of low temperatures.

II. INTRODUCING THE FORMALISM

The total Hamiltonian for the system consisting of leads
and the dot can be written as

H = HD + HLeads + HT. �1�

The first term describes the dot. Our key issue is the assump-
tion that the dot can be diagonalized in absence of coupling,
and the �many-particle� eigenstates and eigenenergies for HD
are denoted �a� and Ea. Thus we have

HD = �
a

Ea�a��a� . �2�

The leads are described by free-particle states

HLeads = �
k��

Ek��ck��
† ck�� �3�

where �= ↑ ,↓ describes the spin, k labels the spatial wave
functions of the contact states and � denotes the lead. In the
following we assume two leads, i.e., �=L ,R, but generaliza-
tion to more leads is straightforward. Finally, the last part in
the Hamiltonian expresses the tunneling between the states
in the leads and the dot

HT = �
k��,ab

�Tba�k����b��a�ck�� + ck��
† �a��b�Tba

* �k���� .

�4�

The matrix element Tba�k��� is the scattering amplitude for
an electron in the state k�� tunneling from the lead onto the
dot, thereby changing the dot state from state �a� to a state
�b�. Their evaluation is sketched in Appendix A. Note that
this amplitude vanishes unless the number of electrons in
state �b�, Nb, equals Na+1. We will generally denote states
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such that the particle number increases with the position in
the alphabet of the denoting letter.

Before proceeding it is important to introduce a consistent
notation in order to keep track of the many-particle states in
the leads. A general state vector for the entire system is writ-
ten as �ag�= �a� � �g�, with �g�= �	Nk��
� denoting the state of
both leads where Nk��� 	0,1
. Throughout the derivation of
the general equations we use the following notation to ensure
the anticommutator rules of the operators

�i� �g−k����ck���g� and �g+k����ck��
† �g�. That is, �g

−k��� denotes the same set of indices as the state �g�, but
with Nk�� reduced by one. Furthermore it contains a minus
sign depending on the number of occupied states to the left
of the position k��.

�ii� �gk����ck��
† ck���g� and �gk����ck��ck��

† �g�. That is,
�gk���=�Nk��,1�g�.

�iii� The order of indices is opposite to the order of the
operators. For example, �g−k�����+k���=ck��

† ck������g�
=−ck�����ck��

† �g�=−�g+k��−k������ for k���k�����,
which is tacitly assumed, unless stated otherwise.

To simplify the notation, �� is only attached to k the first
time the index k appears in the equation, and in the following
it is implicitly assumed to be connected with k. We also use
the convention that �k���� means summing over k and � with
a fixed �, which is being connected to k in this sum.

The matrix elements of the density operator �̂ are denoted
�ag;bg�= �ag��̂�bg�� and the time evolution of the matrix ele-
ments are governed by the von Neumann equation

i�
d

dt
�ag;bg� = �ag�H�̂ − �̂H�bg�� �5�

The particle current from the left lead into the structure,
JL, equals the rate of change in the occupation of the left
lead. We find that

JL = −
d

dt
�

k��L�
�ck

†ck�

= −
d

dt
�

k��L�
�bg,bgk = −

2

�
�

k��L�,cb

Im��
g

Tcb
* �k��cg−k;bg ,

�6�

where we have used the definition of the density operator to

calculate the average value of the number operator in the left
lead.

The goal is to determine these elements of the density
matrix, which describe the correlations between the leads
and the dot. They are determined using the equation-of-
motion technique, and from Eq. �5� we obtain

i�
d

dt
�cg−k��;bg

= �Ec − Eb − Ek��cg−k;bg + �
b�

Tcb��k��b�gk;bg

− �
c�

�cg−k;c�g−kTc�b�k� + �
k�����

��
b�

Tcb��k���b�g−k+k�;bg

+ �
d

Tdc
* �k���dg−k−k�;bg − �

c�

�cg−k;c�g−k�Tc�b�k��

− �
a

�cg−k;ag+k�Tba
* �k��� . �7�

While �cg−k��;bg describes the transition of an electron with
quantum number k and spin � from lead � to the central
region, terms like �b�g−k+k�;bg describe the correlated transi-
tion of two electrons with k and k�. �b�g−k+k�;bg satisfies a
similar equation of motion containing also correlated transi-
tion of three electrons on the right-hand side. In order to
break the hierarchy we apply three approximations.

