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The ground-state energy of the two-dimensional �2D� Wigner crystal is determined as a function of the
thickness of the electron layer and the crystal structure. The method of evaluating the exchange-correlation
energy is tested using known results for the infinitely thin 2D system. Two methods, one based on the
local-density approximation �LDA�, and another based on the constant-density approximation �CDA� are
established by comparing with quantum Monte Carlo �QMC� results. The LDA and CDA estimates for the
Wigner transition of the perfect 2D fluid are at rs=38 and 32, respectively, compared with rs=35±5 from
QMC. For thick-2D layers as found in Hetero-junction-insulated-gate field-effect transistors, the LDA and
CDA predictions of the Wigner transition are at rs=20.5 and 15.5, respectively. Impurity effects are not
considered here.
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I. INTRODUCTION

Two-dimensional �2D� electron layers exist, for example,
at the interface between GaAs and Ga1−xAlx As, or at metal
oxide-semiconductor interfaces. Such 2D layers are impor-
tant in field-effect transistors and other devices. 2D electrons
can be fluid or, at sufficiently low density, form a Wigner
crystal.1–3 We define the 2D-density parameter rs given by
A /N=�rs,

2 where A is the area occupied by the N electrons.
The Wigner solid appears for rs�35a0,4 where a0
=�2 / �m*e*2� is the Bohr radius. Here m* ,e* are effective
parameters for the mass and the charge of the electron, and
absorb the dielectric constant, the band mass and other ma-
terial properties of the system. Thus in GaAs, the effective
atomic unit of energy is reduced from 27.21 eV to the milli-
Volt range. These �reduced� atomic units, such that m*=e*

=�=1 will be used in this paper. There have been many
studies of 2D-electron liquids or Wigner crystals,4–9 espe-
cially using quantum Monte Carlo �QMC� simulations and
other methods8,10 assuming that the 2D layers are infinitely
thin. However, although the 2D electrons reside in the
�x ,y� plane, they have a transverse density ��z� in the
lowest subband of the heterostructure.2 While the quasi-2D
electron liquid has recently seen much attention, both
experimental12,13 and theoretical,11,14–16 the Wigner crystal in
thick 2D layers has not been followed up since the work of
Fujiki and Geldart.17 Fujiki et al. have determined the effect
of the 2D-layer thickness on the electrostatic energy and
found that the hexagonal lattice is the most-stable crystal
structure, as with the �-thin 2D layer ��-2D�. They did not
consider the effect of exchange and correlation which is usu-
ally addressed via quantum Monte Carlo methods, or via a
detailed analysis of the correlated phonons in the electron
crystal.8 Recent Hartree-Fock �HF� calculations of �-2D
Wigner crystals using large plane-wave basis sets, e.g, those
of Trail et al.,18 seem to recover a HF energy nearly identical
to the single-Gaussian harmonic model for localized elec-

trons. Such a model has been considered in a brief but in-
sightful paper by Nagy.19,20 Here we show that the
single-Gaussian approximation, and the local-density ap-
proximation �LDA�, can recover the QMC total energy with
surprising accuracy. Further, a method based on constructing
a constant-density approximation �CDA� to the inhomoge-
neous density11,21 is introduced for calculating the electro-
static potentials and the exchange-correlation energies of
these systems.

The plan of the paper is as follows. In Sec. II we intro-
duce the effective Coulomb interaction in quasi-2D layers,
and calculate the electrostatic energy of the lattice for several
2D-crystal structures. Here we use the CDA to replace Fang-
Howard type densities in the z direction,2,11 thus simplifying
the analytical work. The details of lattice-sum evaluations
are relegated to an appendix. In Sec. III we consider the
�-thin 2D layer and present results for the Gaussian-localized
model. We also present the exchange-correlation energy Exc
calculation using the CDA and the LDA. The resulting total
energy is very close to that of QMC and recovers a liquid
→solid Wigner transition �WT� at rs�32 to 38, while the
current QMC estimate is rs=35±5. In Sec. IV we consider
Gaussian-localized 2D systems with finite thickness, for 2D
layers found in HIGFETS. That is, in systems where the
layer thickness is also defined by the sheet density, as in Tan
et al.12,13 Here we have no QMC results for comparison. The
total energy of the quasi-2D Wigner crystal is compared with
the total energy of the quasi-2D liquid.11 Here the WT is
found to occur at rs�15 to 21 in quasi-2D layers realized in
clean HIGFETS.

