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Based on a modified mean-field model, we calculate the Curie temperatures of Fe2+- and Co2+-doped diluted
magnetic semiconductors �DMSs� and their dependence on the hole concentration. We find that the Curie
temperatures increase with an increase in hole concentration and the relationship TC� p1/3 also approximately
holds for Fe2+- and Co2+-doped systems with moderate hole concentration. For either low or high hole
concentrations, however, the p1/3 law is violated due to the anomalous magnetization of the Fe2+ and Co2+ ions,
and the nonparabolic nature of the hole bands. Further, the values of TC for Fe2+- and Co2+-doped DMSs are
significantly higher than those for Mn2+-doped DMSs, due to the larger exchange interaction strength.
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I. INTRODUCTION

The recent discovery of carrier-induced ferromagnetism
in Mn-doped diluted magnetic semiconductors1,2 �DMSs� has
generated intense interest, due to its potential application in
spintronic devices, which combine the functions of informa-
tion processing and storage. Curie temperatures TC in excess
of 100 K have been realized in �Ga,Mn�As systems3 by using
low-temperature molecular beam epitaxy growth to suppress
the surface segregation of Mn and formation of the MnAs
second phase during growth. The origins of ferromagnetism
in such Mn-doped DMSs have been investigated using a
mean-field model,4–7 in which the carrier polarization medi-
ates a long-range ferromagnetic exchange between the Mn
ions. This mean-field model was first proposed by Zener8

and then extended by Dietl et al.4 to study the Curie tem-
peratures of Mn-doped DMSs. The calculated Curie tempera-
tures for �Ga,Mn�As �Ref. 7� and p-�Zn,Mn�Te �Ref. 9� are
in quantitative agreement with experiments.

In addition to Mn-based DMSs, semiconductors doped
with 3d transition-metal atoms have also been investigated,
and it was predicted from first-principles calculations that
certain V-, Cr-, Fe-, Co-, or Ni-doped III-V and II-IV semi-
conductors exhibit ferromagnetism.10,11 Experimentally,
room-temperature ferromagnetism has been observed in
�Ga,Cr�N,12 �Al,Cr�N,13 �Ti,Co�O2,14 and �Zn,V�O.15 The
origins of ferromagnetism in such systems, however, remain
controversial. Recently, Blinowski et al.16 discussed the po-
sition of electronic states introduced by transition-metal im-
purities in II-VI and III-V compounds and suggested that
moderate concentration of delocalized holes might exist in
some Fe- and Co-based III-V compounds. It is therefore very
interesting to investigate the role of hole-mediated ferromag-
netism in these systems.

The rest of the paper is organized as follows. In Sec. II,
the mean-field model is outlined and is extended to account
for Fe2+ and Co2+ ions. Numerical results and discussion are
given in Sec. III, and a brief conclusion is given in Sec. IV.

II. THEORETICAL MODEL

The exchange interaction between a hole with spin s� at
position r� and 3d transition-metal impurities17 �e.g., Mn2+,
Fe2+, Co2+� is

Hpd = ��
I

s� · S� I��r� − R� I� , �1�

where S� I is the spin of the magnetic ion at site I, and � is the
p-d exchange integral. In the virtual-crystal and mean-field
approximations, SI is substituted with its thermally averaged
value �SI�, and then Eq. �1� can be written as

Hpd = �s� · M� /g�B, �2�

where M =xN0g�BS is the magnetization of the localized
spins, x the concentration of the magnetic ions, N0 the con-
centration of cation sites, g the Landé factor of the magnetic
impurities, and S the spin angular momentum.

