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We derive analytical expressions for the quasiparticle lifetime �, the effective mass m*, and the Green’s
function renormalization factor Z for a two-dimensional Fermi liquid with electron-electron interaction in the
presence of the Rashba spin-orbit interaction. We find that the modifications are independent of the Rashba
band index �, and occur in second order of the spin-orbit coupling �. In the derivation of these results, we also
discuss the screening of the Coulomb interaction, as well as the susceptibility and the self-energy in small �.
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I. INTRODUCTION

The lifetime of quasiparticle excitations determined by
electron-electron collisions is a crucial quantity of the Fermi
liquid theory1 of interacting electron systems. In particular,
the quasiparticle lifetime � for a two-dimensional electron
gas as found, e.g., in semiconductor heterostructures has
been now studied in great detail.2,3 While � has been tradi-
tionally of importance for phenomena that are based on co-
herent transport such as, for example, conductance fluctua-
tions, weak localization, or the Aharonov-Bohm effect,4 this
quantity is also important for the current strive toward quan-
tum information processing in the solid state, which requires
the coherent propagation of, e.g., entangled electrons. In this
respect, as well as in the emerging field of spintronics, the
spin degree of freedom is increasingly being investigated.5

The effect of spin-orbit �s-o� interaction in low-
dimensional systems has consequently become an important
issue, and has uncovered functionalities such as the spin-
based transistor,6 spin injection,7 and the electric manipula-
tion of spin in nonmagnetic semiconductors,8 and has also
led to new physics with the spin-Hall effect.9–15 The consid-
eration of s-o interaction in the framework of Fermi liquid
theory is therefore desirable. Existing work has investigated
electronic transport and plasmon excitations,16,17 Friedel-like
oscillations in the screened potential,18 and the modification
of the s-o coupling due to electron-electron interactions.19

While the spin relaxation and decoherence rates have been
widely studied in such systems,20 the relaxation rate of the
quasiparticle itself has not, to our knowledge, been studied
so far.

An important contribution to the effective mass m* comes
from the renormalization of the electron band mass by
electron-electron interactions. Simple expressions for m* in
two dimensions appear in early works addressing the
g-factor21 and the spin susceptibility,22 and were followed by
numerical studies.23 Some recent work addressed nonana-
lytic corrections,24 the temperature dependence,25 and the ef-
fects of impurity scattering.26 Another important parameter
of Fermi liquid theory is the renormalization factor Z of the
Green’s function.1 This quantity measures the quasiparticle
spectral weight, and gives the size of discontinuity of the
zero temperature Fermi occupation factor n��� at the Fermi
surface. For a clean two-dimensional electron gas �2DEG�

without impurities and s-o interaction, it has been studied for
short-range potentials,27 while the realistic case with Cou-
lomb interaction has been studied numerically28 and
analytically.29,30 Recent related work used Fermi liquid
theory to study plasmons contributions to the effective mass
in valley-degenerate systems,41 spin resonance and the spin-
Hall conductivity,42 as well as screening and plasmon
modes.43

This work presents an analytical study of the effect of s-o
interaction on the quasiparticle lifetime, the Z factor, and the
effective mass m* in a two-dimensional Fermi liquid, taking
the specific case of the Rashba interaction.31 We consider the
long-range Coulomb interaction, and work within the ran-
dom phase approximation1 �RPA� valid for small rs�1 �high
densities�. For the lifetime, we find that the spin-orbit con-
tribution appears in second order of the s-o coupling �, and
contains a logarithmic term similar to the standard lifetime,2

where the excitation energy � is replaced by the Rashba split-
ting 2�kF /�. A similar result is found for the effective mass,
with a modification of the form �2 ln �. For the Z factor, we
find a quadratic term without logarithmic enhancement. In all
these cases the modifications are independent of the Rashba
band index � denoting the two directions of the eigenspinors
of the Rashba Hamiltonian. We also discuss briefly the
screening of the Coulomb interaction, and derive expressions
both the real and imaginary parts of the susceptibility 	,
complementing the expressions found in Refs. 16–18. We
also give general arguments showing that the self-energy
and, consequently, the Fermi liquid parameters, cannot have
any modification linear in �. Throughout this work we con-
sider a clean system at zero temperature.

