PHYSICAL REVIEW B 72, 195206 (2005)

First-principles calculation of intrinsic defect formation volumes in silicon
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We present an extensive first-principles study of the pressure dependence of the formation enthalpies of all
the known vacancy and self-interstitial configurations in silicon, in each charge state from —2 through +2. The
neutral vacancy is found to have a formation volume that varies markedly with pressure, leading to a remark-
ably large negative value (—-0.68 atomic volumes) for the zero-pressure formation volume of a Frenkel pair
(V+1). The interaction of volume and charge was examined, leading to pressure-Fermi level stability diagrams
of the defects. Finally, we quantify the anisotropic nature of the lattice relaxation around the neutral defects.
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I. INTRODUCTION

Nearly perfect crystals of silicon are of great technologi-
cal importance, yet silicon self-diffusion is still not com-
pletely understood. Unlike the situation in metals, the equi-
librium concentrations of vacancies and self-interstitials in Si
are believed to be comparable, and very low, making detec-
tion of them problematic. Experimental data are fragmentary,
and simulations do not all agree. Controversy remains over
the relative importance of vacancies and interstitials to self-
diffusion at different temperatures and the relative magni-
tudes of the migration enthalpy to the formation enthalpy of
these defects.!> We set aside the possibility of diffusion by a
direct exchange mechanism? due to the low prefactor that has
been calculated.* Then the self-diffusivity of silicon is the
sum of the diffusion of Si due to vacancies and due to inter-
stitials,

DSi=Cva+C1D1, (1)

where the atomic fraction cy=Cy/Cg; and Cg=5.00
% 10?2 cm™3. The contribution of vacancies to Si diffusion is
proportional to the concentration of vacancies Cy and the
diffusivity of vacancies Dy, and likewise for interstitials.
The equilibrium concentration of a defect X is Cy
=Cgexp(—gi/kgT), where g% is the Gibbs free energy of
formation of one defect. The diffusivity of a vacancy can be
written as Dy=({/6)N\*vyexp(—gy/kgT), where { is the coor-
dination number, A is the bond length, v, is an attempt fre-
quency, and g} is the Gibbs free energy for the vacancy to
exchange with one of its neighbors. The diffusivity of self-
interstitials can be written similarly, but with a different geo-
metric factor. Of course, G=H-TS, and if the entropy and
enthalpy are assumed to be constant with respect to tempera-
ture, entropy may be combined with the pre-exponential fac-
tor, leaving only the enthalpy as a model parameter in the
exponent.

Recent isotope tracer experiments? fit equilibrium silicon
self-diffusivity to a single Arrhenius term,
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with DE°=530"230 cm?/s and h$,=4.75+0.04 eV, suggest-
ing that either vacancies or self-interstitials dominate self-
diffusion over the entire temperature range studied—or in-
stead that they switch over from one to the other but with
similar values of hg,. Of course, vacancies and self-
interstitials diffuse by exchanging with lattice atoms, and
thus cannot be isotopically tagged.

The concentrations C and diffusivities D of vacancies in
silicon are difficult to measure separately with any accuracy,
and likewise with self-interstitials. Estimated equilibrium
transport capacities 33D y=dyexp[—(hi+hy)/kpT] have been
derived from experimental studies of metal diffusion in sili-
con, the most recent of which report values of h§/+ hy rang-
ing from 4.03 to 4.14 eV, and Af+ A" from 4.84 to 4.95 eV.2"
On the other hand, the latest published work utilizing dopant
diffusion arrives at an estimate of h%=h}+h}=4.86 eV and
hd=h§+h}“=4.68 eV,! contrary to the long-held assumption
that h}j > hi‘,. Ion implantation, thermal oxidation, and nitrida-
tion increase the concentration of intrinsic defects above
their equilibrium concentrations (Cy> C%'), increasing the
self- and dopant diffusivity; however, measuring activation
enthalpies from such experiments requires assumptions
about traps and other simplifications to differentiate between
interstitial and vacancy mechanisms.

