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We explore the bistability effect in a dimensionally scaled semiconductor nanostructure consisting of a dilute
magnetic semiconductor quantum dot �QD� and a reservoir of itinerant holes separated by a barrier. The
bistability stems from the magnetic phase transition in the QD mediated by the changes in the hole population.
Our calculation shows that when properly designed, thermodynamic equilibrium of the scaled structure can be
achieved at two different configurations; i.e., the one with the QD in a ferromagnetic state with a sufficient
number of holes and the other with the depopulated QD in a paramagnetic state. The parameter window
suitable for this bistability formation is discussed along with the conditions for maximum robustness/
nonvolatility. To examine the issue of scaling, an estimation of the bistability lifetime is made by considering
the thermal fluctuation in the QD hole population via the spontaneous transitions. A numerical evaluation is
carried out for a typical carrier-mediated magnetic semiconductor �e.g., �Ga,Mn�As� as well as for a hypotheti-
cal case of high Curie temperature for potential room-temperature operation.
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The magnetism in semiconductors is the basis for the
emerging field of spin-polarized electronics, or spintronics.1

Substantial progress has been made during the past few
years, particularly in materials development. The advantages
of the semiconductor-based systems over the metallic coun-
terparts include the controllability of the ferromagnetism �via
the bias2 and/or doping� and the potential compatibility with
modern Si-based processing technology.

Recently, a theoretical study further explored opportuni-
ties offered by electrically controlled magnetism. It was
found that a properly designed structure consisting of mag-
netic and nonmagnetic semiconductor quantum wells �QWs�
can exhibit bistability with respect to the paramagnetic-
ferromagnetic �PM-FM� phase transition when the process is
controlled by the itinerant carriers �holes�.3 This bistability
effect in the two-dimensional system was predicted to persist
even at temperatures nearly as high as the critical tempera-
ture Tc of the PM-FM phase transition. Subsequently, a non-
volatile memory application was suggested, citing the suc-
cessful growth of transition metal doped semiconductors that
are FM at or above room temperature �e.g., the nitrides,4

Ge,5 as well as some II-VI’s �see Refs. 6 and 7��.
For practical realization of the proposed device applica-

tion, it is highly desirable to reduce the size of the magnetic
layer �i.e., the active part of the memory� without the loss of
high-temperature operability and nonvolatility. Conse-
quently, a magnetic semiconductor quantum dot �QD� that
can exchange itinerant holes with a reservoir provides an
interesting opportunity. However, unlike the QW case exam-
ined earlier,3 the thermal fluctuation resulting from spontane-
ous hopping between the two possible stable states cannot be
neglected in the scaled structure due to the limited number of
carriers populating the QD. Hence, it is the purpose of this
paper to theoretically investigate the effect of the reduced
dimensionality and explore the potential bistability condi-
tions based on the electrically controlled magnetic phase
transition in the magnetic semiconductor nanostructures.

The specific structure under consideration consists of a
single dilute magnetic semiconductor �DMS� quantum dot
�QD� separated from a large reservoir of itinerant holes,
which controls the chemical potential �0 of the system. For
simplicity, we assume �0�kBT and ignore the possible tem-
perature dependence of �0. A nonmagnetic QW filled with
itinerant holes �for example, through modulation doping,
etc.� can be used as the desired reservoir �see Fig. 1�.

To accurately describe this system, one needs to know the
energy structure of the QD, which is a function of multiple
parameters. In particular, the magnetic interactions that lead
to the PM-FM phase transition in the DMS QD must be
taken into account. Note that the analysis of different mag-
netic phase transition mechanisms is beyond the scope of the
present study �see, for details, Ref. 8�. Instead, we assume
that the main magnetic properties �such as the critical tem-
perature Tc and its dependence on the hole concentration,
and the magnetization dependence on temperature M
=M�T�� can be obtained from measurements of the relevant
DMS. This allows the use of a semiphenomenological ap-
proach in calculating the free energy of the system.