II. 2D FERMI LIQUID WITH RASHBA S-O INTERACTION

A. Rashba eigenstates

We consider an electron in a 2D Fermi liquid in the pres-
ence of the Rashba spin-orbit interaction restricted to the z
=0 plane, described by the Hamiltonian H= p2 /2m+Hs-o
with31

Hs-o =
�

�
�px


y − py

x� . �1�

Expressed in the 
z-spin basis �± �z, the eigenstates are
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�k,�� =
1
�2

� 1

i�ei��k� ��k� , �2�

with the polar angle ��k�= � �k ,Ox� and the momentum
eigenstates �k�. The index �=± defines the two Rashba
bands. We define the s-o strength

� =
kR

kF
=

�kF/�

2EF
=� ER

2EF
�3�

from the Rashba momentum

kR = m�/� , �4�

the Rashba energy ER=m�2 /�2, and the Fermi energy EF
=kF

2 /2m. We define the excitation energy by �k�=Ek�−EF,
with the dispersion relations for the two branches Ek�

= �k2+2�kRk� /2m. Setting �k��=0 yields the two Fermi mo-
menta

k� = 
 − �kR with 
 = kF
�1 + �2. �5�

Note that both k� and 
 will replace kF in a number of the
expressions valid without s-o interaction. We define the un-
perturbed Matsubara1 Green’s function

G��k,ikn� =
1

ikn − �k�

�6�

corresponding to the Rashba eigenstates �2� without electron-
electron interaction. We have introduced the fermionic Mat-
subara frequencies kn= �2n+1��kBT ,n�N.

B. Renormalization due to the electron-electron interaction

Within Fermi liquid theory, the presence of electron-
electron interaction modifies the retarded Green’s function1

Ḡ�
R�k,�� = Ḡ��k,ikn → � + i0+� =

1

� − �k� − ��
R�k,��

�
Z�

� − �k�
* + i��/2����k�

�7�

describing a quasiparticle belonging to the Rashba band �
with a momentum k. To derive the expression above, one has
expanded for small frequencies � and small excitation ener-
gies �k� above the Fermi surface, i.e., ��EF, 0��k�

�EF⇔k−k��k�. In this procedure, one first shifts the
Fermi momentum k� via the requirement �k��+Re ��

R�k� ,0�
=0. The lifetime of the quasiparticle ���k�=1/���k� is given
via

���k� = −
2

�
Im ��

R�k,�k�� , �8�

where the self-energy � contains the effect of the Coulomb
electron-electron interaction.

The Green’s function acquires a renormalized weight

Z� =
1

1 − A
, �9�

with A ª

�

��
Re ��

R�k�,� = 0� �10�

which gives the size of the jump in the Fermi occupation
factor n��� at the Fermi surface.

The effective mass enters in the renormalized excitation
energy �k�

* = �k2+2�kRk−kF
2� /2m*, and is defined by

m�
*

m
=

1

Z�

1

1 + B
, �11�

with B ª

m




�

�k
Re ��

R�k = k�,0� . �12�

As the excitation energy must vanish at the Fermi surface,
one has �k��

* =0 and thus kF is also shifted with k�. Note that
it is 
, not k�, that enters in the factor m /
 appearing in B.

In order to study the modifications introduced by the
Rashba interaction, we first present here the results found
without s-o interaction. The inverse lifetime reads2,3,32

�0�k� =
�k

2

EF
	ln

�k

EF
+ O�rs�
 . �13�

The rs factor is defined here33 as rs=kTF/2kF=me0
2 /�2�2�n,

where n is the electronic sheet density �in the absence of s-o
interaction�, and kTF is the Thomas-Fermi screening momen-
tum. The two important characteristics of Eq. �13� are �i�
�0→0 when �k→0, corresponding to long-lived quasiparti-
cle excitations near the Fermi surface and �ii� the vanishing
of � is slowed down by a logarithmic factor.

