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Spin accumulation in lateral semiconductor superlattices induced by a constant electric field
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The electric-field dependence of the spin accumulation in strongly coupled lateral superlattices subject to
Rashba spin-orbit interaction is studied by the density-matrix approach. At low fields, the spin accumulation
depends linearly on the electric field. In this field regime, the magnitude of the homogeneous magnetization is
larger in the lateral superlattice than in the corresponding two-dimensional electron gas. The magnetization
exhibits a maximum as a function of the electric field. In the region of Wannier-Stark localization, the field-
induced magnetization decreases with increasing electric field strength. Field-mediated resonant-tunneling
transitions between different spin states manifest themselves in a spin depolarization.
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I. INTRODUCTION

Manipulating the spin degree of freedom by electrical
means for electronic device applications is one of the main
objectives in the fast developing field of spin electronics. In
this context, it would be attractive to induce a nonequilib-
rium magnetization exclusively by the application of electric
fields. In the literature, two mechanisms are widely dis-
cussed, which permit the generation of a magnetization by an
electric field in semiconductors with spin-orbit interaction:
The spin-Hall effect (see, e.g, Refs. 1-6) and the spin
accumulation.””!3 In the spin-Hall effect, a transverse non-
equilibrium magnetization is induced at the sample bound-
aries of a two-dimensional electron gas in the presence of an
electric field. In contrast, the spin accumulation, which is due
to a charge current flowing through a two-dimensional elec-
tron gas, is characterized by a homogeneous magnetization.
This mechanism of spin polarization results under nonequi-
librium conditions from the spin-orbit interaction, which
gives rise to an effective magnetic field.

Whereas the spin-Hall effect also occurs in systems, in
which the spin-orbit scattering is provided by impurities, we
expect that the spin accumulation is only observed in sys-
tems without structural or bulk inversion symmetry. Such
systems differ from two-dimensional electron gases with
spin-orbit scattering due to impurities in that the momentum
of the particles is coupled to their spin. Accordingly, a non-
equilibrium magnetization can arise by shifting the Fermi
surface in an appropriate way, as it is done by means of an
electric or by coupled electric and magnetic fields. Thus, the
spin accumulation is a kinetic analogy of the magneto-
electric effect in antiferromagnetic insulators and can be re-
garded as complementary to the recently discovered spin-
galvanic effect.'

The spin accumulation has been treated in the literature
only in the linear electric field regime for semiconductor het-
erostructures with Rashba spin-orbit interaction. It has been
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shown that in this regime the magnetization is directly pro-
portional to the magnitude of the Rashba coupling strength
and to the momentum relaxation time. The spin-polarization
itself, however, is rather small so that large electric fields are
needed to produce measurable magnetizations. This raises
the question, whether the results derived for the linear field
region still apply to the experimental situation and to what
extent the magnetization can be increased by increasing the
electric field and by changing the experimental setup.

It is the main objective of this paper to generalize previ-
ous approaches of the spin accumulation, which remained
within the framework of linear response theory, to the non-
linear high-electric field regime. As nonlinear field effects
are more easily studied in superlattices with large Bloch fre-
quencies Q=efd/h (with £ and d denoting the electric field
and the superlattice period, respectively), we shall focus on
such systems by exploiting methods worked out in the field
of nonequilibrium carrier transport (see, e.g., Ref. 15). To be
more specific, it is our aim to present a quantum-mechanical
calculation of the field-induced spin accumulation for a lat-
eral semiconductor superlattice with Rashba spin-orbit cou-
pling and an in-plane electric field on the basis of kinetic
equations for the nonequilibrium density matrix. First results
based on the quasi-classical approximation have been ob-
tained recently.®