II. THE COULOMB ENERGIES OF 2D LATTICES

The Hamiltonian of our system is, in atomic units

H = Hke + Hee + Heb + Hbb, �1�

where the first term is the kinetic energy of the electrons. The
three remaining terms are the electron-electron interaction
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and the interactions involving the uniform, static neutralizing
background, indicated by the subscript b. This neutralizing
background arises from a homogeneous layer of donor ions
which have acquired a positive charge after donating their
valence electrons in forming the 2D-electron layer. We as-
sume that the electron layer is confined near the plane z=0
and extends into the region of z�0 due to the finite width of
the envelope function. The donor ions are modeled by a ho-
mogeneous layer of positive charge of areal density �d
=N /A, situated at z=−bd, where bd= �bd� is a positive quan-
tity. The z-direction density is ��z�, and in the plane, an areal
density �e�r� with r= �x ,y�. The subband distribution ��z� is
usually modeled by a Fang-Howard distribution �FH�z�
= �1/2b3�z2e−z/b �note, our b=1/b used in Ref. 2�, or various
other forms, e.g., that of a quantum well. The form of the
density is obtained by fitting to a self-consistent calculation
of the Schrodinger equation for the electron motion in the z
direction. In our work, we do not repeat this calculation, but
simply take the value of the parameter b, or other parameters
needed to define the self-consistent solution for the subband.
Moreover, as discussed below, such inhomogeneous densi-
ties can be replaced by a constant-density slab having an
equivalent electrostatic potential, using the CDA discussed
by Dharma-wardana.11 The CDA method11 involves replac-
ing an inhomogeneous density ��z� by a slab of constant-
density �̄ of width w linked to ��z� by

�̄ =
1

w
=� ��z�2dz . �2�

This equation has also been proposed by Gori-Giorgi et al.,21

in a method for calculating system-adapted correlation ener-
gies. Using Eq. �2�, a Fang-Howard �FH� density of length
scale b can be replaced by a homogeneous density of width
w= �16b� /3 �see Fig. 1�.

Consider two electrons in a quasi-2D layer separated by a
distance r in the 2D plane, and located at z1 and z2, with a

FH distribution ��z� in the z direction. Then the Coulomb
interaction is of the form

W�r� =� dz1dz2
��z1���z2�

�r2 + �z1 − z2�2�1/2 . �3�

W�r� may be written as F�r� /r, where F�r� is the form
factor. No analytic form exists if ��z� is the FH form, while
the q-space form, F�q�2� /q is analytically available. For
GaAs/AlAs based HIGFET-like systems, it takes the form

F�q� = �1 +
9q

8b�
+

3q2

8b�2��1 +
q

b�
�−2

, �4�

where b�=1/b and follows the definition in Ref. 2. However,
if the FH distribution is replaced by the CDA, then F�r� and
F�q� are given by

W�r� = V�r�F�s�, s = r/w, t = � �1 + s2� , �5�

F�s� = 2s�ln
1 − t

s
+ 1 − t� �6�

and

W�q� = V�q�F�p�, p = qw, V�k� = 2�/q , �7�

F�p� = �2/p�	�e−p − 1�/p + 1
 . �8�

The form factors F�r�, F�q� are a measure of the reduction of
the strength of the 2D interaction due to the thickness effect.
These results provide equivalent analytical formulas for the
FH density, and tend to the ideal 2D Coulomb potential when
the width w tends to zero. Also, for HIGFETS, it is known
that the FH-parameter b is linked to the 2D density param-
eter rs. Hence it can be shown11 that

b = �2rs
2/33�1/3, �9�

w = 16b/3, �10�

	 = b/rs = �2/�33rs��1/3. �11�

Hence 	, the FH parameter b in units of rs, and also the ratio
w /rs, i.e., �z-width�/�2D-disk radius� decrease as rs

1/3 with
increasing rs.

A. Coulomb energy

In the following we do not at first specify the form of the
transverse density ��z�. In calculating the Coulomb energy
ECou, i.e., the electrostatic energy, we isolate the long-range
contributions which cancel in the q=0 limit, since we are
dealing with a homogeneous, neutralizing, static background.
The total Coulomb energy is the sum

ECou = lim
q→0

�Edd�q� + Eee�q� + 2Eed�q�� , �12�

where

Edd�q� =
1

2
� d2r� d2r��d

2eiq·�r−r��

�r − r��
, �13�

FIG. 1. �Color online� Profiles of the Fang-Howard density
�solid curve� for b=4 and its equivalent constant density approxi-
mation �CDA� �dashed curve�. Inset: the bare Coulomb potential
1 /r and the Coulomb potential F�r� /r modifed by the Fang-Howard
profile. The triangles are calculated using the CDA. The CDA width
w=21.33 for b=4 corresponds to a HIGFET at rs=32.496.
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Eee�q� =
1

2
� d2r� d2r��e�r��e�r��eiq·�r−r��


�
0

�

dz�
0

�

dz�
��z���z��

��r − r��2 + �z − z��2�1/2 , �14�

Eed�q� = −
1

2
� d2r� d2r��d�e�r��eiq·�r−r��


�
0

�

dz�
��z��

��r − r��2 + �bd + z��2�1/2 . �15�

Edd is the interaction energy of the ions, Eee is the interaction
of the electron layer, and Eed is the energy due to interaction
between the ions and the electrons. To calculate these terms,
we proceed as in Fujiki and Geldart.17,22