The effective mass contains a term �rs ln rs, and is given
by21

m0
*

m
− 1 =

rs

�
�ln rs + 2 − ln 2 + O�rs�
 . �14�

The deviation of the renormalization weight Z from 1 is
linear with rs, and reads29

Z0 − 1 = −
rs

�
	1 +

�

2
+ O�rs�
 . �15�

Taking a GaAs 2DEG with34 n=4�1015 m−2, one has rs
=0.614, Z0=0.50, and m0

* /m−1=0.16. An InAs 2DEG with,
e.g.,35 n=10�1015 m−2, m=0.03me and rs=0.18 has the pa-
rameters Z0=0.83 and m0

* /m−1=0.019.

C. Screening of the Coulomb interaction

In order to build a Fermi liquid theory including the s-o
interaction, we must consider the matrix elements of the bare
2D Coulomb interaction VC�q�=2�e0

2 /q� in the Rashba
eigenstates basis. These matrix elements involve the overlap

F =
1

4
�1 + �1�1�e

i��1�−�1�
�1 + �2�2�e
i��2�−�2�
 �16�

of the eigenspinors �2�, which depends on the directions
��1 ,�2 ,�1� ,�2�� of the scattered states and on their band in-
dices ��1 ,�2 ,�1� ,�2��. In RPA,1 we find the screened Coulomb
potential
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V�q,�� =
VC�q�
��q,��

F , �17�

where �=1−VC	 is the dielectric function. In Matsubara
formalism,1 the susceptibility is given by the bubble diagram

	�q,iqn� = kBT�
�,��

�
k,ikn

G��k,ikn�G���k�,ikn��F�, �18�

where k�=k+q, ikn�= ikn+ iqn, �= � �k ,k��, �2��2�k→�dk
and qn=2n�kBT are bosonic Matsubara frequencies. The
corresponding diagrams are represented in Fig. 1. The last
factor

F� =
1 + ��� cos �

2
�19�

is the overlap F for states with opposite momenta. After
summing over ikn and performing the analytical continuation
iqn→�+ i0+, one finds

Re 	�q,�� = �
k,���

n��k�� − n��k����

� + �k� − �k���
F�, �20�

Im 	�q,�� = − � �
k,���

��� + �k� − �k����

� �n��k�� − n��k����
F�, �21�

which is the standard form with the additional F� factors. As
we consider zero temperature, the Fermi occupation factor
reads n���=��−��. Note that the effect of the spin-orbit in-
teraction manifests itself in the energies ��k, while the factors
F� alone just describe a change of the spin basis. In particu-
lar, such a basis change could also be considered in the ab-
sence of s-o interaction. For instance, the scattering cross
section for two electrons,36 given in Born approximation by

� =
1

2�k
� m

�2V�q��2

, �22�

vanishes for different Rashba bands in case of forward scat-
tering �e.g., �1�=−�1, k1�=k1�, while it vanishes for same
bands in the case of backscattering �k1�=−k1�. This only re-
flects the fact that the real spin is conserved by the Coulomb
interaction. For forward scattering the spin basis does not
change, so that the band index must be the same. The oppo-

site happens for backscattering, where the spin basis is in-
verted and the band index must be changed in order to pre-
serve the real spin. This is the same reason why the two
conjugate states of the Kramers doublet belong to the same
Rashba band.37

D. Self-energy

The self-energy is the central quantity that determines the
other Fermi liquid parameters. In lowest order in the
screened intraction �RPA�, it is given by1

���k,ikn� = − kBT�
��

�
q,iqn

G���k�,ikn��V��q,iqn� , �23�

and is represented in Fig. 1. Here the screened potential �17�
V�=F�VC /� involves F� because of momentum conserva-
tion. At zero temperature the inverse lifetime 1/��=�� is
given by

���k,�k�� =
2

�
�
q��

���k��������Im V��q,�� , �24�

with �=�k�−�k���. We now introduce the parameters

x� =
q

2k�

and y� =
m�

q

, �25�

which are relevant for the susceptibility 	 entering in V �see
Sec. III�. We consider small excitation energies above the
Fermi surface