II. BASIC THEORY

Let us treat a lateral superlattice with a strong potential
modulation along the x axis as can be fabricated by the
cleave-edge overgrowth technique. The tight-binding disper-
sion relation of this model has the form

elk)= %[1 —cos(k,d)] + e(ky), (1)

where k=(kx,ky) denotes the quasi-momentum in the plane,
A the width of the lowest miniband, and s(ky)zﬁzki/ 2m” the
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contribution to the kinetic energy for the carrier motion
along the y axis, respectively. The Hamiltonian of the biased
lateral superlattice with Rashba spin-orbit coupling has the
form

H() = E S(k)alt(rak(r'i' E E J(r(r'(k)alt(rak(r’

k,o k a0

- ieéE V. (ali—K/ZO'ak+K/20')|K:O' )
k.o

where a,:U and ay , are creation and annihilation operators,
respectively, for electrons with quasimomentum k and spin
o. The in-plane constant electric field vector £ is oriented
along the x axis. The field contribution to the Hamiltonian in
Eq. (2) is calculated in the scalar gauge and expressed in the
quasi-momentum representation.'> Note that the Hamiltonian
is not diagonal due to the electric field £ and the Rashba
spin-orbit coupling, which is described by the matrix

0 Jpyk) -
S " ) J1o(k) = am’Tiv (k) + v, (k).

3)

Here « denotes the Rashba spin-orbit coupling constant and
v,(k) and v (k) are the components of the drift velocity. The
tight-binding dispersion relation of Eq. (1) yields

Jo’tr’(k) = <

Jo(k) = am <l§—: sin(k,d) + h—k~> 4)

In order to calculate the field-induced spin polarization for a
system with Rashba interaction, we apply a canonical trans-
formation that diagonalizes the Hamiltonian under zero bias
(£=0). Such a transformation has the form

E Ao’,u(k)bk,u’ 2 A(T/,L(k)A(T ,u(k) 0'0' s (5)

where the matrix

R 1 e—i(pk/Z e—i(,ak/Z
Alk)=—=| : ;

\J’ _ el(pk/2 e"Pk/2

is calculated from a phase factor ¢, that depends on the
quasi-momentum and which is determined by one of the fol-
lowing equations

Ad
sin(¢y) = am Py sin(k,d)/J(k), cos(@y) =— ahk,/J(k).

(6)

The function

2
J#) = am \/(Z‘) +(%sin<kxd)) (1)

is one half of the spin-mediated energy splitting, which en-
ters our final Hamiltonian
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Hy= 2 &,(k)b] by, — €2, d(k) (b} by + biybe)
ku k

—ie€ 2V Dpppbrinng - (8)
9% k=0

In the new basis, the model is characterized by spin depen-
dent eigenenergies &,(k)=&(k)+J(k) and a dipole moment
ed(k)=eVy@/2, which is proportional to k.

We are interested in calculating the quantity f(k)
=i[f5,(k)—f12(k)] (the x and z components of the magnetiza-
tion vanish even at nonzero electric fields due to symmetry
arguments), where the elements of the density matrix are
given by f,,(k)=(ay,ax,). The quantity f,(k) is related to
the components of the density matrix F M#r(k)=<blt”bk ) in
the new basis by the relationship

fy(k) = cos(@p) Fy (k) — sin(¢p) F (k). ©)

Here, we used the abbreviations F,(k)=F(k)—F,,(k) and
F\(k)=i(Fy (k) —F,(k)). Taking into account Eq. (6), we ob-
tain a result

o Ad 2 sin(k, d)

k) F.(k) - ah, ——F (k),

fy== am e Jk)

(10)

which consists of two quite different contributions. The first
one on the right hand side of Eq. (10) survives in the low-
field limit (£—0) and is calculated from the diagonal ele-
ments of the density matrix F W,(k). For a two-dimensional
electron gas, this contribution has the form

oFek). (1

_S sk =-3 o
k

x k|

It is clear from this equation that only the anti-symmetric
part of the distribution function F.(k) contributes. Quite
similar to the treatment of the Boltzmann equation in the
quasi-elastic limit, this quantity is calculated from the kinetic
equation for the density matrix [cf. Eq. (14) in Sec. IIT] by
adopting the constant relaxation-time approximation with re-
spect to scattering. At zero temperature (7=0) and in the
linear electric field regime, we obtain the solution