Edd�q� =
�A�d

2

q
=

N

qrs
2 . �16�

We introduce the integral transformation

1

�v�
= �

0

� dy
��

y−1/2e−y�v�2 �17�

and note that

Eed�q� = −
1

2
� d2r� d2r��d�e�r��eiq·�r−r��


�
0

�

dz���z���
0

� dy
��

y−1/2e−y�r − r��2−y�bd + z��2

= −
N

2��rs
2�

0

�

dyy−3/2e−q2/4y


�
0

�

dz���z��e−y�z� + bd�2. �18�

For Eee, we use a lattice sum technique based on the � Jacobi
function �19� and its imaginary transform �20� given below:

��z,X� 
 �
l=−�

�

e2�lze−�l2X, �19�

��z,X� =
e�z2/X

�X
�� z

iX
,
1

X
� . �20�

We decompose the lattice into rectangular sublattices indi-
cated with sublattice vectors �j. So, the position vectors of
the electrons on nodes I and J are given by

rI = ma1x̂ + na2ŷ, rJ = �m�a1 + � j
x�x̂ + �n�a2 + � j

y�ŷ ,

where m ,m� ,n ,n� are integers and a1 ,a2 are lattice constants
of sublattices. For example, in a square lattice a1=a2 and
	�j
= 	�0;0�
, in a hexagonal lattice a2=�3a1 and 	�j

= 	�0;0� , �a1 /2 ;a1

�3/2�
. To proceed further, we need to
specify the form of the density. If the electrons are assumed
to be exactly localized on the nodes of the crystal, then

�e��r� = �
I

��r − rI� . �21�

Such exact localization of the electrons provides the model
for the classical electrostatic energy, i.e., the Madelung en-
ergy. In the quantum calculation we suppose that each elec-
tron is localized around a node I of the lattice and the wave-
function is taken to be a Gaussian normalized over the 2D
plane


I�r� =�2�

�
e−��r − rI�

2
. �22�

The parameter � is chosen to minimize the total energy.
Hence the localized density is

�eG�r� =
2�

�
�

I

e−2��r − rI�
2
. �23�

The Gaussian-width parameter � is of the form a /rs
3/2, with a

taking a lower-bound value of 0.5 �see Ref. 19�. These two
forms of the density will be studied below, and the Gaussian
approximation will be justified by comparison with results
from detailed plane-wave calculations.

B. Calculation with the � distribution

Using Eqs. �17� and �21� we have

Eee�q� = �
0

� dy

2��y
f�y��

I�J

eiq·�rI−rJ�e−y�rI − rJ�2,

f�y� = �
0

�

dz�
0

�

dz���z���z��e−y�z − z��2
. �24�

The details of the evaluation are given in the Appendix.
We have evaluated ECou, Eq. �12� for different lattices:

square, rectangular, hexagonal, and centered rectangular. The
Coulomb energy depends only on 	= �b /rs�= �3w� / �16rs�, r
= �a2 /a1� and 	�j
. Our numerical calculations of ECou are
summarized in Table I. Results for 	=10−2 are at unrealisti-
cally low HIGFET densities, but are of formal interest. Re-

TABLE I. The Madelung energy ECou per electron is given for
different values of the Fang-Howard parameter 	=b /rs for hexago-
nal �hex�, square �sq�, rectangular �rec�, centered rectangular �CR�
lattices defined by their unit vectors a1 :a2. The rs parameter in the
corresponding HIGFET, Eq. �9�, is also given. The energies are in
units of 1 /rs. Thus the Madelung energy in Hartrees for a �-thin
hexagonal lattice is −1.106103/rs.

HIGFET rs

�a1:a2�	→
�
0

60606
10−2

60.606
10−1

0.06060
1

hex��3:1� −1.106103 −1.052959 −0.591433 3.144793

CR��2:1� −1.104080 −1.050937 −0.589507 3.145401

sq�1:1� −1.100244 −1.047103 −0.585854 3.146555

rec��2:1� −1.078201 −1.025072 −0.564890 3.153217

rec��3:1� −1.042843 −0.989733 −0.531301 3.163948
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sults for even smaller values of 	 may be found in Fujiki et
al.17,22 A comparison with the results of Ref. 17 shows that
our results are in agreement when a geometrical term arising
from the slight difference in the models is taken into account.
�As seen from the details given in the Appendix, we have an
additive term N�2w /3� /rs

2=N�32b /9� /rs
2 in our calculation

while Fujiki and Geldart have N�33b /8� /rs
2. Agreement is

obtained if we replace our term by theirs�.
It is seen that the total Coulomb energy increases as 	

=b /rs increases for all cases studied. The hexagonal lattice
has the lowest energy for all 	. Moreover, there is no cross-
ing between the different energy curves for any of the lattice
structures.