0 � �k� �

�

m
� EF ⇔ � ª k − k� � k�. �26�

Using �= �k2−k�2+2kR��k−��k��
 /2m, we see that the �
functions in Eq. �24� yield

0 � y� � ȳ� �
max��,kR�

q
. �27�

Note that a priori, neither x� nor y� have to be small; how-
ever, one can check numerically that the dominant contribu-
tions to Eq. �24� come from forward scattering, i.e., for

q � � � k� ⇔ x� � 1. �28�

For the lifetime, one can also assume y��1. For these rea-
sons we shall calculate the susceptibility in the limit x��1,
before taking y��1.

III. SUSCEPTIBILITY

The susceptibility 	 �or, equivalently, the dielectric func-
tion �=1−VC	� for a 2DEG with s-o interaction has been
partially studied in Refs. 16–18 in the small q�kF limit.
Expressions for the imaginary part of 	 in the limit q�kR, kF
have been given in Refs. 16 and 17 in the context of trans-
port. Ref. 18, which addressed nonanalytical contributions to
the real part of �, only gives expressions for q→0 for the
interband case �different Rashba bands�, while the intraband
case is studied in the q→2kF case. Therefore, it is desirable

FIG. 1. The diagramatic representation of the self-energy ���k�
�23� in RPA. The full lines denote the electron Green’s functions
�6�, the dashed lines the Coulomb interaction, the circles are the
susceptibility bubble diagram �18�, and the double dashed line is the
screened Coulomb interaction �17�. The Rashba bands are denoted
by the �’s, and yield the overlap factor F� �19�.
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to complement these studies by deriving expressions for both
Re 	 and Im 	 in the q→0 limit.

We first write the 2D susceptibility 	0 without Rashba
interaction.38 Introducing the parameters

x =
q

2kF
and y =

m�

qkF
, �29�

the susceptibility reads in the Matsubara formalism �iyn

→y+ i0+�

	0�x,iyn� = −
m

�
�1 −

1

x
R�s�z��z2 − 1
� , �30�

where z=x+ iyn, z*=x− iyn, R�f�z�
= �f�z�+ f�z*�
 /2, and
s�z�=sgn�Re�z�
 arising from the choice of the �−� ,0

branch cut for �z.

We now derive the susceptibility �20� and �21� in the limit
of small q, kR�k�. We first write 	�q ,��=����	�,��. We de-
fine �= � �k ,q�, and expand k�=k�1+2 cos ��q /k�+ �q /k�2

in small q to get the energy difference

�k� − �k��� �
k

m
kR�� − ��� −

q

m
�k + ��kR�cos � . �31�

We also expand the Fermi function

n��k���� − n��k�� � ��k� − �k�������k�� , �32�

which selects k=k�, and the spinor overlap

1 ± cos �

2
=

1

2
�1 ±

k + q cos �

k�
� �

1

2
± 	1

2
− � q

2k
sin ��2
 .

�33�

These expansions are valid for q, kR�k�.

A. Intraband contributions „��=�…

We first consider transitions within a given Rashba band.
We can neglect �q /k�2 in the spinor overlap, and integrate
over � and k. We find

Re 	�,� = −
m

2�
	1 −

�y��
�y�2 − 1

���y�� − 1�
�1 − �
kR



� .

�34�

For the imaginary part, ���+�k�−�k���� selects �
=arccos�y�� if �y���1, and we get

Im 	�,� = −
m

2�

y�
�1 − y�2

��1 − �y����1 − �
kR



� , �35�

which agrees with Eq. �35� of Ref. 16. Summing over �, we
see that the intraband contributions to 	 are independent of
the band index �.

B. Interband contributions „��=−�…

For transitions between two different Rashba bands, it is
necessary to distinguish between two cases.