First-principles methods can be used to separately calcu-
late formation and migration enthalpies, among other quan-
tities. The enthalpies can be obtained from the energies cal-
culated at different volumes as H=E+ PV+qgeg, where & is
the Fermi level and ¢ is the charge of the defect in electron
units. Since V=9H/dP, the formation volume v} tells us how
the formation enthalpy h} and thus the equilibrium concen-
tration varies with pressure. Similarly, v} tells us how much
pressure enhances or retards the migration of a defect once it
has entered the lattice. This is of technological interest be-
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FIG. 1. (Color) Geometries of defects in relation to a conven-
tional cubic unit cell of Si.

cause of the large stresses and strains that exist near the
surfaces and interfaces of silicon-based integrated circuits
(e.g., heteroepitaxial growth of Si upon Si;_,_,Ge,C, or di-
electric substrates), which may have a strong effect on con-
centrations and diffusion of intrinsic defects.

II. METHODS

Total energies were calculated using density-functional
theory (DFT), as implemented in the code VASP.5~ All cal-
culations were performed with the PWO91 exchange-
correlation functional.'” Ton cores were represented with
Vanderbilt ultrasoft pseudopotentials, allowing plane-wave
energy cutoffs of 11 Ry=150 eV. The Brillouin zone was
sampled with k points equivalent to a 4 X4 X4 Monkhorst-
Pack mesh in a conventional cubic (eight-atom) cell. Peri-
odic boundary conditions were used with primitive (two-
atom) silicon cells for calculation of pure silicon and larger
(mostly 128- or 256-site) supercells for calculations involv-
ing defects.

Our reference point was perfect silicon in the diamond
cubic structure. The total energies at different volumes were
fit to a Birch-Murnaghan equation of state.!' In our calcula-
tions, silicon had a cohesive energy of 4.53 eV and equilib-
rium atomic volume vg;=20.34 A3, The bulk modulus at P
=0 was B(=0.88 Mbar and its pressure derivative was B|,
=4.02.

Similar calculations were performed with supercells con-
taining defects. In each case, the supercells were set at a
particular volume (scaled isotropically from the perfect lat-
tice) and the ionic coordinates were fully relaxed to build up
a list of at least seven energy-volume data points. Then the
same equation of state was fit to the energy-volume data to
find the enthalpy-pressure relationship. We define hg; as the
total enthalpy and vg; as the volume of a silicon atom in the
perfect crystal. A supercell containing 256 lattice sites and a
vacancy includes 255 silicon atoms, so we define the forma-
tion enthalpy of a vacancy as h},=H,[Si,ss]—255hg;, and
likewise the formation volume is v},=V\[Siyss]-255vg;.
Similarly, for self-interstitials /)= H,[Siys7]—257hg; and v}
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FIG. 2. Jahn-Teller splitting of energy eigenvalues. Shown are
the band edges and the defect levels for Vg with T, (gray) and V(Ii
with D,, (black) symmetry. Pressures are approximate.

=V,[Sir57]—-257vg;. On the other hand, the quantities of in-
terest in elasticity are the relaxation volumes v
= V[ Siyse.1 |—256v0g;. The defects described in this work are

shown in Fig. 1 and will be commented on later.

III. VACANCIES

Intuitively, the simplest point defect is a neutral lattice
vacancy, which we will label vﬁ: removing an atom from a
perfect lattice. However, the neighboring atoms will tend to
rebond in ways that make the defect less symmetric, particu-
larly in a covalently bonded crystal like silicon. If the atoms
are forced to maintain a 7,; symmetry, the four neighbors
draw in toward the center, pulling the rest of the lattice with
them. However, the ground state involves a T,— Dy,
symmetry-breaking relaxation explained in the early days of
quantum chemistry by Jahn and Teller.'> The Jahn-Teller dis-
tortion of the neutral lattice vacancy in Si is now well estab-
lished by experiment'3 and theory.'* We can see in Fig. 2 the
splitting of the triply degenerate T, level (occupied by two
electrons) into a filled lower level and two degenerate empty
upper levels, all still in the band gap.