The dependence of the total Coulomb energy of the
centered-rectangular lattice and rectangular lattice as a func-
tion of the ratio r=a1 /a2 for the quasi-2D system remains
similar to the �-thin case. Two equivalent minima at r=�3
and 1/�3 correspond to the hexagonal structure. For the rect-
angular lattice, the minimum corresponds to r=1, i.e., to the
square structure. We choose the range 	=0.05 to 0.5, which
corresponds to rs�0.5 to �500 and fit the Madelung energy
of the stable hexagonal lattice �see Table I� to the analytic
form

ECou�rs,	� = �
i=0

i=4

ci	
i/rs, �25�

where c0=−1.106103, c1=5.34722, c2=−2.15257, c3
=1.48663, and c4=−0.430473.

In Fig. 2, we have plotted the Coulomb energy as a func-
tion of rs using Eq. �9� to relate the thickness to the rs value.
We observe that the thickness of the system has a significant
effect on the energy, in agreement with Fujiki et al.

C. Classical calculation with the Gaussian distribution

If the electron distribution at each site were a Gaussian,
the classical electrostatic energy Eee can be calculated using
the same techniques as before �Appendix�:

Eee�q,�� =
1

2��
�

0

�

dyy−1/2� �

y + �
�e−q2/4�y+��


�
I�J

e−�y�/�y+����rI − rJ�2
e−i��/�y+���q·�rI−rJ�.

�26�

We use the same integral separation with Eee
� and Eee

�, the
Jacobi function � and its transformation. We may verify that
when � tends to zero, that is to say the Gaussian distribution
tends to the � distribution, Eee reduces to the Madelung en-
ergy of the previous section. Also, if there is no effective
overlap among the Gaussian distributions, the distributions
can be replaced by equivalent point charges at the lattice
sites and the Coulomb energy should reduce to the Madelung
energy. However, as already remarked by previous
authors,19,20 the charge is not perfectly contained within the
Wigner-Seitz disk in the 2D problem. The variations of the
thickness and of the lattice type give results similar to the
�-thin case. We consider the variation of � to minimize the
total energy within a quantum calculation, and hence do not
develop this classical calculation any further.

III. PERFECTLY TWO-DIMENSIONAL SYSTEMS

In this section we consider a perfect, i.e., �-thin 2D layer
within a Kohn-Sham density-functional approach23 to the
quantum mechanics of the problem. Since the �-thin 2D sys-
tem has been studied extensively, we use it as a reference
system to examine the LDA and the CDA as useful tools for
calculations of Exc of Wigner crystals. The Hohenberg-Kohn
theorem asserts that the total energy is a functional of the
one-electron density, and that it is a minimum for the true
density distribution. We model the one-electron density as a
sum of Gaussians centered on each lattice site, and hence the
variational problem reduces to a determination of the width
parameter � of the Gaussian that minimize the total energy.
The total energy of the system at a given rs can be written as

ET = EHF��,rs� + Exc��,rs� , �27�

where EHF�� ,rs� is the Hartree-Fock energy of an electron. It
will be seen that this is effectively the energy of an electron
on a single site, and moving in the potential well created by
the Gaussian distributions on other sites. If the Gaussians
were perfectly localized, the Coulomb energy would not de-
pend on �. The effect of the overlap can be easily included in
the variational problem, with the energy given by
���H��� / �� ���, and this has an effect for small rs. Here � is
a Slater determinant of Gaussians. For the hexagonal lattice,
the overlap contribution from two nearest-neighbor Gauss-
ians is

sij�rs� = exp�− ��/2��1.09rs�2� ,

where 1.09rs is the nearest-neighbor distance. Unless the
contrary is stated, the results reported here will include the
overlap correction. The � which minimizes the Hartree-Fock
problem is not the same as that which minimized the total
energy inclusive of Exc. The exchange-correlation energy can

FIG. 2. �Color online� Coulomb energy per electron in atomic
units for a perfectly 2D system and for 2D layers in a HIGFET,
using Eq. �9� to define the thickness.
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be calculated for any system if the electron pair distribution
function were known as a function of the strength of the
interaction. In such a “nonlocal” approach there is no “self-
exchange” or “self-correlation” effect of a single, isolated
electron with itself. However, if a proper nonlocal approach
is not available some allowance for this may be made as in
Shore et al., Ref. 24, where the rs→� has been examined to
suitably modify the coefficient of the leading 1/rs term in
Exc. In our study we examine two models of Exc, the com-
monly used local-density approximation �LDA�, described in
more detail in Sec. III C, where the local density n�r� of the
inhomogeneous electron density is used for a point-by-point
local evaluation of Exc, and a completely global approach,
the constant-density approximation �CDA�, where the whole
inhomogeneous distribution is replaced by a uniform slab
whose density is not specific to any point of the original n�r�.
While the CDA does not eliminate self-exchange or self-
correlation errors, we believe that the LDA which over-
estimates Exc, and the CDA which underestimates Exc, pro-
vide a measure of the uncertainty in the exchange-correlation
energies. In the next section, dealing with the Hartree-Fock
energy, we look at the problem without Exc.