�a� kR�q�k�. We find

Re 	�,−� = −
m

2�
x2	1

2
+ ��y��y2 − 1 − y2����y� − 1�
 ,

�36�

Im 	�,−� = −
m

2�
x2y�1 − y2��1 − �y�� , �37�

where we have also expanded in y��y.
�b� q�kR, k�. We get

Re 	�,−� =
1

16�

q2

�
ln��
/kR + 4EF/� − 1

�
/kR + 4EF/� + 1
�

� −
m

4�
x2 1

1 + m�/2�kRkF
, �38�

where we have expanded in small kR�
 in the second equal-
ity. Note the unusual term m� /kRkF. Setting �=0 and sum-
ming over � yields the static result �24� of Ref. 18 in the
limit kBT→0. For the imaginary part we find

�
�

Im 	�,−� = −
m

8

x

y
���− � ��� � �+� , �39�

with �±=2�
±kR�kR /m. This expression �39� agrees with
Eq. �37� of Ref. 16 and Eq. �10� of Ref. 17, which are rel-
evant for the optical conductivity. One can neglect this con-
tribution when calculating the lifetime, as in this case q��,
��kRkF /m⇒x /y�y. The other interband contributions are
negligible compared to the intrabands ones, as they are
smaller by the factor x2�1.

C. Total susceptibility �

Adding the two intrabands branches, we find for the sus-
ceptibility

Re 	�q → 0,�� = −
m

�
	1 −

�y��
�y�2 − 1

���y�� − 1�
 , �40�

Im 	�q → 0,�� = −
m

�

y�
�1 − y�2

��1 − �y��� , �41�

which corresponds to the case without Rashba interaction
�30� in the limit x→0, where one replaces y by the new
parameter y�. We can now take the limit of small energy,
y��1, and we finally find the susceptibility in the presence
of Rashba s-o interaction

	�q → 0,� → 0� = −
m

�
�1 + iy�� , �42�

which we shall use in the calculations of the Fermi-liquid
parameters below. Note that in general Eqs. �20� and �21�
yields that 	�q ,−��=	*�−q ,��. In particular, Re 	 and Im 	
are, respectively, even and odd in y in the limit q=0, as seen
in our expressions above.

IV. SUSCEPTIBILITY AND SELF-ENERGY FOR SMALL �

In this section we show on general grounds that the ex-
pansion of 	 and � in small � have no term linear in �.
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A. Susceptibility

The susceptibility has only a second-order contribution
from the s-o interaction,

	 = 	0 + O��2� , �43�

because 	 is an even function of kR=m� /�. This can be seen
by expanding 	 around �=0 via the function h��k� ;�k����
ª �n��k��−n��k����
 / �i�n+�k�−�k����. We use d�k� /dkR

=�k /m and �k=k2 /2m−EF, and find

	�q,i�n� =
1

2�
���

�
k

�1 + ��� cos ��

� �
j�0

1

j!
� kR

m
� j��k

�

��k
+ ��k�

�

��k�
� j

h��k;�k�� ,

�44�

and notice that the sums over �, �� cancel for odd powers j.
This result is consistent with Eqs. �34�–�39�, where the terms
linear in kR vanish after summing over �, ��.

B. Self-energy

We first perform the sum over the Rashba band index ��
in the self-energy �23�

���k,ikn� = − kBT �
q,iqn

H�q,ikn��
VC�q�

��q,iqn�
, �45�

where

H�q,ikn�� =
� + ���k + q cos ��

�2 − ��k��2 , �46�

and �= ikn�−�k�. We expand in small � and find

H�q,ikn�� �
1

�0
+ O��2�� 1

�0
2 +

1

�0
3� . �47�

where �0=���→0�. �We recall that k, being close to k�, de-
pends on �.�

The integrations of the first and third terms do not yield
any logarithmic term in � because their divergence at �0=0
is odd with respect to q. On the contrary, the term O��2� /�0

2

brings logarithmic contributions, as will be seen in the life-
time and the effective mass below. Because �=1−VC	 has
also no term linear in �, we find that the modification of the
self-energy due to the s-o interaction can only appear in sec-
ond order.