In the present model, we approximate the free energy of
the QD as the sum of two terms: the magnetic �FM� and
nonmagnetic �FN� contributions. If the DMS QD is not far
from the PM-FM transition, the Landau expansion in the
magnetization M can be applied for FM:

FM = − a�Tc − T�M2 + bM4. �1�

The parameters a, b, and Tc are functions of the number of
holes j in the QD, and in particular, the dependence Tc
=Tc�j� plays a crucial role in the magnetic instability.9 In
addition, a and b can be expressed in terms of the funda-
mental properties of the magnet: The Curie-Weiss law
for magnetic susceptibility �=C0 / �T−Tc� at T�Tc

defines a=1/4C0, while spontaneous magnetization Ms

=M0
�1−T /Tc at T�Tc implies b=aTc /2M0

2. Since Eq. �1� is
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assumed to fully describe the magnetization of the DMS QD,
the thermodynamically stable state corresponds to the spe-
cific magnitude of M that gives rise to the free energy mini-
mum

FM = − Tc

M0
2

C0
�1 −

T

Tc
�2

��1 −
T

Tc
� , �2�

where ��x� is the Heaviside step function. It is important to
note that the localized spin S of the magnetic ions provides
the main contribution to the DMS magnetization, whereas
the itinerant carriers play a minor role. The parameters M0
and C0 can be easily estimated for Nm localized spin mo-
ments leading to the estimation M0

2 /C0=3SNm /8�S+1�,
which is independent of carriers. Thus, the only dependence
of FM on the hole population j comes from the term Tc
=Tc�j� in our approximation.

To obtain a numerical value for j, one must also incorpo-
rate the nonmagnetic part FN of the free energy for j holes
located in the QD. Unfortunately, the calculation of FN re-
quires approaches very specific to each individual case as FN
depends on the details such as the material composition, the
size and shape of the QD, the presence of dopants and exter-
nal fields, etc. Consequently, this problem cannot be solved
in a general manner. To proceed further, we treat the QD as a
scaled QW with a finite lateral size �and thickness�; this is
analogous to a nanodot embedded in a barrier.

The potential profile of the sample structure along the
growth �z� direction is schematically illustrated in Fig. 1
from the hole representation, as is the case throughout
the paper. It is convenient to split FN into two parts: FN
=Ej +F1�T , j�. The first term,

Ej = jU +
1

2
j�j − 1�C , �3�

accounts for the energy acquired by j holes due to their lo-
calization in the QD with the ground state energy U as well
as their Coulomb repulsion energy �C=e2 /��A0, where e is
the electron charge, � the dielectric constant, and A0 the lat-
eral cross section of the QD�.10 The remaining part,

F1�T, j� = 	�T,�1� + j�1�j� , �4�

is similar to the free electron gas contribution with the ther-
modynamic potential:11

	�T,�1� = − kBT�
n

ln�1 + e��1−
n�/kBT� . �5�


n and �1 represent the energy spectrum �with the quantum
number n� and the chemical potential of the QD when the
influence of the magnetic interaction is excluded �i.e., the
nonmagnetic version of the QD�. In what follows, we con-
sider the lateral dimension A0 of the QD to be relatively
sizable so that the energy gaps in the discrete energy spectra
are smaller than kBT. The sum in Eq. �5� can then be approxi-
mated by an integral with the density of states mA0 /��2.
From the relation j=−�	�T ,�1� /��1 ,�1�j� is found to be

�1�j� = kBT ln�ej − 1� , �6�

where =��2 /mA0kBT and m is the in-plane hole effective
mass. Consequently, the thermodynamic potential �Eq. �5��
can be expressed in the form

	�T,�1�j�� = −
kBT


	

0

�

ln�1 + �ej − 1�e−x�dx . �7�

Equations �3� and �4� along with �1�j� and 	�T ,�1� from
Eqs. �6� and �7� determine the nonmagnetic part of the free
energy, while the total free energy of the DMS QD is the sum
F=FM +FN.