�i� We only consider coherent processes involving transi-
tions of at most two different k-states. �ii� The time depen-
dence of terms generating two-electron transition processes
is neglected, which corresponds to the Markov limit.20 �iii�
We assume that the level occupations fk�� in the leads are
unaffected by the kinetics of the dot, so it is possible to
factorize the density in the leads and on the dot. This is
realistic for “large” leads which are strongly coupled to res-
ervoirs, i.e., good contacts.

Defining

wb�b = �
g

�b�g;bg, �8�

�ba�k��� = �
g

�bg−k;ag �9�

we find the following set of coupled differential equations
�see Appendix B for a detailed derivation�:

i�
d

dt
�cb�k��� = �Ec − Eb − Ek��cb�k� + �

b�

Tcb��k�fkwb�b − �
c�

�1 − fk�wcc�Tc�b�k�

+ �
a,b�,k�����

�Tcb��k��fk��b�a�k� − �1 − fk��cb��k��Tb�a�k��Tba
* �k��

Ek + Ek� − �Ec − Ea� + i0+

+ �
a,b�,k�����

��1 − fk���cb��k�Tb�a�k�� − Tcb��k�fk�b�a�k���Tba
* �k��

Ek + Ek� − �Ec − Ea� + i0+
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+ �
a,b�,k�����

Tcb��k���fk��b�a�k�Tba
* �k�� − Tb�a�k�fk�ba

* �k���

Ek − Ek� − �Eb� − Eb� + i0+

+ �
b�,c�,k�����

Tcb��k���Tc�b�
* �k���1 − fk���c�b�k� − �1 − fk��c�b�

* �k��Tc�b�k��

Ek − Ek� − �Eb� − Eb� + i0+

+ �
b�,c�,k�����

�fk��cb��k�Tc�b�
* �k�� − Tcb��k�fk�c�b�

* �k���Tc�b�k��

Ek − Ek� − �Ec − Ec�� + i0+

+ �
c�,d,k�����

�Tdc
* �k���1 − fk���dc��k� − �1 − fk��dc

* �k��Tdc��k��Tc�b�k��

Ek − Ek� − �Ec − Ec�� + i0+

+ �
c�,d,k�����

Tdc
* �k����1 − fk���dc��k�Tc�b�k�� − Tdc��k�fk�c�b�k���

Ek + Ek� − �Ed − Eb� + i0+

+ �
c�,d,k�����

Tdc
* �k���Tdc��k��fk��c�b�k� − �1 − fk��dc��k��Tc�b�k��

Ek + Ek� − �Ed − Eb� + i0+ , �10�

i�
d

dt
wbb� = �Eb − Eb��wbb�

+ �
a,k��

�Tba�k��b�a
* �k� − �ba�k�Tb�a

* �k��

+ �
c,k��

�Tcb
* �k��cb��k� − �cb

* �k�Tcb��k�� �11�

These equations are the main result of this paper. They sat-
isfy current conservation, as shown in Appendix C. The nu-
merical implementation of this approach is straightforward
and we will give examples in the following sections.

If we entirely neglect the correlated two-particle transi-
tions, only the first line of Eq. �10� remains. Applying the
Markov limit we obtain a set of equations analogously to
Eqs. �2a,b� of Ref. 18. This shows that our approximation
scheme goes substantially beyond the rate equation scheme
of Gurvitz,18 which only holds in the high-bias limit.

III. SINGLE LEVEL WITHOUT SPIN

In order to demonstrate the formalism described in the
preceding section we consider a single level without spin.
We show that this case can be solved analytically in the
stationary state and that the exact nonequilibrium Green
function result is recovered.