V. LIFETIME

In this section we calculate the lifetime as given by Eq.
�8�. We first define the Thomas-Fermi momentum

kTF =
2me0

2

�
= 2rskF, �48�

and assume that the small q contributions dominate such that
mV�q� /�=kTF/q�1 �this is justified in GaAs where ks

�1.2kF�. We find

Im V��q,�� =
VC

2 �q�
�1 + kTF/q�2 + �kTF/q�2y�2�−

m

�
y��F�

� −
�

m
y�F�. �49�

Note that it is F�—and not F�2—that appears here with V2,
because the screening involves only 	V, without F�. Writing
���k�=�����,���k� and changing variables �q→�k�, we have

��,���k� =
1

8��m

�

k��

k̄
dk�k���k��� − �k��I��, �50�

where

I�� = �
0

2�

d�
1 + ��� cos �

q�k�,��
. �51�

Here k̄=k+kR��−���, �= � �k ,k��, and q�k� ,��
=�k2+k�2−2kk� cos �. We distinguish intra- and interband
contributions.

A. Intraband case „��=�…

We find

I� =
2

kk��k − k��
��k + k��2K�− z� − �k − k��2E�− z�
 , �52�

where z=4kk� / �k−k��2, and K and E are the complete Ellip-
tic integrals of the first and second kind, respectively. We use
their asymptotics39 E�−z���z and K�−z�� log�4�z� /�z for
large z�1, as k−k����k�k�. After performing the k in-
tegration and expanding in small ��k� up to second order,
we finally get

��,��k� = −
�2

2��m
�ln� �

8k�
� +

1

2
�

� −
�2

2��m
�ln� �

8kF
� +

1

2
+ ��� . �53�

We also expanded in small kR�kF in the second line.

B. Interband case „��=−�…

We find

I−� = −
2�k − k��

kk�
�K�− z� − E�− z�
 . �54�

We repeat the same procedure and expand in �, kR�kF. We
get

��,−��k� =
�2

2��m
�1 + �� + �2 ln

�

4
� . �55�

We now add the two Rashba branches. The term linear in
kR vanishes and we finally get for the lifetime including the
Rashba s-o interaction

FERMI LIQUID PARAMETERS IN TWO DIMENSIONS… PHYSICAL REVIEW B 72, 195319 �2005�

195319-5



���k� = −
�2

2��m
�ln� �

8kF
� −

1

2
− �2 ln

�

4
�

= −
�k�

2

4��EF
�ln� �k�

16EF
� −

1

2
−

ER

EF
ln

ER

8EF
� , �56�

valid up to � / ��m��O�� ,�2�. We recognize in the first term
the standard lifetime for a 2D Fermi liquid without Rashba
interaction,2,3 with the logarithmic enhancement log�� /kF�
� ln��k /EF�.

The modification to the lifetime due to the spin-orbit in-
teraction also contains a logarithmic factor ln�kR /kF�
� ln� R /EF� involving the Rashba splitting at the Fermi sur-
face,  R=2�kF /�. We note that for typical GaAs 2DEGs this
modification is rather weak, because of the factor �=kR /kF
�1, and therefore does not modify significantly the usual
term valid without s-o interaction.

VI. RENORMALIZATION FACTOR Z

We now derive the expression for the renormalization fac-
tor Z �9�. We give some details of the calculation, in order to
show the cancellation of the �ln rs term, as well as to intro-
duce integrations that will also be useful for the calculation
of the effective mass. Our starting point is the real part of the
self-energy entering in Eq. �10�. At kBT=0, one can replace1

the sum over the Matsubara frequencies appearing in Eq.
�23� by an integral along the imaginary axis, kBT�iqn

f�iqn�
→ �1/2���duf�iu�. Thus we need to evaluate

A = −
�

��
Re �

q��

1

2�
�

−�

�

duG���k�,ikn + iu�V��q,iu� ,

�57�

where k�=k+q, k=k� and one sets �=0 after taking the de-
rivative. While the analytical continuation ikn→�+ i0+ must
be taken after the integration, one can reverse this order �i.e.,
make the analytical continuation first�1

A = Ares − �
q��

Re

�
�

0

�

du� �

��
G���k�,� + iu�V��q,iu��

�=0
,

�58�

provided that one compensates for the contributions of the
poles of G by adding the “residue” term