A. The Hartree-Fock energy EHF

The Hartree-Fock energy is composed of the classical
Madelung energy which defines a constant energy term, plus
the quantum mechanical energy associated with the motion
of the electron in the field of the other electrons. Since the
electrons are strongly localized, especially for large rs, a
Slater determinant made up of one Gaussian function at each
lattice site is commonly assumed. The total energy consists
of a kinetic energy term and a potential energy term. These
two terms are equal by the virial theorem and hence we only
need to evaluate the kinetic energy. Usually, Hartree-Fock
energies contain a sizable exchange contribution. However,
the localized-Gaussian exchange energy is easily shown to
be negligible, and we called it the Wigner-exchange energy
EXwc.

In Table II we compare our localized-Gaussian �har-
monic� calculation with the results of the extensive plane-
wave HF calculation by Trail et al.25 The results shown in
Table II show that the localized single-Gaussian model is
adequate to describe the Hartree-Fock approximation for this
system.26

Note that our calculation is effectively an “Einstein
model” of oscillators, and the kinetic energy is given by

EK��� = −
N

2
�
I��I

2�
I� = N� . �28�

The Gaussian width which minimizes the energy may be
fitted by the form �=0.6263/rs

1.57. This differs significantly
from Nagy’s lower-bound value of 0.5/rs

1.5. This may signify
that the overlap corrections, and the assumed congruence of
the radius of the classical background disk with rs, force it to
differ from Nagy’s model.

Since the exchange of electrons actually involves a delo-
calization process, we believe that the exchange integral
evaluated with fixed Gaussians does not lead to a true evalu-
ation of the exchange in these systems. The Wigner-
exchange energy between two electrons of spin si ,sj, is by
definition

EXwc
ij = −� d2rid

2rj
I�ri�
J�r j�
1

rij

I�r j�
J�ri�

= − ���e−��rI − rJ�2
�si,sj

. �29�

We can define a polarization parameter �= �N↑−N↓� /N,
therefore

EXwc��,�� = −
1

2�
i�j

EXwc
ij . �30�

This EXwc may be safely neglected for the values of � occur-
ring in this problem.

B. The CDA exchange and correlation energies

The correlation energy is the most difficult object to cal-
culate, and QMC has been the preferred approach, even
though this requires a major numerical effort. However, the
correlation energy for a uniform density profile is well
known.4 Hence, as in Eq. �2�, we map the inhomogeneous
density in the �x ,y� plane ��r� to a homogeneous form via
the ���r�2� average of the CDA method. Given a Gaussian
distribution

�̄ =
1

�rs
2 � d2r�
�r��2�
�r��2 =

�

�2rs
2 . �31�

We define the effective rs parameter r̄s corresponding to the
CDA density by �̄=1/ ��r̄s

2�,

r̄s = rs��

�
. �32�

The correlation energy in the CDA, Ec
CDA for the inhomoge-

neous distribution, inclusive of spin-polarization effects, is
now evaluated using r̄s in any of the well-known 2D
functionals.4 Note that for typical values of � at rs=20, the
CDA density parameter is �400, while at rs=100, it be-
comes �7000. Thus we see that the CDA replaces the inho-
mogeneous fluid with sharp Gaussian peaks by a uniform,
ultralow-density 2D fluid. In calculating Ec�r̄s� using, say, the
formula due to Attaccalite et al., a difficulty arises since it is
fitted to a maximum rs of 40, together with asymptotic
forms, while the CDA calls for rs values which are one or

TABLE II. Comparison of the plane-wave calculation �Ref. 18�
of the HF energies EHF of the �-thin 2D hexagonal Wigner lattice
with the single-Gaussian harmonic lattice energies. Ehar

* and Ehar are
energies without and with the overlap corrections.

rs→ 20 30 40 60

−EHF
10 0.447270 0.311642 0.239528 0.164036

−Ehar
* 
10 0.447155 0.311786 0.239822 0.164530

−Ehar
10 0.437058 0.308344 0.238326 0.164113
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two orders bigger. Nevertheless, we find surprisingly good
results �see below�.

At this point we ask if the exchange energy, evaluated for
this ultralow density fluid, should also be included. We be-
lieve that this is indeed the case. The fixed-Gaussian Wigner-
exchange, Eq. �30�, simply does not allow any exchange, and
ignores the possibilities of tunneling, ring-exchange, etc.,
that exist in the system. We consider that the estimate of
exchange obtained from the ultralow density fluid of the
CDA accounts for such exchange effects. This point of view
is justified post facto by the good agreement of our total
energies with the QMC total energies.

C. The LDA exchange and correlation energies

A well-known approach to replacing the inhomogeneous
electron density by a homogeneous fluid-density is the local-
density approximation �LDA�.23 Here a uniform density cor-
responding to each local density ��r� is invoked. Thus a
local-density parameter r̄s�r� is defined by

1

�r̄s
2 =

��r�
�rs

2 ⇒ r̄s�r� = rse
�r2� �

2�
. �33�

Hence, knowing the exchange-correlation energy density exc
for a homogeneous system, the exchange-correlation energy
of the inhomogeneous system is given by

Exc
LDA =� d2rexc�r̄s�r����r� . �34�

Just as in the CDA, the LDA demands the evaluation of Ec at
densities which are beyond the range of the standard fits.
Thus LDA needs rs�r��300 to 5000 at rs=20, i.e., a little
less extreme than the CDA. Hence, some of the shortcom-
ings of the LDA may also be due to poorly known correla-
tion energies at the exceptionally high rs values that are re-
quired. The LDA can be further improved by including
gradient corrections. However, we have not included them in
this study.