Fz(k) =-

—ep) = O(ey(k) —ep)],

(12)

f

with ez and 7, denoting the Fermi energy and an effective
elastic scattering time, respectively. Carrying out the integra-
tions over the k, and k, variables in Eq. (11), we obtain the
analytical result
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*
am a2

fy= Z—ﬂ'ﬁzegTs’ (13)

which was derived previously’ for a two-dimensional elec-
tron gas with the lattice constant a. The second contribution
on the right-hand side of Eq. (10) is determined by the off-
diagonal components of the density matrix. This term de-
scribes quantum effects due to field-induced tunneling. Both
contributions are calculated in the next section for strongly
coupled lateral superlattices.

III. TRANSPORT EQUATIONS

Our calculation of the magnetization is based on kinetic
equations for the density matrix F,,/(k), which is obtained
from the Liouville equation that enter the one-particle
Hamiltonian in Eq. (8) and scattering contributions. In the
presence of an electric field and for a nondegenerate electron
gas, the kinetic equations have the form'

{0_% - %(Su(k) — e (k)) + %(é : V)}Fw’(k|t)

=2 2 (Fpy (K YW32 (k' k)
k' MM

- Fu WL ). (14)
where o, denotes the Pauli matrix and Wﬁfzr(k' ,k) are tran-
sition probabilities that depend both on the electric field and
the spin-orbit coupling and that refer to elastic and inelastic
scattering mechanisms. In general, the solution of these
equations is a formidable task that can only be solved by a
numerical approach. To focus on the essential physics and
for simplicity, we adopt here a simple treatment of scattering
based on the relaxation-time approximation. Although this
approximation inevitably lacks some features of a more re-
alistic description, its usefulness in deriving main physical
results in a qualitative manner has clearly been demon-
strated. However, we want to point out that the application of
the relaxation-time approximation to our model becomes
more difficult because the off-diagonal elements of the tran-
sition probabilities are nonvanishing, since the quantities
A, (k) are not orthogonal for different k, i.e.

2 A, (0A (k') #0, (15)

for o# o' and k#k'. Therefore, the scattering probabilities
couple off-diagonal to diagonal elements of the density ma-
trix. This coupling disappears, however, in systems with
long-range scattering. We shall focus on this particular case
so that the relaxation-time approximation is applicable in the
conventional manner, however, with scattering times that es-
sentially depend on the quasi-momentum k. Therefore, the
full solution to the problem would involve the treatment of a
microscopic model for long-range scattering that allows the
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calculation of the k dependent scattering times. Such calcu-
lations would be too complicated for the present analytical
study that is intended to demonstrate qualitative features of
the nonlinear field-induced spin polarization. For simplicity,
we therefore apply the constant relaxation-time approxima-
tion although this model inevitably lacks some of the fea-
tures of a more realistic description of real systems. For the
components of the density matrix, we obtain the set of equa-
tions

{g + %w V)}szacm + é(é-d(k»(mklr) — Fio(kl|D)

1
=- :(Fn/zz(kh) - Fﬁ)/zz(k))s (16)

Jd ] o
{5 F 2%J(k) + %(6 V)}Flz/zl(k|f)

2 2 (&) (k] ~ 1y K1)

1
=- ;F12/21(k|[), (17)

where the upper (lower) sign refers to the equation for
F,(F,,) (the same sign convention applies to the equations
for F|, and F5;). The quantities 7 and 7, are phenomenologi-
cal relaxation times, and

1
(0) -
PO ottt —epie Y

is the Fermi distribution function with & denoting the Fermi
energy and B=1/kgT.

For an electric field oriented along the x axis, Egs. (16)
and (17) are solved in the Wannier-Stark representation,
which is introduced by the discrete Fourier transformation!”