Ares = − Re �
q��

�

��
���− �k���� − ��� − �k����


� �V��q,�k��� − ����=0 = �
q��

���k����V��q,0� . �59�

We have used in Eq. �58� the fact that the integrated function
is even in u. For the remaining term, we notice that
−��G���k� ,�+ iu�= i�uG���k� , iu� when �=0 and integrate by
parts over u. The boundary term with u→� vanishes, while
the term with u→0+ gives

Aboundary
�u→0+� = Re i

1

�
�
q��

G���k�,i0+�V��q,i0+�

= − �
q��

���k����V��q,0� , �60�

where we have used −Im G���k� , i0+�=−����k����. We see
that this boundary term cancels with the residue term A�

res.
This is important, as these terms actually contain a term that
is logarithmic in rs �see Eq. �70� in the calculation of m*

below
. Thus we have

A = Im
1

�
�
q��
�

0

�

duG���k�,iu�
�

�u
V��q,iu� �61�

=−
r�

2�2�
��

Im �
0

�

dy��
0

2�

d��
0

�

dx�f�x�,y�,�� . �62�

We have defined r�=me0
2 /k��=kTF/2k�, y�=mu /qk�, and

x�=q /2k�. The integrand is

f�x�,y�,�� =
F�

iy� − !

1

x��2

��

�y�
, �63�

where F��x� ,��=1/2+����1+2x� cos �� /2� is the overlap
of the eigenspinors, ��x� ,��=�1+4x� cos �+4x�2=k� /k,
!�x� ,��=cos �+x�+ �����−1��� /2x� is the dimensionless
energy �k���, and ��=�kR /k� is a modified s-o strength.

We now consider the RPA limit of high density, which
corresponds to small r��1. In this case, the dominant con-
tribution comes from the intraband case ���=�� with x��1,
where we can use the approximations F��1+O�x�2�,
x���x�+r�a�y��+O�x�2�, !�cos ��1+���+O�x��, and we
have defined a�y��=1−y� /�y�2+1 and y�=mu /q

=y� / �1+���. Defining r�=me0

2 /
�=r� / �1+���, we have

A � −
r�

2�2 Im �
0

�

dy�
�

�y�
a�y���

0

2�

d�
1

iy� − cos �

� �
0

�

dx�
�

�x�

− r�

x� + ra�y��
= −

r�

�
�

0

�

dy�
1

�y2 + 1�2

1

a�y��

= −
r�

�
�1 +

�

2
� + O�r�2� . �64�

The remaining terms �in particular, the contribution from the
interband transition with ��=−�� are neglected as they are
O�r�2�. We now use

r� = rs�1 + �2�−1/2 � rs�1 −
1

2
�2� , �65�

and the renormalization factor reads

Z� = 1 −
rs

�
�1 +

�

2
��1 −

1

2
�2� = 1 −

rs

�
�1 +

�

2
��1 −

ER

EF
� .

�66�

This result is valid up to O�rs
2 ,rs�

3�, so that the modification
from the result �15� without s-o disappears in the case �
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��rs�1. Similar to the inverse lifetime, we see that the Z
factor is independent of the Rashba band index �, and that its
modification appears only in second order in the strength of
the s-o interaction. This modification can be traced back to
the small shift of the Fermi surface due to the s-o interaction.
Without s-o inteaction ��=0�, Eq. �66� corresponds to the
result presented in Refs. 29 and 30.

VII. EFFECTIVE MASS

The calculation for the effective mass �11� is similar in
spirit to the Z factor calculation, but is more involved. We
start with

B = −
m




�

�k
Re �

q��

1

2�
�

−�

�

duG���k�,ikn + iu�V��q,iu� ,

�67�

where k→k� after taking the derivative. Again, we first per-
form the analytical continuation ikn→�+ i0+ by adding a
residue term ���−�k����−���−�k����. Contrary to the case
for Z, this residue term identically vanishes once we take �
=0. Hence we have

B = − Re
m



�
q��

1

�
�

0

�

du� �

�k
G���k�,iu�V��q,iu��

k=k�

,

�68�

which we integrate by parts. With the change of variables
q→k�, the boundary term reads