D. Minimization of the total energy ET

We have now all the energy contributions needed to cal-
culate the ground-state energy of a perfect two-dimensional
�i.e., �-thin� Wigner crystal at a given value of the density
parameter rs. The energy minimum with respect to � is found
to be insensitive to the polarization of the lattice. This is in
agreement with previous studies.4–6,27 In Table III, we give
the energy correction to the Madelung energy obtained by
the minimization of ET, using the CDA or the LDA for evalu-
ating the exchange-correlation effects, together with the re-
sults of previous work.6 QMC results by Rapisarda and
Senatore5 are very similar to those of Tanatar et al., and the
agreement is similar. The optimal � which minimizes the
energy is found to be given by �=a /rs

3/2 with a=0.639 for
both CDA and LDA approaches. A crucial test of the accu-
racy of the CDA and LDA would lie in their ability to predict
the liquid→solid phase transition. This is addressed in Sec.
IV C. The total energy can be represented by

ET�rs� =
a1

rs
+

a2

rs
3/2 +

a3

rs
2 + O�rs

−5/2�, rs � 1, �35�

where a1=−1.106103 is the Madelung constant and a2 is the
zero-point energy of the lattice. We determined the coeffi-
cient a3 by a least-square fit. The results are summarized in
Table IV, together with previous results. These results justify
our use of the CDA and the LDA for evaluating the total
energy of quasi-2D Wigner crystal phases for which there are
no QMC calculations as yet.

IV. INFLUENCE OF THE THICKNESS

We consider a quasi-2D electron crystal where each elec-
tron is localized at each lattice site with a Gaussian distribu-
tion centered on each site in the �x ,y� plane, while the z
extension may typically have the form of a Fang-Howard
density. As before, such z distributions can be replaced by a
constant-density form for ease of calculations. Also, we as-
sume that the 2D layers are in HIGFETS, and as such the FH
parameter b is automatically specified �via Eq. �9�� when the
rs parameter defining the 2D-layer density is specified.

The kinetic energy and the harmonic energy of the
quasi-2D system are still given by EK���=N� since this is a
result of the assumed Gaussian form of the wave function.
However, the simple Coulomb potential 1 /r has changed to
F�r� /r where F�r� is the form factor arising from the sub-
band distribution. The Wigner-exchange energy, i.e., the ex-
change between two localized electrons is now even weaker
than in Eq. �29�. Hence this type of exchange is totally neg-
ligible.

A. The evaluation of Exc for thick-2D layers using CDA and
LDA

As described in Eq. �9�, the z distribution is mapped onto
a uniform slab of width w; in HIGFETS this is directly re-

TABLE III. Results of energy minimization for a hexagonal
lattice. The Madelung energy EM =−1.106103/rs has been sub-
tracted out from the total energy. The CDA and LDA results are
compared with the GFMC calculations of Tanatar and Ceperley
�TC� �Ref. 6�. The energies are in 10−2 atomic units.

rs→ 20 30 40 50 60

CDA 0.9247 0.4824 0.3059 0.2156 0.1625

LDA 0.9404 0.4899 0.3102 0.2185 0.1645

TC 0.9167 0.4983 0.3234 0.2313 0.1758

TABLE IV. Coefficients a1−a3 in Eq. �35� fitting the CDA and
LDA total energy �for the range rs=20 to 100� are compared with
previous work.

CDA LDA BM �Ref. 8� RS �Ref. 5� TC �Ref. 6�

−a1 1.1061 1.10610 1.1060 1.104715 1.10610

a2 0.8142 0.8142 0.8142 0.7947 0.8142

a3 0.2456 0.1194 0.07338 0.0254
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lated to the rs parameter in the 2D plane. The inhomoge-
neous 2D distribution in the plane is also mapped onto a
homogeneous distribution via the CDA as in Eq. �32� or as in
Eq. �33� for the LDA. Both CDA and LDA require a knowl-
edge of the Exc�rs ,w� for quasi-2D uniform systems with a
layer width w. A parametrized form for Exc�rs ,w� is available
from Dharma-wardana where the quasi-2D electron liquid
was studied using the CHNC �Ref. 11� and other methods.
The exchange energy Ex�rs ,w� is given in the form
Ex�rs ,��Q�rs ,w ,�� where Ex�rs ,�� is the well-known ex-
change energy of the �-thin system, while Q�rs ,w ,�� is a
form factor. The correlation energy of quasi-2D layers in
HIGFETS is given in Ref. 11 as an interpolation involving a
form for electron “rods” interacting via a logarithmic poten-
tial �as is the case for small rs�, and for 3D-like electrons
when rs and the thickness w become large. The Wigner crys-
tallization regime involves the latter regime. For details of
these parametrizations, the reader is referred to Ref. 11.
Since the WT involves small energy differences, we have
actually done an explicit calculation instead of using the fits.