Figure 3 shows that the Jahn-Teller distortion reduces the
enthalpy of the defect by about 0.25 eV at P=0, and results
in a further contraction of 0.40vg;. As a result, the formation
volume of a T, vacancy is positive in our calculations, but

P (kbar)
-60 —40 =20 0 20 40 60 80 100
Ty 0.4
41~ Seal

%\ 3.8 ’ °
~ 3.6
=

3.4

3.2

-0.5 0 0.5 1
P 0% (eV)

FIG. 3. Effect of pressure on formation enthalpy of neutral va-
cancies. Shown here are curves for Vg with both 7, symmetry
(gray) and D, (heavy), as well as V% (dashed). The Fermi level e
is fixed at the intrinsic level &;.
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FIG. 4. Effect of supercell size on neutral vacancy (V°) forma-
tion volume at P=0 and eg=g¢;.

that of a D,,; vacancy is a small negative value, —0.07vg; at
P=0, and vanishes at about —6 kbar. This surprising result
implies that introducing vacancies into silicon (at P=0) ac-
tually reduces the volume of the system and increases its
density. A lattice with no relaxation would have v{,:+vSi,
while perfect relaxation (as with an incompressible liquid)
would give v},=0.

The Jahn-Teller splitting vanishes under sufficiently large
tensile strain, but is approximately constant under compres-
sive strain. Other first-principles calculations of Vg (though
performed only for P=0) have also reported small negative
formation volumes.!®> In simulations reported in the litera-
ture, this distortion is stable only when using supercells with
more than 128 atoms.!® Our own calculations confirm this,
with a transition from tetrahedral to tetragonal geometry oc-
curring between 128 and 216 atoms (Fig. 4).

Another high-symmetry configuration of N—1 atoms in a
crystal with N sites is a so-called split vacancy, where one
atom is at the bond center between two empty sites, a con-
figuration we label V. This can easily be seen as a transition
point for vacancy migration. Table I shows that Vp has a
fairly constant large negative formation volume, about
—-0.30vg;. However, in contrast to the lattice vacancy, this is
not due to a Jahn-Teller symmetry breaking. As a result, the
formation volume of the six-coordinated V4 shows little
change with supercell size (Fig. 4) or pressure (Fig. 3). From
these arguments it also follows that the vacancy migration
enthalpy is fairly constant for positive pressure, but increases
for negative pressures.

We have also calculated the formation enthalpies and vol-
umes of charged vacancies (Table I), since charged defects

TABLE 1. Vacancy formation enthalpies and volumes at P=0

f 1
and eg=g; (v}, =vg+VY).

vi Vi
q ht (eV) vi(vg) hf (eV) v(vs)
2 433 0.08 4.14 ~0.27
1 3.87 0.01 3.89 ~0.30
0 3.69 ~0.07 3.97 ~0.30
+1 4.07 0.21 429 ~0.37
2 455 0.43 4.90 ~0.42
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FIG. 5. Intrinsic defect formation enthalpies vs Fermi level at
P=0. The heavy solid line indicates the lowest formation enthalpy
h' for a defect at that Fermi level. The heavy dashed line indicates
the second-lowest enthalpy, which is an estimate of 9, the activa-
tion enthalpy of the transport capacity. The difference between the
lines would then be the activation enthalpy of migration, 4™. Note
that slope is proportional to the charge of the defect. A vertical line
marks the calculated location of the intrinsic Fermi level &;.

are expected to play an important role in doped silicon. Fig-
ure 5(a) shows that the neutral lattice-centered vacancy Vg is
the stable configuration over the broadest range of Fermi
levels within the band gap [including the intrinsic level &;
=(e,+&.)/2] and has a formation enthalpy of 3.69 eV at P
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TABLE II. Self-interstitial formation enthalpies and volumes at
P=0 and EE=¢&; (U;=—USi+U;C1 .

I I 1,

g h(eV) vivs) AEeV) vivs) A (V) vi(vg)
-2 5.37 -0.73 5.12 -0.49 4.70 -0.45
-1 4.61 -0.67 4.34 -0.43 4.06 -0.42

0 4.06 -0.63 3.79 -0.38 3.73 -0.41
+1 3.73 -0.60 4.15 -0.41 4.19 -0.45
+2 3.68 -0.51 4.85 -0.49 4.92 -0.51

=0. The bond-centered split vacancy Vg is 0.27 eV higher.