Now we take into account the fact that the QD is in con-
tact with a large reservoir providing two-way exchange of
carriers through the potential barrier �see Fig. 1�. This leads
to the establishment of a unified chemical potential that co-
incides with �0 in the reservoir. Thus, the equation that de-
termines the population of the QD takes the form

�QD�j� = �0. �8�

Note that �QD�j���1�j� since both the nonmagnetic and
magnetic interactions are considered for �QD�j�. Since the
chemical potential �QD�j� of the QD can be expressed as
�QD�j�=dF /dj in general, the stable solutions of Eq. �8�
must correspond to the local minima of F=F�j� or equiva-
lently d�QD�j� /dj�0.

Finally, the desired solutions require a specific expression
for Tc=Tc�j� in Eq. �2�. Following the experimental data of

FIG. 1. Schematic diagram of the structure containing a DMS
QD �in two different phases� and a nonmagnetic quantum well
�NQW� reservoir separated by a barrier. The energy orientation is
provided from the hole point of view in the valence band. Left: The
PM phase corresponds to disordered magnetic ion spins �small ar-
rows� and the lack of a magnetic contribution to the hole energy.
This is achieved when the holes �small circles� only weakly popu-
late the QD with a discrete energy spectrum and, thus, cannot
change its magnetic state. The ground state U of the QD is high
relative to the chemical potential �0 of the hole reservoir. Right:
Another thermodynamically stable state �at the same external con-
ditions� is possible when the magnetic ions are ferromagnetically
ordered. Magnetic interactions can decrease the hole potential so
that the ground state of the DMS QD is now substantially below �0;
i.e., the equilibrium hole population is high enough to stabilize the
FM phase. Switching between the PM and FM states can be
achieved by applying a gate bias Vg that populates or depopulates
the DMS QD.
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Ref. 12, we adopt a semiphenomenological description

Tc = Tc
0�1 − e−�jt� , �9�

where Tc
0 is the asymptotic value of the critical temperature

�at a sufficiently high hole concentration�, t=T /Tc
0, and

��=1� is the fitting parameter that adjusts Eq. �9� to the ex-
periments. Subsequently, the QD hole population j can be
obtained from Eqs. �2�–�4� and �8� as

�0 − U = �j − 1/2�C + kBT ln�ej − 1� − kBT
3SNm

8�S + 1�

�e−�tj
1 − � T

Tc
�2���1 −

T

Tc
� . �10�

For a numerical evaluation, let us assume the following
set of parameters “typical” for a carrier-mediated DMS �e.g.,
Ga0.95Mn0.05As�: m=0.13m0 �m0 is the free electron mass�,
�=12.9, S=5/2, Nm=1.3�1021 cm−3� �QD volume�, and
Tc

0=110 K. Figure 2 depicts the dependence of ��QD�j�
−U� /kBTc

0 as a function of j. Clearly, the results indicate that
only one solution for j exists at sufficiently low or high en-
ergies U in reference to �0 �e.g., dashed line 1 or 3� corre-
sponding to the only stable QD population at a given U.
However, the moderate values of U can support multiple
solutions. In the case of dashed line 2, two of them �with the
smallest and largest j� are stable considering the positive
derivative �d�QD/dj�0�, while the intermediate solution is
not �d�QD/dj�0�. Note also that the stable solutions with
the larger �smaller� j are realized in the FM �PM� phase of
the DMS QD. Hence, this demonstrates a bistable state for a
properly designed QD in terms of the hole population or the
magnetic phase. Figure 3 provides the ranges of U �assuming

a fixed �0� and T where the bistability can be expected in the
system under consideration. Clearly, the calculated results
indicate a large window in the system parameter space where
the bistability is possible. The maximum operating tempera-
ture may be nearly as high as Tc

0.
To achieve a bistable state robust against thermal fluctua-

tions �i.e., nonvolatile� for possible memory applications, it
is necessary to select a condition that provides the maximal
separation �F=min�Fmax−FPmin