— ilkd
Footk)= 2 e™F, . (Lk,). (19)

[=—00

In this representation and for the steady state, Eqgs. (16)
and (17) take the form

) ie€
llQFll/ZZ(l’ky) + 72 dx(l - ll9ky)(F21(ll$ky) - Flz(ll’ky))
U
1
=- :(Fl ia(Lky) = F (LK) (20)
and
1 - -
|:_ -+ 2_J(k‘) + ilQ:|F12/21(l,kV)
T ho - ’
ie€
== 2 d{U-1' 0F(' k), (21)
with
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2mld
i(lcy):zi f dk J(k). (22)
m™J0

Note that the simple solution in Eq. (21) has been derived for
functions F 121, wWhich are defined by

~ 2i (k| -
Fopi (k) = Fl2/2](k)exp{izf dk, (J(k) - J(ky))}'
0
(23)
In Eq. (21), we introduced the quantities

& (Lk) =2 O k)d (1= k), d*(Lky) = d(= Lky),
l!

(24)
where
d [
Lk)=— dic.e~ilkd
0 k)= JO .
2 (e _
Xexp T e dk(J(k;,ky) = J(k,)) (25)
0
and
2 AL d (2 lkd .d
i) = O [ g corlbeonid)
4 2wl Pk, k)

=—d(\1+c2-0o), (26)

with  ¢=2#%k,d)/(m"Ad). 1t is easily verified that
O(l,k,)[d(l,k,)] vanishes for odd [even] integers [. A closed
equation for F.(I,k,) is obtained from Eq. (20), in which the
results of the Egs. (21) and (23) are inserted. To solve these
equations, we focus on the pole structure of the solution and
collect only those F,(I,k,) with a given Wannier-Stark ladder
index /. This approximation preserves all qualitative features
of the exact result and allows an analytical solution of the
form

F(O)(l k,)
F.(lLk)=—"—"">"—, 27
k) 1 +ilQ7 + S(k,) @7)

with

! 2
Sy(k,) = 2( )rE[ d;(_l -0

7L i = 20Tk )i+ 1,
d(I' - 1)? }
iU + 20T+ 1, |

(28)
which is used in Eq. (10) to calculate the magnetization.

IV. THE FIELD-INDUCED MAGNETIZATION

In the Wannier-Stark ladder representation, the magneti-
zation is calculated from Eq. (10) by taking into account Egs.
(27), (28), (21), and (23). We obtain the result
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fy=am —EEB(k )Im{F.(1,k,)}
h k =1

—2aef, 2, 2 kA, (ky)
I I=1

ky

XRefld (L, = 13— Lk )R, 1, 1,(k))

+d (L =+ Lk)R; (k)IF(Lk)}.  (29)

The first contribution in this equation results from the diag-
onal elements of the density matrix. It determines the mag-
netization at low electric fields. The second term describes
the impact of the off-diagonal elements on the magnetization
and is therefore completely due to quantum effects. The co-
efficients in Eq. (29) are given by the functions

d (*™  cos(lk,d)
Al(ky) = _f dk N Bl(kv) =

) —Ap),
277_ 0 XJ(kX,ky) l+1)

1
E(Al—l
(30)

Q' (1),k,)Q(1,k,)
Ry 11, (ky) = D (31)
ilLQ+2iJ(k)/h+ 1/T

The quantities A/(k,) and B/(k,) are only nonzero for even
and odd integer /, respectively.