As mentioned above, Vj is the transition point for a va-
cancy to migrate from one V; configuration to the next.
However, our calculations reveal a surprising twist: The
negative split vacancy V™ has almost the same energy as the
negative lattice vacancy V,”, and at high Fermi levels, the
ground state is in fact the split vacancy (the doubly negative
split vacancy is even lower in energy than the lattice va-
cancy). This phenomenon was predicted decades ago by
Bourgoin and Corbett,!” but is not well known by all who
work with silicon diffusion, since most industrially useful
processes involve elevated temperatures. This reversal may
be due to the greater number of bonds that can accept extra
electrons in the case of the split vacancy. Since the displaced
atom in the split vacancy has four valence electrons and six
neighbors, giving the system two extra electrons allows this
atom to form six equally strained bonds with all of its neigh-
bors. In other words, the minimum-enthalpy geometry in one
charge state (-2) is a saddle point in a different charge state
(0), and vice versa. This crossover in potential-energy sur-
face is the requirement for the Bourgoin mechanism of ather-
mal (electronically or optically activated) diffusion to take
place.'”!8 Experiments have demonstrated that vacancies in
n-type silicon can diffuse at room temperature or even cryo-
genic temperature when subjected to optical or electronic
excitation.!31

IV. SELF-INTERSTITIALS

We have calculated the enthalpies of the three interstitial
geometries found to have the lowest enthalpies in previous
work: tetrahedral (/7), hexagonal (1), and split-(110) (/;;0)).
Our self-interstitial calculations are summarized in Table II.
In contrast to the strong pressure and Fermi level sensitivity
of vacancies, self-interstitials present a somewhat simpler
picture. The lowest enthalpy interstitial at the intrinsic Fermi
level and P=0 is I;**, with a formation enthalpy of 3.68 eV
and a formation volume of —0.51vg;. (See Sec. II for an
explanation of how formation enthalpies and volumes are
defined in our calculations.)

We can explain the stability region of the various self-
interstitial configurations by plotting their formation enthal-
pies as a function of Fermi level [Fig. 5(b)]. We see that the
I;** configuration is stable mainly in p-type Si, while at
slightly elevated Fermi levels (n doping) the I?l 10y SPlit inter-
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stitial is stabilized. A strong negative-U effect is seen, where
the interstitial is nowhere stable in the +1 charge state.
Much like the situation with vacancies, high-symmetry
interstitial geometries can be saddle points for interstitial mi-
gration. In particular, the hexagonal interstitial is usually as-
sumed to be the migration point for interstitial diffusion. Fig-
ure 5(b) suggests that this is true for Si at almost any doping;
hence interstitial migration in n-doped Si (I?1 10>—>I?1

— I?”(») has a migration barrier of only 0.06 eV, while in

p-doped Si the migration mechanism 17" —1I,;* — I, leads
to a barrier that increases linearly with the doping level, thus
causing a drastic slowdown of interstitial migration.

A particularly interesting regime is that of the Fermi level
being close to the midgap, where the I, is only slightly
lower in energy than the neutral I?”(». It is easy to see that

under such conditions, addition of electrons, e.g., through
electron irradiation, can lead to a mechanism without any
activation barrier. This so-called Bourgoin mechanism of
electrically, rather than thermally, activated diffusion is ob-
served experimentally at cryogenic temperatures during elec-
tron irradiation of intrinsic Si. One of the implications of this
is that annealing after ion implantation should be signifi-
cantly faster in n-type silicon than in p-type.

V. FRENKEL PAIRS

Combining the formation volumes of the most stable va-
cancy and self-interstitial configurations indicates that a
Frenkel pair (V+1) should have a formation enthalpy of 7.39
eV and a formation volume of —0.68vg;. At elevated Fermi
levels (i.e., high n doping), the stable self-interstitial species
becomes I?l 10> Which would lead to a Frenkel pair formation

enthalpy of 7.44 eV and formation volume of —0.48vy;.