Bboundary
�u→0+� =

m



�
k���

���k����V��q,0�
��k���

�k

=
r�

8�
�
��

k��

k�
�

0

2�

d�
cos �

x���
� ��� + r�

�1 + ��� cos �� ,

�69�

where x���
� ���= �1/2k���k��

2 −2k��k� cos �+k�
2 and we recall

that r�=me0
2 /
�. We consider the case rs, ��1 and finally

get

Bboundary
�u→0+� = −

rs

�
	ln� rs

2
� + 2 +

4��

3
−

�2

2
ln � + O�rs,�

2�
 .

�70�

The remaining integrated term of the integration by parts in
Eq. �68� contains two terms. The first one reads

Bint
�1� = − Im

m


�
�
q��
�

0

�

duG���k�,iu�
�

�u
V��q,iu�

��k���

�k
.

�71�

We see that the integrand is identical to the expression �61�

appearing in the calculation made for Z, apart from the factor
��k��� /�k��k /m��1+����+2x cos �� for x�1. We proceed
as before, and get in lowest order

Bint
�1� =

r�

�
�1 +

�

2
� . �72�

The second term reads

Bint
�2� = − Re

m


�
�
q��
�

0

�

duG���k�,iu�
VC�q�

��q,iu�
�F�

�k
, �73�

where �F� /�k=���q2 sin2 � /2k�3. The analysis of this inte-
gral is rather demanding, as no approximation is accurate
and only a numerical solution seems possible. However, a
careful examination of the different terms shows that there is
no logarithmic contribution—in particular, the small x con-
tributions are suppressed by the overall �x3 dependence. We
can now use the general argument about the self-energy �see
Sec. IV B�, which states that no term linear in � can be
present in the effective mass. This implies that this integral
Bint

�2� compensates for the linear term appearing in Eq. �70�,
which is confirmed by numerical integrations.

Finally, we obtain the effective mass �11�

m�
*

m
− 1 =

rs

�
�ln rs + 2 − ln 2 −

1

2
�2 ln �� , �74�

where we used the expression �66� for Z. We recognize in the
first three terms the unperturbed result �14�. The modification
induced by the s-o interaction has the form �2 ln �, similar to
the lifetime, Eq. �56� We see that particles in different
Rashba spin eigenstates have, to lowest order, the same ef-
fective mass.

VIII. CONCLUSION

We have calculated the main quasiparticle parameters �the
inverse quasiparticle lifetime 1/�, the renormalization factor
Z, and the effective mass m*� due to the Coulomb electron-
electron interaction in a 2D Fermi liquid with Rashba inter-
action. The modifications due to s-o interaction are found to
be independent of the Rashba band index �, and to appear
only in second order in the s-o strength ���ER /EF with
some logarithmic enhancement for the lifetime and the effec-
tive mass.

The spin-orbit constant being rather small in typical semi-
conductor 2DEGs, these modification will be very small,
around 10−3. For instance, a GaAs 2DEG with40 �
=0.5�10−12 eV m, n=4�1015 m−2 yields kR=0.43 !m−1.
This gives a rather small �=2.7�10−3, so that one gets only
very small modifications. Even for an InGaAs 2DEGs with
larger s-o coupling and with35 �=30�10−12 eV m for n
=10�1015 m−2, m=0.03me and rs=0.18, one has a modest
�=0.051.

We note that replacing the Rashba interaction by the
Dresselhaus interaction HD="�−px
x+ py
y� /� yields ex-
actly the same results. Indeed, the only difference lies in the
eigenspinors �the phase is decreased by � /2�, so that their
overlap F�, Eq. �19�, is unchanged and the energies have the
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same form. Natural extensions of this work are the studies of
the effect of the s-o interaction on the renormalized g
factor,21 the consideration of short-range potential instead of
the Coulomb interaction, finite temperatures, and the pres-
ence of a perpendicular or parallel magnetic field as used to
measure the mobility and the effective mass or to manipulate
electron spins.
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