The possible dot states are the empty state 0 with energy
E0=0 and the occupied state 1 with energy E1. The coupling
matrix elements between the leads and the dot are T10�k��
=T��k�, and the others equal zero.

Inserting this in Eq. �10� with c=1 and b=0 gives

i�
d

dt
�10�k�� = �E1 − Ek + ��Ek���10�k��

− T��k� �
k���

T���k���10
* �k����

Ek − Ek� + i0+ + T��k��fk − w11� ,

�12�

where the self-energy

��E� = �
k�

�T��k��2

E − Ek + i0+ �13�

has been introduced, and we have used the normalization of
the probability w00+w11=1.

After multiplying Eq. �12� with T�
*�k���E−Ek� and sum-

ming over all k-states �in a fixed lead �� we obtain

i�
d

dt
B10

� �E� = �E1 − E + ��E��B10
� �E�

−
���E�

2	
� dE�

B10
L*�E�� + B10

R*�E��
E − E� + i0+

+
���E�

2	
�f��E� − w11� �14�

for the new variable

B10
� �E� = �

k

��E − Ek�T�
*�k��10�k�� , �15�

where ���E�=2	�k��E−Ek��T��k��2.
Equation �11� becomes

TUNNELING THROUGH NANOSYSTEMS: COMBINING… PHYSICAL REVIEW B 72, 195330 �2005�

195330-3



d

dt
w11 = −

2

�
� dE Im	B10

L �E� + B10
R �E�
 . �16�

Finally, the current formula Eq. �6� yields

JL = −
2

�
� dE Im	B10

L �E�
 . �17�

Throughout this paper, we apply Fermi functions fk��

=1/ �exp��Ek−
�� /kBT�+1�� f��Ek� for the lead occupations
with chemical potentials 
� and temperature T. Except for
this section, the bias V is applied symmetrically around zero,
i.e., 
L=V /2, 
R=−V /2. The contact functions ���E� are
assumed to be zero for �E��W, while they take the constant
values ��, independent of spin, for �E��0.95W. For 0.95W
� �E��W we interpolate with an elliptic behavior in order to
avoid discontinuities.

The time-dependent net-current JR�t� flowing from the
right lead into the single level has been calculated from Eqs.
�14�, �16�, and �17� in the following situation: For times t
�0 the chemical potentials of both leads and the single level
are aligned, i.e., 
L

0 =
R
0 =E1=0. At t=0 the chemical poten-

tial of the left lead is raised instantaneously to 
L giving a
steplike modulation of the bias. The result is shown for dif-
ferent values of 
L in Fig. 1. Also shown is the result of an
exact time-dependent Green function calculation.21 It is not
surprising that our results do not show the exact time depen-
dence because the Markov limit has been invoked in the
derivation of the generalized equation system in Eqs. �10�
and �11�.

In the long-time limit, we reach a stationary state with the
current

JL = JR =
1

�
� dE

2	

�L�E��R�E��fL�E� − fR�E��
�E − E1 − ��E��2

, �18�

which is derived analytically in Appendix D. Equation �18�
is in full agreement with the exact nonequilibrium Green
function result.8

IV. DOUBLE QUANTUM DOT

The double quantum dot structure, where the dots are
coupled in series, is a standard example to study tunneling
through a multiple-level system. In case of Coulomb interac-
tion and finite bias the validity of both the rate equation
method and the Green function formalism is limited.