On the other hand, Huang diffuse x-ray-scattering experi-
ments performed by Ehrhart and co-workers?>?! have been
taken to conclude that the formation volumes of Frenkel
pairs (produced by 2.5-MeV e~ or 4.5-keV He implantation)
are quite small, 0.1vg; or less. This result is based on the
assumption that at cryogenic temperatures, electron irradia-
tion generates a substantial number of Frenkel pairs with a
separation distance of only about 8 A.

The disagreement of the Erhart experiments with our first-
principles calculations suggests that Frenkel pairs with short
separation distances behave differently from the isolated de-
fects. This is not an unreasonable theory when considering
our previous findings (see Sec. III) of the sensitivity of the
formation volume of the vacancy to its concentration (see
Fig. 4). To see whether vacancies and interstitials at close
proximity can behave anomalously, we constructed super-
cells containing a self-interstitial and a vacancy approxi-
mately 8 A apart. Two different interstitial geometries were
used, I7 and I;;qy. Only neutral supercells were considered,
since the claim of Ehrhart ef al. is that irradiation of silicon
creates large concentrations of Frenkel pairs that are either
entirely neutral or form donor-acceptor pairs. In this case, the
Frenkel pair would not consist of V9+1I,™*, but perhaps of
Vi+L 10, V. +I7%, or V,7+I;". Formation volumes are

calculated as before. The results are shown in Table III, to-
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FIG. 6. (Color) Minimum formation enthalpy of defects as a
function of P and eg. The intrinsic Fermi level is indicated by a
gray line.

gether with summed values for the isolated defects.
The formation volume for V2+I<01 10y is nearly the same

whether both defects are in the same supercell or calculated

TABLE III. Frenkel pair enthalpies and volumes of formation.
Values for isolated defects are summed for convenience.

Geometry r(A) Kt (eV) vl (vg)
(VpI7)° 5.88 6.88 -0.89
(v Ip)° 8.83 7.18 -0.63

Vil 8.21 7.31 -0.48

Vi+1{1, % 7.44 -0.48
| S % 7.39 -0.68

V, T+ o 8.04 -0.62
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FIG. 7. (Color) P- gy stability diagram of intrinsic defects in Si
formed by projecting the surface of minimum enthalpy in Fig. 6 for
Vy, (red), Vg (green), Iy (red), Iy (green), and I(j;g) (blue). The
intrinsic Fermi level is indicated by a gray line.

separately. The formation enthalpy is a bit lower for the pair
than for the isolated defects, which indicates the strength of
their attraction. Interestingly, in the case of (VLIT)O, the re-
laxation of the atoms surrounding the vacancy took the form
of a bent square, rather than two pairs seen in the isolated
vacancy, even when the symmetry was broken in the direc-
tion of the expected geometry. In summary, for either the T
or (110) geometry, the Frenkel pair formation volume is a
sizable negative number, contrary to the experimental results
of Erhart et al.
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In light of this, the assertion of Erhart ef al. that irradia-
tion of Si at cryogenic temperatures will create a large num-
ber of Frenkel pairs with short separation distances is incon-
sistent with first-principles calculations. Instead, our
calculations suggest that far more defect clustering occurs
than would be expected from purely classical migration
mechanism of neutral defects. For samples irradiated by
electrons or light, the Bourgoin mechanism described previ-
ously can lead to athermal diffusion. On the other hand, ra-
diation damage from ions can deposit enough energy in a
small volume to directly create clusters of defects or even
amorphous pockets and local melting despite cryogenic
background temperatures.