,Fmax−FFmin
 between the

local maximum Fmax and each of the local minima FPmin
and

FFmin
�for the PM and FM phases of the DMS QD, respec-

tively� of the free energy F�j�. At a given temperature, one
can find the QD potential alignment that results in the maxi-
mal �F. Figure 4 illustrates the behavior of F�j� at three
different shifts ��=�0−U: curve 1 �3� represents the case of
the monostable state in the FM �PM� state, whereas curve 2

FIG. 2. Chemical potential of the DMS QD with a thickness of
5 nm and cross section of 25�25 nm2 as a function of the QD hole
population �Eq. �10��. The parameters of Ga0.95Mn0.05As are as-
sumed with T=77 K as discussed in the text. The solutions of Eq.
�10� can be found as intersections of the solid curve with the hori-
zontal line corresponding to a certain value of ���=�0−U�. Two
cases �� /Tc

0=6 and 0.5 �dashed lines 1 and 3� provide monostable
FM and PM states, while dashed line 2 ��� /Tc

0=2.7� depicts the
bistable state. Stable solutions are indicated by single-head arrows
and the unstable one by the horizontal double-head arrow.

FIG. 3. Phase diagram of the parameter space indicating the
potential bistability region �the shaded area�. The PM and FM labels
denote the monostable areas corresponding to the PM and FM QD
states, respectively. The same parameters as in Fig. 2 are assumed
�Tc

0=110 K�.

FIG. 4. Free energy of the QD calculated as a function of hole
population for three different values of ���=�0−U�: �� /Tc

0=6
�curve 1, dotted line�; 2.7 �curve 2, solid line�; 0.5 �curve 3, dashed
line�. The single minima of curves 1 �FM phase� and 3 �PM phase�
correspond to the vicinities of the right and left boundaries of the
bistable area in Fig. 3; curve 2 represent the bistable case with the
optimal free energy barrier height separating two local minima. The
same parameters as in Fig. 2 are assumed �T=77 K, Tc

0=110 K�.
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exhibits two local minima in the FM and PM states, respec-
tively, separated by the maximal �F. The temperature depen-
dence of the maximal �F and the associated optimal poten-
tial shift �� is plotted in Fig. 5 along with the mean values
of the particle numbers jP, jm, and jF corresponding to FPmin

,
Fmax, and FFmin

. Our analysis shows that the “thermodynamic
barrier” �F decreases drastically as T approaches Tc

0 �curve 2
in Fig. 5�a��. Obviously, the system based on the PM-FM
transition becomes much less stable near the critical tempera-
ture.

Note that the mean value j is reached through the balance
of the particle flux to and from the QD. Each of these events
transfers one particle via thermal activation with a character-
istic time �0, which depends on the temperature, height, and
width of the energy barrier separating the QD and reservoir,
etc. The lifetime Tlt is defined as the time it takes to develop
a sufficiently large fluctuation to induce a transition from the
state initially at FFmin

=F�jF� to that at FPmin
=F�jP�. Appar-

ently, if the system reaches the state at the local maximum
Fmax=F�jm�, further evolution can result in either the PM
�with j= jP� or the FM �with j= jF� QD state with an approxi-
mately equal probability; hence, Tlt can be estimated as
the reciprocal probability for the process FFmin

→Fmax or
jF→ jm.

The fluctuation �j= jF− jm can be found by considering
the sequential process of hole withdrawal from the QD. For
the first hole transfer out of the QD, the characteristic time of
this process is �0 as defined above. Due to the finiteness of
the QD hole population, this reduces the chemical potential

by ���1�=�QD�jF�−�QD�jF−1�. Consequently, the new
time constant becomes �0 exp����1� /kBT� when the next
hole escapes from the QD, provided no particles are injected
into the QD from the reservoir. Hence, the mean time neces-
sary for the �j fluctuation through the sequential withdrawal
of holes can be estimated to be