To simplify the analysis we treat the spinless case. �A
possible realization is to favor one spin polarization of the
electron by a high magnetic field.� Denoting the left/right dot
by  /�, the Hamiltonian reads

H = Ed
†d + E�d�

†d� + Ud
†dd�

†d� + ��d�
†d + H.c.�

+ �
k�

Ek�ck�
† ck� + �

k

�tkLd
†ckL + tkRd�

†ckR + H.c.� �19�

with � being the interdot tunneling coupling and U the Cou-
lomb energy for occupying both dots. The first four terms
describe the isolated double quantum dot HD. Diagonalizing
this part of the Hamiltonian gives the following states:

�0� = �0�, E0 = 0,

�1� = �1d
† + �1d�

†��0�, E1 = 1
2 �� − ��2 + 4�2� ,

�2� = �2d
† + �2d�

†��0�, E2 = 1
2 �� + ��2 + 4�2� ,

�d� = d
†d�

† �0�, Ed = E + E� + U ,

with �=E−E�, �=E+E�, C±= ��±��2+4�2� /2�, 1/2

=C� /�1+C�
2 , and �1/2=1/�1+C�

2 .
From Appendix A we find

HT = �
k�

�T10
� �k��1��0�ck� + T20

� �k��2��0�ck�

+ Td1
� �k��d��1�ck� + Td2

� �k��d��2�ck�� + H.c. �20�

with �skipping the k-dependence of the matrix elements�

T10
L = tL

*�1�d
† �0� = tL

*1
*, T20

L = tL
*�2�d

† �0� = tL
*2

*,

T10
R = tR

*�1�d�
† �0� = tR

*�1
*, T20

R = tR
*�2�d�

† �0� = tR
*�2

*,

Td1
L = tL

*�d�d
† �1� = tL

*�1, Td2
L = tL

*�d�d
† �2� = tL

*�2,

Td1
R = tR

*�d�d�
† �1� = − tR

*1, Td2
R = tR

*�d�d�
† �2� = − tR

*2,

where the signs of the coupling matrix elements are due to
the order of the operators in the double-occupied state.

Applying the method in the same way as for the single
level system gives eight different functions of the type
Bcb

� �E� and five different occupations �bb�. These equations
have been solved and the stationary current has been re-
corded.

By comparing with exact Green function results, it has
been verified numerically that in the noninteracting case �U
=0� the exact transmission is obtained for various values of
level splitting and interdot coupling �not shown�. Further-
more, for both U=0 and nonzero U we have calculated the
stationary current in a situation where the levels are

FIG. 1. �Color online� The time-dependent current calculated
with our method �full line� and with the time-dependent Green
function method from Ref. 21 �dashed line� as response to a steplike
modulation of the bias with step height 
L. The coupling is �L

=�R=� /2, the temperature kBT=0.05�, and the half-width of the
band is W=30�.
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dealigned with E=−E�=0.5�, and �=�. The results for
different values of U are shown in Fig. 2 together with the
Green function result for U=0. Obviously, the latter is fully
recovered in the noninteracting limit. The straight dashed
line in the figure is the quantum rate equation result obtained
by Stoof and Nazarov,22 which is valid in the high-bias limit
�V→�� for U→�. The same result is found in Ref. 7 using
another rate equation method. The small discrepancy be-
tween the results could be due to the finite bandwidth used in
our calculation. For intermediate values of U the results
looks reasonable and exhibit a smooth interpolation between
the limiting cases. The kink on the curve for finite U is due
to the single occupied state.

V. SPIN-DEGENERATE LEVEL

Now we consider a spin-degenerate single level with en-
ergy E1 and Coulomb interaction U. We use the parameters
U=1.9 meV, and �=�L+�R=0.295 meV, as experimentally
determined for the structure studied in Ref. 23. The conduc-
tance

G = e2 dJ

d�
L − 
R�
�21�

is expected to reach G0= �e2 /h�8�L�R / ��L+�R�2 in the zero-
bias limit 
L→
R for temperatures far below the Kondo
temperature TK.24,25 As Gmax�0.5e2 /h in the experiment we
use �L=0.275 meV and �R=0.02 meV. Furthermore the
band width W=5 meV is applied. In Fig. 3 we show the
zero-bias conductance as a function of the dot level, which is
modified by a gate bias in the experiment. We find the stan-
dard Coulomb oscillations, where the conductance exhibits
peaks whenever the single-particle excitation energies are
close to the Fermi edge of the contacts, 
=0 �depicted by
vertical dashed lines at E1=0 and E1=−U�. The peak posi-

tions and widths are in good agreement with the data given
in Fig. 2 of Ref. 23. The peak heights for the peak around
E1�0 agree reasonably with the experiment, if one takes
into account that for elevated temperatures the presence of
different levels raise the conductance which is not included
in our single-level model. �The experimental level spacing
corresponds to 5 K.� The experimental peak heights for the
peak at E1�−U are lower, while they are exactly identical
with the corresponding peaks E1�0 due to electron-hole
symmetry in our calculation. Possible sources for this devia-
tion result from an energy-dependence of the ���E� in the
experiment or the admixture of different levels.