Besides the possibility of clustering even at low tempera-
tures, V-V interactions may provide another possible expla-
nation of the low observed Frenkel pair formation volume.
The largest supercell in our calculations that stabilized the 7,
symmetry was the 128-site supercell, having ATV!]
=3.51 eV and vf[Vg]=0.34v5i (Fig. 4), with larger values of
each expected with a larger supercell size. This would imply
that h[V+1]=7.21 eV and v'[V+I]=-0.24vg;. Interestingly,
summing with I, instead of I;** would lead to AT[V+1I]

=7.26 eV and v[V+I]=-0.04vg;. A single defect in a 100-
site supercell corresponds to a defect concentration of 1%. At
sufficiently high vacancy concentrations, V-V elastic inter-
actions may destabilize the Jahn-Teller distortion, leading to
a positive vacancy formation volume and a small Frenkel
pair formation volume, as well as a lower formation en-
thalpy. The critical concentration to destabilize the Jahn-
Teller distortion for actual vacancies in silicon need not lie in
the interval 1/128 <c,<1/216.

Some earlier experiments claimed to find that cyDy
=c¢;D; at T=800 °C,> or T=1000 °C.? Near that temperature,

the effective activation enthalpy of Si self-diffusion should
be close to 1/2(hY[V]+h9[I]). Our calculations indicate
h[V]=3.69 eV and h'[I]=3.68 eV under conditions of no
doping or applied pressure. Our estimate of A™[V]=0.27 eV
appears reasonable, but we take A™[I]=0.22 eV based on a
study of low-symmetry pathways not investigated here.??
Thus we arrive at 29[ V]=3.96 eV and h9[I]=3.90 eV. These
estimates are rather lower than most experimental reports.
DFT methods predict migration enthalpies more accurately
than they do formation enthalpies. Probably the most accu-
rate method applied to the calculation of intrinsic defects in
Si is diffusion quantum Monte Carlo (DMC), which gives
R[1%]=4.82 eV, (1.03 eV greater than our PW91 value of
3.79 eV, as shown in Table II).

VI. PRESSURE-FERMI LEVEL STABILITY DIAGRAMS

Examining the combined effects of changing pressure and
Fermi level requires finding the enthalpies and volumes of
formation of electrons and holes in Si as a function of pres-
sure. The enthalpies are essentially the conduction-band
minimum

hi(P) = H[Siy"'1(P) - Nhg;(P) (3)

and the valence-band maximum

PHYSICAL REVIEW B 72, 195206 (2005)

TABLE IV. Relaxation volume tensors vl'.;‘l of neutral defects in
Si at 0;;=0 and ep=¢;. The scalar part is indicated as well as the
eigenvalues and corresponding principal directions. Scalar volumes
in parentheses reflect the relaxation volumes calculated using the
boundary conditions described previously (i.e., purely dilatational
strain of the supercell).

Vacancy  v,(vg;) n; Interstitial ~ v;(vg;) n;
1% -0.83  [110] o +0.57  [110]
-1.02 -0.82  [110] +0.68 +0.09 [001]
(-1.07)  +0.63  [001] (+0.59) +0.02  [170]
1% 095  [111] I8 +023  [211]
-1.30 -0.18  [211] +0.64 +023  [017]
(<1300 -0.18  [011] (+0.62) +0.19  [111]
0 +0.12  [111]
+0.37 +0.12  [211]
(+0.37) +0.12 [011]
hi(P) = Nhgi(P) — H[Siy"'1(P). )
and the volumes are
. de.(P)
ve(P) = VISiy1(P) = Nusi(P) = = (%)
and
. - de,(P)
- Uh(P) = Nugi(P) - V[Slzv 1(P) = 7 (6)

At P=0, we have v1=0.679yg; and v;=-0.788vg;, a sizable
effect.

Since we have the pressure dependence of all these quan-
tities, we can essentially sweep Fig. 5 over a finite pressure
range, where the domain of the plot is the band gap. Showing
all the enthalpy surfaces obscures the most important infor-
mation, the lowest enthalpy defects. More useful is a plot of
just the minimum enthalpy required to form a defect at a
particular pressure and Fermi level (Fig. 6). The vacancy
surface [Fig. 6(a)] shows clear changes with pressure and
marked curvature, indicating a variable formation volume,
while the shape of the interstitial surface [Fig. 6(b)] is close
to being a prism. The location of the Fermi level is important
for interstitials, but the pressure is not. Projecting these sur-
faces down onto the (P,eg) plane reveals other differences.
The vacancy stability diagram [Fig. 7(a)] displays a wealth
of features: the instability of V,™* under pressure, the transi-
tion from V,” to V;~, and in general the large changes in
vacancy levels caused by pressure. None of these features are
evident for interstitials [Fig. 7(b)].