Our basic result in Eq. (29) simplifies considerably, when
the off-diagonal elements of the density matrix F,,, are not
taken into account.'® Such an approximation is justified un-
der the condition %/ 7,<J(kg). In this case, the second term
on the right-hand side of Eq. (29) and the quantity S(k,) in
the denominator of Eq. (27) disappear, and we obtain

LAd <
fy= —am’—

TS ZB,(k)F(”(Zk) (32)
=1

(lQ A

This equation gives the quam—classwal result for the nonva-
nishing magnetization in the presence of an electric field.
There is a linear field dependence in the Ohmic regime
Q7,<1. The magnetization reaches a maximum around
Q7,=1 and decreases with increasing electric field according
to fy,~1/&. This decrease of the magnetization is due to the
Wannier-Stark localization of the electronic states.
Characteristic quantum effects are described by the sec-
ond term on the right hand side of Eq. (29). The most pro-
nounced quantum corrections are field-induced tunneling

resonances that occur at [{)= 2](k )/f for a mean quasi-
momentum k and even integers /. These resonances mani-
fest themselves in the denominator of the quantities Ry 3(k )
[see Eq. (31)]. In order to take them into account, we nu-
merically calculate the magnetization from Eq. (29). In Fig.
1, the thick solid line depicts the electric field dependence of
fy for a strongly coupled lateral GaAs/(Al,Ga)As superlat-
tice with a lattice constant of d=6 nm, a 2 nm thick barrier
and a miniband width of A=100 meV. For the sequential
tunneling regime in weakly coupled superlattices (A—0),
the field-induced magnetization disappears. In the Ohmic re-
gion, where a linear field dependence is observed, the spin
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FIG. 1. Spin polarization f, as a function of the electric field £
for =100 meV and A=100 meV. Other parameters are: T=4K,
d=6 nm, 7=7,=1 ps, and ie=5X 107 eV cm. The inset shows f,
as a function of 1/&. In this representation, the tunneling resonances
are equally separated.

polarization is much stronger in superlattices than in the cor-
responding two-dimensional electron gas [dash-dotted line as
calculated from Eq. (13)]. The magnetization reaches a maxi-
mum at about Q)7,=1 (vertical solid line) and decreases with
increasing electric field according to f, ~ 1/&. This nonlinear
behavior is analytically described by Eq. (32) (dashed line).
Field-induced tunneling resonances give rise to minima in
the field dependence of the magnetization. These tunneling
processes lead to a spin depolarization, whenever different
spin states of the biased superlattice are aligned by the elec-
tric field.'® The inset of Fig. 1 shows f, as a function of 1/&.
In this representation, the tunneling resonances (marked by
vertical solid lines) are equally spaced so that the effective

energy gap 2j(k:) can be estimated.

Note that the spin polarization in the superlattice depends
strongly on the ratio between the quasi-Fermi energy e and
the miniband width A. Figure 2 shows that even the sign of
Jf, depends on this ratio. The numerical data for Fig. 1 refer
to =100 meV, which gives a positive value for f,. In Fig.
2, we used £;=20 meV and obtained a reversed magnetiza-
tion f,. That f, may change its sign in dependence on the
quasi-Fermi energy is related to the fact that the spin polar-
ization is calculated from density matrix elements F,(l,k,)
with odd integers /. Apart from the change of sign, the details
of the lineshape in Fig. 2 agree qualitatively with that in Fig.
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FIG. 2. Spin polarization f as a function of the electric field £
for £=20 meV and A=100 meV. All other parameters are the same
as in Fig. 1.

1. Again the overall line shape of f, is given by the dashed
line calculated from Eq. (32).

V. CONCLUSION

We have generalized the theory of electric-field-induced
spin polarization worked out for a two-dimensional electron
gas in the linear response regime’ to strongly coupled lateral
superlattices in the high-field regime, where Wannier-Stark
localization takes place. We have shown that a constant elec-
tric field applied parallel to a superlattice induces an in-plane
magnetization. In the linear field regime, the effect is much
larger than in the related two-dimensional electron gas. The
spin polarization reaches a maximum at about Q7,=1 and
decreases with increasing electric field according to f)
~1/&. Tunneling resonances between different spin states
lead to a spin depolarization. The magnitude of the field-
induced spin polarization is small (f, <1% in the parameter
range studied here). Nevertheless, its experimental demon-
stration seems to be possible for lateral superlattices fabri-
cated by the cleave edged overgrowth technique.
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