In the mean-field theory, the free energy functional of
the electron and magnetic impurity system reads F�M�
=Fc�M�+FS�M�, where Fc�M� and FS�M� are the free-
energy functionals of the hole subsystems and localized
spins, respectively. The hole free-energy functional Fc�M� is
obtained as follows. First we diagonalize the 6�6 Kohn-
Luttinger Hamiltonian together with the p-d exchange inter-
action. Then we compute the partition function

Z = Tr e−��Hh−�FN�, �3�

where Hh is the hole Hamiltonian including the p-d exchange
interaction in the mean field approximation, �F is the hole
Fermi energy, and N is the number operator for holes. The
hole free-energy is calculated from Fc�M�=−kBT ln Z. After
some algebra, we obtain

Fc�p,M� = − kBT� d� N���ln�1 + exp	− ���M�

− �F�p,M��/kBT
� + p�F�p,M� , �4�

where N��� is the hole density of states. At low temperature,
the hole liquid is degenerate, and

Fc�p,M� = �
0

p

dp���M,p�� . �5�

Here, we use Gilat’s method18 to calculate the density of
states and the free-energy functional Fc�p ,M�.
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The free-energy functional of the localized spins is given
by

FS�M� = �
0

M

dM0H�M0� , �6�

where M0�H� is the magnetization of magnetic ions in an
external magnetic field H in the absence of carriers. The
Mn2+ ion has a 6S5/2 ground state with negligible splitting in
the crystal field, such that it behaves like a free ion. As a
result, the magnetization of Mn2+ ions in DMSs, M0�H�, can
be described by the Brillouin function.5,7 On the other hand,
Fe2+ and Co2+ have D or F group terms which split in the
tetrahedral or trigonal crystal field �cf. Figs. 1 and 2; see also
the Appendix for details�. Their magnetization in a magnetic
field H can be obtained from

M0�H� = xN0kBT
�

�H
ln Z , �7�

where

Z = �
i

exp�− Ei/kBT� �8�

is the partition function of magnetic ions in the crystal field
and external magnetic field. Because the crystal field induces
level splitting, there are no analytical expressions for M0�H�,

and it must be obtained numerically �see the Appendix for
details�.

By minimizing the total free-energy functional F�M� with
respect to M at a given temperature T and hole concentration
p, in the absence of the external magnetic field, we obtain

H�M� = − �Fc�M�/�M . �9�

This can be viewed as the effective magnetic field �produced
by the hole subsystem� acting on the magnetic ions. It then
produces a finite magnetization M of the magnetic ions ac-
cording to Eq. �7�. The equilibrium magnetization at a given
temperature T and hole concentration p is obtained by solv-
ing Eqs. �7� and �9� self-consistently. The Curie temperature
TC is defined as the critical temperature at which the equilib-
rium magnetization M vanishes. When T→TC, we have
M→0 and H→0. In this case, the dependence of magneti-
zation on the effective magnetic field �produced by the hole
subsystem� M�H�, in the form of Eq. �7�, is reduced to

M = �DH , �10�

where

�D = � �M

�H
�

H→0
, �11�

is the differential susceptibility for the magnetic ions.
Combining Eqs. �9� and �10�, we obtain the equation that

determines the Curie temperature of a DMS, which reads

xN0kBT� �2ln Z

�2H
�

H→0
= � M2

2�Fc�p,0� − Fc�p,M��
�

M→0
.

�12�

III. RESULT AND DISCUSSION

In this section, we calculate numerically the Curie tem-
peratures of Fe2+- and Co2+-doped III-V and II-VI DMSs and
discuss their dependence on hole concentration. We also
compare the calculated Curie temperatures with those of
Mn2+-doped DMSs. The material parameters of zinc-blende
semiconductors �ZnS, GaP, GaAs, ZnSe, InP, ZnTe, CdTe�
are taken from Ref. 7, while those for the wurtzite semicon-
ductor CdSe are taken from Ref. 20. The crystal field split-
ting and the spin-orbit coupling parameters for some Fe-
doped zinc-blende DMSs are listed in Table I. Those for the
wurtzite semiconductor CdSe are taken from Ref. 19: �1
=2800 cm−1, �2=3300 cm−1, �3=5200 cm−1, �4
=6000 cm−1, and 	=−120 cm−1 for Cd0.95Co0.05Se; �1
=2592 cm−1, �3=2724 cm−1, and 	=−81 cm−1 for
Cd0.95Fe0.05Se.