VII. RELAXATION VOLUME TENSORS

The stress state in integrated circuits is seldom hydro-
static. On the scale of the wafer it is typically biaxial due to
surface oxidation or nitridation, but at a submicron scale it
becomes quite complicated, with enormous stress gradients.
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FIG. 8. (Color) Volume ellipsoids of neutral defects in Si at ;=0 and ep=¢;, as defined in Eq. (11). Principal axes are indicated in

gray.

Aziz** has described the effect of the formation volume of
defects in a film under biaxial stress, but points out that a full
treatment requires more information about a defect than just
its scalar volume. Many calculations of defects in silicon
point out changes in the positions of the neighboring atoms,
but this can provide only qualitative, not quantitative infor-
mation about the complete elastic distortion caused by the
defect. The present work fills this gap.

Among the features of the code used here is full relax-
ation of the vectors defining the supercell. This tells us how
the shape as well as the size of the supercell change when a
defect is formed. Were we dealing with a simple cubic cell
changing isotropically from edge length L, to L, we could
define the relaxation volume as

L\? L-1,\°
vrelngln(—> zLS(—O) . 7)
L L

Instead, we have three nonorthogonal vectors (forming a
transformation matrix L=L;) changing in arbitrary direc-
tions. We may generalize Eq. (7) as

vl =det(Ly)In(Ly'L) = det(Lo)Ly' (L -L5h).  (8)
The relaxation volume tensors defined in this way are
equivalent to the strain dipole tensors

Nij= Vi fus; ©))

discussed by Nowick and Berry? and closely related to the
piezospectroscopic elastic dipole tensors

Pi= Cijklvzl (10)

of Kroner?® (where Cijiy 18 the elastic modulus tensor of the
material).

Using Eq. (8), we have calculated the full tensor volumes
of relaxation of intrinsic defects in Si, which are mostly quite
anisotropic. The results are more easily interpreted by diago-
nalizing the matrices to find the eigenvalues and principal
directions, which we have compiled in Table IV. (Some of
the defects have an axis of symmetry, leading to degeneracy
of eigenvalues. As a result, the corresponding eigenvectors
are not unique, and a different pair of directions in that plane
could be chosen instead.) Useful methods of visualizing
these tensors?’ include plotting the volume ellipsoids (Fig. 8)
defined by

2 2 2
Xy oz
S+ 5+5=1 (11)
Uy Uy U3
and the volume director surfaces (Fig. 9)
2 2 2
X
—+y—+—=¢1, (12)
Uy Uy Uj

where +1 is taken for expansion and —1 for contraction.

The sum of the eigenvalues—the scalar part of the
tensor—is approximately equal to the scalar relaxation vol-
ume calculated previously. The principal directions and the
signs of the eigenvalues are all in accord with intuition. We
find that the neutral lattice vacancy has D,; symmetry (at
least at this pressure). The expansion in the [001] direction
makes its slightly negative scalar relaxation volume all the
more noteworthy. The degree of anisotropy makes clear that
scalar relaxation volumes are far from a complete picture of
the defect displacement field: The split vacancy has a quite
different Cs, symmetry, drawing all six of its neighbors in,
mostly toward each other.

1 1 1 1 1
[010j0.5 [010)05 [010j0.5 [010J0.5 [010J05
0 0 0 0 0
05 05 05 05
=1 l—l I—l ‘—l 1—1
05 05 05 05 : 05
o011 001 @ foo1] o011 o o001 !
05 05 2 -05 -05 05
- =3 = 3 -1\
&1, = E =y =
ny e 05 05 05
0 0 0 0 0
(1001 os (1001 o5 [100] 05 [100] 05 [100] 05
) 1 ! 1 1
(a) Ve (b) Iy, (OR] (d) I (e) I