B. Minimization of the total energy ET

As in Sec. III D, we minimize the total energy as a func-
tion of � for a given rs. Here, the energy is more sensitive to
the spin polarization � than in the perfect crystal even if the
difference is very small. The unpolarized crystal is more
stable than the polarized one. So we present results for the
unpolarized system. The values of � which minimizes the
energy can also be fitted by the same form as in Sec. III D.
We obtain

�CDA =
0.619

rs
3/2 and �LDA =

0.627

rs
3/2 . �36�

We have also fitted the total energy. Here the Madelung en-
ergy is the ECou given in Eq. �25� and we use the usual
expansion in inverse rs

3/2, etc.,

ET
CDA = ECou�rs� +

0.68597

rs
3/2 +

0.321652

rs
2 , �37�

ET
LDA = ECou�rs� +

0.708977

rs
3/2 +

0.357242

rs
2 . �38�

We remark that the total energy has a minimum as a function
of rs. This minimum is located around rs�26 and its value is
�−0.011 a.u. A comparison of the liquid and the Wigner
crystal in HIGFETS is given in Table V. These total energies

include the 2w /3rs
2 additive correction arising from the in-

teraction of the quasi-2D layer with the uniform background
as discussed in Sec. II B. Since this depends on the layer
thickness w, this correction does not occur in the ideal 2D
system.

C. Phase transition liquid\Wigner crystal

According to quantum Monte Carlo simulations and other
studies �Ref. 27–29�, the phase transition between a �-thin
2D electron liquid and a 2D electron Wigner crystal occurs
around rs=35±5. QMC studies with hybrid trial wave func-
tions �i.e., with the symmetry of the crystal but liquidlike
properties�30 have suggested rs=31.5±0.5. With our methods
we find a transition for rs=32 using the CDA and rs=38
using the LDA.

In Fig. 3, we show the phase diagram of the system �in
order to have a clear display we present �E−EM�rs

3/2 where
EM =−1.106103/rs is the Madelung energy�. The fluid phase
energy is calculated using the fit given by Ref. 4. These
results tend to show that both LDA and CDA provide an
adequate evaluation of Exc for electron solids, especially
when we recall that the Ec at rs values �200–8000�, way
outside the fit range �rs�40�, are needed in the CDA and the
LDA evaluations.

Figure 4 displays the phase transitions in the quasi-2D
HIGFET system. Unlike in the �-thin 2D system, the total
energy contains the term �be=2w /3rs

2 arising from the inter-
action with the uniform background �see Sec. II B�. This has
been removed from both the liquid and the solid phase ener-
gies as this improves the clarity of the display. The Wigner
transition occurs at rs=15.5 for the CDA, and rs=20.5 for
the LDA, i.e., before the spin-phase transition �marked SPT
in the figure� of the liquid phase. Since the �-thin 2D layer is
expected to have a WT near rs�35, the thickness effect has
brought the WT to smaller rs values. It should be noted that
if correlation effects are neglected, the WT occurs at very
low rs. Hence the shift of the WT to low rs is a consequence
of the reduced correlations in the quasi-2D system. The great

TABLE V. Results of energy minimization for a hexagonal lat-
tice and comparison with the unpolarized liquid phase energy EL.
The energies are measured in 10−3 atomic units.

rs 15 20 30 50

ECDA −6.7255 −10.1581 −10.8576 −9.1112

ELDA −6.5036 −9.8169 −10.7782 −9.0306

EL −7.1324 −10.0249 −10.5995 −8.8939

FIG. 3. �Color online� Comparison of the liquid and solid-phase
energies. �E−EM�rs

3/2 where EM =−1.106103/rs and E is the unpo-
larized or fully-polarized fluid energy, or the solid energy ECDA,
ELDA or from QMC.
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difference in the screening properties of the liquid phase31 as
compared with the solid phase suggests that impurity effects
would be important in real 2D systems. In fact, there have
been many studies of 2D systems with impurities,32 although
the special features of HIGFETS have not been considered.
The study of impurity effects in quasi-2D layers is outside
the scope of our investigation.

V. CONCLUSION

We have investigated the Wigner crystallization of elec-
trons in �-thin 2D electron layers as well as in 2D layers with
a finite width. The well-studied case of �-thin 2D electron
layers provides a bench mark to test our methods for replac-
ing inhomogeneous electron densities by equivalent uniform-
density models. Detailed Hartree-Fock calculations with
large plane-wave basis sets are shown to be closely equiva-

lent to the single-Gaussian harmonic lattice calculations. We
show that the constant-density approximation �CDA� and
also the local-density approximation �LDA� successfully re-
cover the correlation energies of the �-thin 2D electron crys-
tal. In particular, these models predict a liquid→solid phase-
transition in the range 30�rs�40, in good agreement with
Quantum Monte Carlo simulations. When these methods are
applied to quasi-2D layers with the thickness as in HIG-
FETS, the weakened Coulomb correlations move the Wigner
transition towards high densities. The LDA and the CDA
predict a Wigner transition near rs�15 to 21.