In Fig. 3, the paramagnetic susceptibilities �D of Mn2+,
Fe2+, and Co2+ in a GaP crystal environment at vanishing
external magnetic field �H→0� are plotted as functions of
inverse temperature 1/T . The susceptibility �D of Mn2+ ions
shows a linear behavior with respect to 1/T over the whole
temperature range, which comes from the Brillouin paramag-
netism. For Co2+ and Fe2+ ions, however, the deviation be-
comes noticeable at low temperatures. For Fe2+ ions, �D

FIG. 1. Schematic diagram of the orbital energy levels of Fe2+

in Td and C3v crystal fields �Ref. 19�.

FIG. 2. Schematic diagram of the orbital energy levels of Co2+

in Td and C3v crystal fields �Ref. 19�.
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even saturates at low enough temperatures. This peculiar be-
havior shows the Van Vleck paramagnetism of Fe2+, since
the lowest levels of Fe2+ ion split by the crystal field and the
spin-orbit interaction are nondegenerate.19 The deviation for
Co2+ ions is smaller, for it has degenerate ground states and
hence exhibits ordinary paramagnetism �see the Appendix
for details�. Further, it can be seen that the paramagnetic
susceptibilities decrease in order of Mn2+, Fe 2+, and Co2+ at
high temperatures. This is because the magnetic moments of
the iron group are mainly decided by their spin magnetic
moments due to the orbital quenching,26 and the spin mag-
netic moments decrease in order of Mn2+, Fe2+, and Co2+.
For simplicity, magnetic anisotropy is not discussed in this
paper and �D is the susceptibility when H and M are parallel
in the �001� crystal direction �other physical quantities are
similar�.

It is convenient to introduce an effective temperature-
dependent spin angular momentum Seff�T�, such that the
paramagnetic susceptibilities �D�T� for other magnetic ions
take the same form as that for Mn2+ ions:7

�D =
1

3kBT
Seff�Seff + 1�xN0�g�B�2. �13�

For Mn2+ ions, Seff=5/2 is independent of temperature,
while for Fe2+ and Co2+, Seff�T� must be determined numeri-

cally from Eq. �11�. For Fe2+ and Co2+ ions in a GaP �zinc-
blende structure� or a CdSe �wurtzite structure� crystal envi-
ronment, the effective spin angular momenta Seff are plotted
as functions of inverse temperature 1/T in the inset of Fig. 3.
We see that the effective spin angular momenta Seff are ap-
proximatively constant at high temperatures, while at low
temperatures, they decrease with decreasing temperature.
Now we can rewrite Eq. �12� in the form

TC = �−
2

3
Seff�Seff + 1�xN0�g�B�2Fc�M� − Fc�0�

kBM2 �
M→0

.

�14�

Generally, since Seff is dependent on T, the equation has to
be solved self-consistently. However, when the effective spin
angular momentum of the magnetic ion Seff is approximately
independent of temperature, which is true for Co2+ and Fe2+

at high temperatures �see the inset of Fig. 3�, Eq. �14� be-
comes an explicit expression for the Curie temperature �for
Fe2+-doped DMSs, it is only true at high hole concentration
�corresponding to high Curie temperature��. For a strongly
degenerate hole liquid, and in the absence of spin-orbit inter-
action, we have �Fc�M�−Fc�0�� /M2��2
F, where 
F is the
density of states of holes on the Fermi surface.