Further lowering the temperature, the zero-bias conduc-
tance should increase in the region 0�E1�U, due to the
Kondo effect.24,25 Albeit we observe an increase in parts of
this region, the �probable unphysical� dip in our curve for
T=0.1K at E1=−U /2 persists even at lower temperatures.
Furthermore the conductance can exceed G0 at the peaks.
This indicates that our approach fails in the Kondo limit,
where strong correlations between lead and dot state require
elaborated renormalization group26–28 or slave boson29,30

techniques.
In Fig. 4 we show the finite bias conductance at 0.8 K,

where both the conductance peaks for 
L�
R discussed

FIG. 2. �Color online� Stationary current through the double
quantum dot structure for different values of the interdot Coulomb
repulsion U. The triangles are from a nonequilibrium Green func-
tion calculation, and the dotted line is the result by Stoof and Naz-
arov �Ref. 22� valid in high-bias limit for U→�. The levels of the
dot are placed symmetrically around the zero-bias with E−E�=�.
We use the interdot tunneling coupling �=�, �L=�R=� /2, the
temperature kBT=0.1�, and the half-width of the band W=20�.

FIG. 3. �Color online� Zero-bias conductance as a function of
level position for different temperatures. All parameters are accord-
ing to the experimental data shown in Fig. 2 of Ref. 23.

FIG. 4. �Color online� Differential conductance for finite bias.
Parameters as in Fig. 3.
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above as well as the excitations can be detected. We observe
a strong asymmetry due to �L��R. This can be understood
from Fig. 5, where the current is plotted versus bias at the
single-electron excitation peak E1=0. For negative bias the
electrons rapidly leave the dot via the thin left barrier and the
dot is essentially empty. Thus both spin directions can tunnel
through the thick right barrier, which is limiting the current.
In contrast, for positive bias the dot is occupied with a single
electron �as long as 
L=V /2�E1+U� with a given spin and
only this spin direction may tunnel through the thick barrier,
reducing the current approximately by a factor of 2. We have
shown the respective results for the rate equation model7 for
comparison. The short-dashed horizontal lines refer to a bias
which allows only single occupation of the dot, while the
long-dashed line considers the case where both the single-
and the two-particle state are located between both Fermi
levels. The currents from the rate equation model slightly
exceed our results, as the peaks are not completely within the
bias window due to broadening.

VI. DISCUSSION AND SUMMARY

We have presented an approach for transport through fi-
nite systems based on the Liouville equation. This approach
recovers the results from the Green-function method in the
noninteracting limit for the models studied. In the high-bias
limit the results are consistent with the many-particle rate
equations. Thus it bridges the gap between these approaches
and allows for a consistent treatment of Coulomb interaction
and broadening effects for arbitrary bias. For example, Cou-
lomb blockade peaks are correctly reproduced. The model
fails below the Kondo temperature where strong correlations
between the finite system and the contacts dominate the be-
havior.

Correlations between tunneling events have been previ-
ously studied by the method of a diagrammatic real-time
technique.31 While this work was completed we also became
aware of a cumulant expansion of the tunneling
Hamiltonian.32 It would be interesting to study the relation
between these approaches and our method. A central ques-

tion is here, whether the exact Green function result, such as
Eq. �18�, can be obtained for the noninteracting case.