APPENDIX: EVALUATION OF THE ELECTROSTATIC
ENERGY AND LATTICE SUMS

The expression for the electron-electron Coulomb energy,
Eq. �24�, can be rewritten using the � Jacobi function tech-
nique as

Eee�q�
N

2��
� j �

0

�

dyy−1/2f�y�e−y��j�
2−iq·�j


 ��
�

�� a�

2�
�2� j

�y + iq��;
ya�

2

�
� − �i,0� ,

where �i,0 is the Kronecker symbol, because when � j =0, we
must have �m ,n�� �m� ,n��. The advantage of introducing
the Jacobi function ��z ,X� is that it converges well for large
X and we are also able to obtain convenient well-convergent
formulas for the small-X region by applying the transforma-
tion �20� from which the singular part at q→0 can be rigor-
ously extracted. Thus, Eee�q� obtained in Eq. �A1� can be
separated into a large y part and a small y part given by

Eee�q� = Eee
��q� + Eee

��q� , �A1�

where

Eee
��q� =

N

2��
�

j
�

y0

�

dyy−1/2f�y�e−y��j�
2−iq·�j


� �
�=x,y

�� a�

2�
�2� j

�y + iq��;
ya�

2

�
� − �i,0�

�A2�

and

Eee
��q� =

N

2��
�

j
�

0

y0

dyy−1/2f�y�e−y��j�
2−iq·�j� �

�=x,y
�� a�

2�
�2� j

�y + iq��;
ya�

2

�
� − �i,0�

=
N��

2a1a2
�

j
�

0

y0

dyy−3/2f�y�e−q2/4y� �
�=x,y

��− i
2� j

�y + iq�

2a�y
;

�

ya�
2� − 1 + 1� −

N

2��
�

0

y0

dyy−1/2f�y�

=
N��

2a1a2
�

j
�

0

y0

dyy−3/2f�y�e−q2/4y� �
�=x,y

��− i
2� j

�y + iq�

2a�y
;

�

ya�
2� − 1� −

nlN��

2a1a2
�

y0

�

dyy−3/2f�y�e−q2/4y

−
N

2��
�

0

y0

dyy−1/2f�y� + Eee
hom�q� , �A3�

FIG. 4. �Color online� �E−EM�rs
3/2 where EM =−1.106103/rs

and E is the unpolarized or fully polarized fluid energy, or the solid
energy ECDA or ELDA. The spin-phase transition in the fluid is la-
beled SPT. The onset of the Wigner crystal in CDA and LDA are
indicated by arrows.
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where nl is the number of sublattices �a1a2 /nl=�rs
2�. The

results of the calculation are independent of the value of
y0�0; nevertheless, we choose it such that the sums � con-
verge fast, and we have

Eee
hom�q� =

nlN��

2a1a2
�

0

�

dyy−3/2f�y�e−q2/4y . �A4�

In order to complete the calculation of ECou, we need to
discuss the form of ��z�. In their article,17 Fujiki and Geldart
use the Fang-Howard density �FH�z�= �1/2b3�z2e−z/b �Fig. 1�.
As already discussed we replace the FH distribution by the
equivalent CDA, i.e., we use a constant density slab of width
w=16b /3. With this homogeneous form of density

f�y� = �̄2�
0

w

dz�
0

w

dz�e−y�z − z��2

= �̄2 �e−w2y + w��y erf�w�y� − 1�
y

. �A5�

We see here an advantage of the constant density mapping to
density �̄, the analytic expression of f�y� being quite simple.

In Eq. �18�, we replace ��z�� by its expression

Eed�q� = −
N

qrs
2

e−qbd

wq
�1 − e−wq� ,

Eed�q → 0� = −
N

rs
2�1

q
−

w

2
− bd + O�q�� . �A6�

We recall that bd is positive or zero, and gives the location of
the donor layer at z=−bd. Now, in Eq. �A4�, we use the
definition of f�y�:

Eee
hom�q� =

N

qrs
2

2

qw2�a −
1

q
�1 − e−wq�� ,

Eee
hom�q → 0� =

N

rs
2�1

q
−

w

3
+ O�q�� . �A7�

Now, we will use Eqs. �16�, �A6�, �A2�, �A3�, and �A7� in
Eq. �12� to calculate the Coulomb energy for different lat-
tices and for different thicknesses. We can see that the ex-
pression of ECou is dependent on the parameter bd. Since this
is a geometric additive contribution, we set bd=0 and focus
on the part which depends only on the electron lattice and on
its thickness. This geometric term is restored when needed.
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