Tw��j� = �0 �
j=0

jm−1

exp����j�/kBT� . �11�

On the other hand, the probability of no hole injection
from the reservoir during this time span Tw is Pw
=exp�−Tw��j� /�0�. The frequency of appearance for such a
rare occasion is Pw /�0 and the desired lifetime is

Tlt = �0 exp�Tw��j�/�0� . �12�

A similar expression is shown to apply to the fluctuations
FPmin

→Fmax or jP→ jm.
One can see that the estimated lifetime �or the bit reten-

tion time� depends crucially on the operating temperature

FIG. 5. Maximal free energy barrier height �in units of kBT�
between the local maximum and the closest local minimum in the
bistable case �curve 2� and the corresponding optimal chemical po-
tential �curve 1� as a function of temperature. Curves 3–5 in the
bottom pane shows the hole population at the FM minimum �curve
3�, the PM minimum �curve 5�, and the local maximum �curve 4� of
F�j� for the bistable case shown in the top pane at the correspond-
ing temperature. The same parameters as in Fig. 2 are assumed
�Tc

0=110 K�.

FIG. 6. Bistability lifetime vs temperature at Tc
0=110 K. Two

different QD dimensions are considered: �1� 25�25�5 nm3 and
�2� 15�15�5 nm3. The mean time �0 of particle exchange be-
tween the QD and reservoir via thermal processes is assumed to be
1 ns. Other parameters are the same as in Fig. 2.

FIG. 7. Bistability lifetime vs temperature for a hypothetical
DMS material with characteristics similar to �Ga,Mn�As, in which
Tc

0 in Eq. �9� is treated as a variable over a wide temperature range.
T is fixed at 300 K and three different QD sizes are considered: �1�
25�25�5 nm3, �2� 15�15�5 nm3, and �3� 25�25�3 nm3. The
mean time �0 of particle exchange between the QD and reservoir
via thermal processes is assumed to be 1 ns as in Fig. 6.
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and the QD sizes, which determine the number of terms jm
in the sum of Eq. �11�. Figure 6 analyzes the results for
the �Ga,Mn�As QD with dimensions of 25�25�5 nm3 and
15�15�5 nm3 assuming Tc

0=110 K. As expected, the
bistable state becomes less stable �i.e., shorter Tlt� as the QD
size shrinks. The thermal fluctuation clearly has a bigger
impact in this case due to the finite number of holes in the
QD. For the two structures considered �or those of similar
sizes�, a practically nonvolatile condition �i.e., sufficiently
long bit retention� may be achieved when operating below
�75 K. �0=1 ns is used for the calculation.

To examine the feasibility of room-temperature operation,
it is desirable to extend our consideration of magnetic semi-
conductors to those with potentially much higher critical
temperatures. Note, for instance, two recent reports of DMS
with Tc�300 K.5,7 Since the search for an ideal DMS is only
at the beginning stage, we assume a hypothetical material
with characteristics similar to �Ga,Mn�As except for Tc

0 in
Eq. �9�, which is treated as a variable over a wide tempera-
ture range. Figure 7 depicts the estimated lifetime as a func-
tion of Tc

0, while T is fixed at 300 K. For a sufficiently long

Tlt in this case, the desired material needs a Tc
0 of approx.

550 K or higher.
In summary, we investigate theoretically the effect of re-

duced dimensionality in magnetic semiconductor nanostruc-
tures and explore the potential bistability conditions based on
the electrically controlled magnetic phase transition. The
analysis is based on a semiphenomenological model that as-
sumes common magnetic behavior and a simple hole energy
spectrum in a DMS QD. When properly designed, the calcu-
lation predicts the possibility of controlled switching be-
tween the stable PM and FM states in the QD. The parameter
window suitable for bistability is discussed along with the
conditions for maximum robustness/nonvolatility. An estima-
tion of the bistability lifetime as limited by thermal fluctua-
tions provides a guideline for its potential application as a
room-temperature low-power, high-density memory element.
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