The numerical implementation of our approach is
straightforward and explicit results were presented for stan-
dard model systems made by up to two single-particle states.
For larger systems the number of many-particle states b ,c
increases dramatically, and so does the number of �bc func-
tions. Thus sophisticated routines are needed for the imple-
mentation and evaluation of real systems.
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APPENDIX A: DETERMINATION OF MATRIX
ELEMENTS Tab„k…

Conventually one starts with a single-particle basis in the
central region with wave functions �n�r�, spin functions ��

and associated creation operators dn�
† . Then an arbitrary

many-particle state �a� can be written as

�a� = �
j

ajdj1
† dj2

†
¯ djNa

† �0� ,

where ji=ni�i determines the ith single-particle state in the
Na-particle Slater determinant determined by the index set
j= �j1 , j2 , . . . , jNa

�. In order to avoid double counting, we re-
strict to the ordering n1�n2� ¯ �nNa

, where spin-up pre-
cedes spin-down for equal n. The expansion coefficients aj
can be obtained by exact diagonalization of the dot Hamil-
tonian.

In the single-particle basis the tunneling Hamiltonian
reads

HT = �
k��,n

�tn�
* �k���ck��

† dn� + tn��k���dn�
† ck��� . �A1�

Inserting the unit operators �a�a��a�, �b�b��b� we find

�A2�

to be used in Eq. �4�.

APPENDIX B: DERIVATION OF EQS. (10) AND (11)

Using the approximation �i� we find for one of the two-
electron transition terms in Eq. �7�,

FIG. 5. �Color online� Current versus bias for E1=0 and T
=0.8 K. Parameters as in Fig. 3. The dashed horizontal lines corre-
spond to the rate equation model by Gurvitz and Prager �Ref. 7�,
where we added the respective formulas.
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i�
d

dt
�b�g−k��+k�����;bg = �Eb� + Ek� − Eb − Ek��b�g−k+k�;bg

− �
a

Tb�a�k��agk+k�;bg

+ �
c�

Tc�b�
* �k���c�g−kk�;bg

− �
c�

�b�g−k+k�;c�g−kTc�b�k�

− �
a

�b�g−k+k�;ag+k�Tba
* �k�� .

Now we take the Markov limit �ii� following the standard
treatment of density matrix theory for ultrafast dynamics.20

This implies adding −i0+�b�g−k��+k�����;bg on the right-hand
side in order to guarantee the decay of initial conditions at
t=−�, and neglecting the time dependence of the
inhomogeneity33 �second and third line�. Then this linear dif-
ferential equation can be solved directly, yielding

�b�g−k��+k�����;bg =
1

Ek − Ek� − �Eb� − Eb� + i0+

��− �
a

Tb�a�k��agk+k�;bg

+ �
c�

Tc�b�
* �k���c�g−kk�;bg

− �
c�

�b�g−k+k�;c�g−kTc�b�k�

− �
a

�b�g−k+k�;ag+k�Tba
* �k��� .

In the same way the other two-electron transition terms in
Eq. �7� are determined by

�dg−k��−k�����;bg =
1

Ek + Ek� − �Ed − Eb� + i0+

� �
c�

�− Tdc��k��c�gk−k�;bg

+ Tdc��k���c�g−kk�;bg − �dg−k−k�;c�g−kTc�b�k�

− �dg−k−k�;c�g−k�Tc�b�k��� ,

�cg−k��;c�g−k����� =
1

Ek − Ek� − �Ec − Ec�� + i0+

� ��
b�

Tcb��k��b�gk;c�g−k�

+ �
d

Tdc
* �k���dg−k−k�;c�g−k�

− �
d

�cg−k;dg−k�−kTdc��k�

− �
b�

�cg−k;b�gk�Tc�b�
* �k��� ,

�cg−k��;ag+k����� =
1

Ek + Ek� − �Ec − Ea� + i0+

� �
b�

�Tcb��k��b�gk;ag+k�

+ Tcb��k���b�g−k+k�;ag+k�

− �cg−k;b�g+k�−kTb�a�k� − �cg−k;b�gk�Tb�a�k��� .