FIG. 9. (Color) Volume director surfaces of neutral defects in Si at 0;;=0 and ep=g¢;, as defined in Eq. (12). Surfaces of both expansion
(light blue) and contraction (red) are shown. Principal axes are indicated in gray.
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Among the self-interstitials, the I(} is isotropic, and the IOH
is nearly so, pushing out a bit more in the (111) plane. The
greatest component of the displacement around I?no) is, as

expected, an expansion in the [110] direction, but the other
components are quite small. Two such interstitials, aligned in
the same direction, will tend to repel if their axes are parallel
to the line between them, and attract if the axes are perpen-
dicular to the line between them. This suggests that clusters
of these interstitials may agglomerate in a {110} plane with
their axes aligned to maximize their attraction. This long-
range interaction may explain how interstitials are drawn to-
gether to form extended defects, including (110) chains and
eventually {311} defects, as seems to be the case.”®

VIII. PREVIOUS WORK

First-principles calculation of the effect on intrinsic defect
formation energies of changing lattice parameter was per-
formed as early as 1984 by Car et al.?® and local-density
approximation (LDA) in 1989 by Antonelli and Bernholc,*
using supercells with 32 atoms. Those works did not include
I(110)- Sugino and Oshiyama?' studied the effect of pressure
on the diffusion of group-V dopants (P, As, Sb) in silicon, but
not silicon self-diffusion. Most published reports are limited
to examining energy differences with a fixed volume.

Previous work by Zhu*’ and others®® used the LDA,
which does not include the gradient correction of GGA (gen-
eralized gradient approximation) methods such as PWOI.
GGA methods tend to predict energies of localized states
(such as defects) with less error than LDA. Also, those cal-
culations were limited to 64-site cells. However, it has been
found necessary to use supercells containing over 200 atoms
to stabilize the Jahn-Teller distortion of V) (cf. Puska ez
al.'%).

IX. CONCLUSIONS

We have performed first-principles calculations on a num-
ber of basic properties of intrinsic defects in silicon, pre-
sented together in a unified analysis. The relaxation volumes
of electrons and holes (+0.68vg; and —0.79vyg;, respectively)
are an appreciable fraction of an atomic volume in magni-
tude. The formation enthalpy of a neutral vacancy is 3.69 eV
and its migration enthalpy is 0.27 eV. The relaxation volume
of the neutral vacancy, —1.07vg;, is of the expected sign but
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the magnitude of the number is rather large, resulting in a
formation volume of —0.07vg;, with an activation volume of
migration of —0.24vg;. That is, hydrostatic pressure should
lead to a slight increase in equilibrium vacancy concentra-
tion and an increase in vacancy diffusion. The most stable
self-interstitial species, 17", has a formation enthalpy 3.68
eV, equal to the formation enthalpy of V(L) within the accuracy
of our method, and a formation volume of —0.57vg; (v™
=+ 0.43051) .

To estimate the concentration of a defect requires calcu-
lation of its vibrational and configurational entropy. The cal-
culations we have performed do not provide this information,
but the near equality of the formation enthalpies of the most
stable vacancy and self-interstitial demand that the ratio
C,;/Cy of their equilibrium concentrations should not vary
much with temperature. The ratio will depend upon pressure,
however. The formation volume of a Frenkel pair with no
clustering or amorphization should be a sizable negative
number, —0.48vg; to —0.68vg;, unless interactions at high va-
cancy concentrations destabilize the Jahn-Teller distortion.
These parameters should be of interest in studies of silicon
under large elastic stresses. They imply that increasing hy-
drostatic pressure increases the equilibrium concentration of
both vacancies and self-interstitials, though the effect on va-
cancy concentration should be weak. Increasing pressure
should also increase the mobility of vacancies.

We have presented stability diagrams (akin to phase dia-
grams) of the intrinsic defects in silicon, showing the com-
plexity of vacancies under pressure, in stark contrast to the
behavior of self-interstitials. We have verified Bourgoin’s
prediction of a crossing in the vacancy potential-energy sur-
faces.

Finally, we have calculated the full tensor relaxation vol-
umes of these intrinsic defects, enabling researchers to model
the biased diffusion of both vacancies and self-interstitials
under the nonhydrostatic stress states found in actual de-
vices.
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