In order to obtain Eq. �10� we sum over g in Eq. �7� after
inserting the above approximations for the two-electron tran-
sition terms. Using the definitions �8� and �9� and the decou-
pling assumption �iii� we obtain

�
g

�b�gk;bg = �
g

�Nk,1�b�g;bg � fk�
g

�b�g;bg = fkwb�b.

Similarly

�
g

�b�gk̄;bg � �1 − fk�wb�b,

�
g

�bg−k�k;ag � fk�ba�k�� ,

�
g

�bg−k�k̄;ag � �1 − fk��ba�k�� .

Furthermore note that

�
g

�bg;ag+k = �
g̃

�bg̃−k;ag̃ = �ba�k� ,

�
g

�b�g+k;bg+k = �
g̃

�b�g̃k;bg̃ � fkwb�b,

as well as similar relations hold, where �g̃� is identical with
�g� except for exchanging 1 and 0 in the occupation of state
k �including the appropriate change of sign�. Particular care
must be taken in order to insure the anticommutation rules.
For example, �g�b�g−k+k�;ag+k��−fk��b�a�k�.

In the same way

i�
d

dt
�bg;b�g = �Eb − Eb���bg;b�g + �

a,k��

Tba�k��ag+k;b�g

+ �
c,k��

Tcb
* �k��cg−k;b�g − �

c,k��

�bg;cg−kTcb��k�

− �
a,k��

�bg;ag+kTb�a
* �k� .

gives Eq. �11� after summing over g.

APPENDIX C: CONSERVATION OF CURRENT

We will in the following show that the formalism obeys
current conservation, i.e.,

d

dt
�N̂D� = JL + JR, �C1�

with N̂D=�bNb�b��b� being the number operator of the dot.
From the definition of the density operator we get
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d

dt
�N̂D� =

d

dt
Tr��N̂D� = �

b

Nb
d

dt
wbb. �C2�

The time derivative of wbb is obtained from Eq. �11�

d

dt
wbb = −

2

�
�

ak��

Im	Tba
* �k��ba�k�
 +

2

�
�

ck��

Im	Tcb
* �k��cb�k�
 .

�C3�

Inserting this in Eq. �C2� and renaming the summation indi-
ces in the second term leads to

d

dt
�N̂D� = −

2

�
�

bak��

�Nb − Na�Im	Tba
* �k��ba�k�
 . �C4�

Now the Tba�k�-matrix elements are vanishing for Nb�Na

+1, and the right-hand side of Eq. �C4� becomes JL+JR us-
ing the definition of the currents Eq. �6�. Thus, current con-
servation �C1� holds.

APPENDIX D: DERIVATION OF EQ. (18)

Defining B10=B10
L +B10

R and �=�L+�R we find from Eq.
�14�,

i�
d

dt
B10�E� = �E1 − E + Re	��E�
�B10�E� + ��E�Im	B10�E�


−
��E�
2	

� dE�P�B10
* �E��

E − E�


+
�L�E�fL�E� + �R�E�fR�E�

2	
− w11

��E�
2	

, �D1�

where Im	��E�
=−��E� /2 has been used. Equation �D1� is a
linear inhomogeneous differential equation which has a par-
ticular stationary real solution B10

stat�E� determined by

��E�
2	

� dE�P�B10
stat�E��

E − E�


= �E1 − E + Re	��E�
�B10
stat�E�

+
�L�E�fL�E� + �R�E�fR�E�

2	
− w11

��E�
2	

. �D2�

Numerically, we find that this solution is indeed reached
from different initial conditions in the long-time limit. Insert-
ing the integral over B10

stat�E� from Eq. �D2� into Eq. �14�
gives the stationary solution

�E1 − E + ��E��B10
L �E� = �L�E�

E1 − E + ��E�
��E�

B10
stat�E�

+
�L�E��R�E��fR�E� − fL�E��

2	��E�
.

�D3�

As B10
stat�E� is real it does not contribute to the imaginary part

of B10
L �E� in Eq. �17� providing the final result �18�.
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