From Eq. �14�, it can be seen that the Curie temperature
of DMSs in the mean-field model is mainly decided by three
factors: �a� the density of states of the holes on the Fermi
surface 
F, which is determined by the hole band structure of
the host semiconductor; �b� the exchange energy N0� be-
tween the hole and the magnetic ions, where N0�a−3 �a is
the lattice constant of the host material�, and � depends on
the hybridization integral, the charge transfer energies be-
tween the hole band and the magnetic ions, and the magni-
tude of the local magnetic moment;17 �c� the paramagnetic
susceptibility �D �see Eq. �12�� or the effective spin angular
momentum Seff of the magnetic ions �see Eqs. �12� and �14��.
The first two factors, as well as the relationship TC��2, have
been discussed by Dietl et al. and Abolfath et al.5,7 The
approximate relationship TC� p1/3 was also discussed by
Schliemann et al.27 based on a simple parabolic band model.
In the present work, we shall extend the relationship TC
� p1/3 to multiband structures and non-Mn2+-doped DMSs.
We also discuss the effect of the last factor, i.e., the influence
of the paramagnetic susceptibility �D. Though Eq. �14� is a
self-consistent equation when Seff is dependent on T, it is still
easy to find that the Curie temperature decreases when Seff
becomes small, since Seff decreases with decreasing tempera-
ture.

TABLE I. Parameters of some Fe2+-doped compounds. The crystal parameters of ZnS, ZnTe, CdTe, and
ZnSe are taken from Ref. 21, and those of GaAs, GaP, and InP from Refs. 22–24, respectively. The p-d
exchange energy �N0 of CdTe is taken from Ref. 25, the others from Ref. 17 or calculated by �=� �ZnFeSe�
�Ref. 7�.

Material ZnS ZnTe CdTe ZnSe GaAs GaP InP

�c �cm−1� 3160 2690 2480 2930 3206 3559.4 3038

	 �cm−1� −99 −96 −99 −85 −90.3 −93.5 −86.6

�N0 �eV� −2.01 −1.9 −1.27 −1.74 −1.76 −1.96 −1.57

FIG. 3. Paramagnetic susceptibilities �D as functions of 1 /T for
Mn2+, Fe2+, and Co2+ in a GaP �zinc-blende structure� or a CdSe
�wurtzite structure� crystal environment at H→0, crystal parameter
of Ga0.95Co0.05P is �=4750 cm−1, 	= −134 cm−1. The insert figure
shows the effective spin angular momenta of these DMSs as func-
tions of 1 /T.

MEAN-FIELD STUDY OF Fe2+- AND Co2+-DOPED… PHYSICAL REVIEW B 72, 195204 �2005�

195204-3



In Fig. 4, the Curie temperatures as functions of hole con-
centration for Ga0.95M0.05P �zinc-blende structure, M =Co,
Fe, Mn� are presented. It can be seen that the Curie tempera-
tures decrease in order of Co, Fe, Mn for a wide range of
hole concentrations, while the Curie temperatures for Fe2+-
and Co2+-doped DMSs cross at low enough hole concentra-
tions. This behavior comes from the competition between the
two factors �b� and �c� as follows. The local spin angular
momenta for Co2+, Fe2+, and Mn2+ satisfy S�Co2+�
�S�Fe2+��S�Mn2+�. On the one hand, this leads to a similar
relationship for the effective spin angular momenta, i.e.,
Seff�Co2+��Seff�Fe2+��Seff�Mn2+�. On the other hand, the
p-d exchange constants � for Co2+, Fe2+, and Mn2+ satisfy
��Co2+����Fe2+����Mn2+�, because � is inversely propor-
tional to the local spin angular momentum.17 The � factor
dominates for most of the range of hole concentrations �e.g.,
the Curie temperature of Ga0.95Co0.05P is about twice as high
as that of Ga0.95Mn0.05P�, since the difference between
Seff�Co2+�, Seff�Fe2+�, and Seff�Mn2+� is small. For Fe2+, the
Seff factor begins to dominate at small hole concentrations
�or, equivalently, small Curie temperatures� since Seff�Fe2+�
decreases rapidly with decreasing hole concentration. For a
hole concentration p�1.5�1018 cm−3, Ga0.95Fe0.05P be-
comes purely paramagnetic, due to the sufficiently small ef-
fective spin angular momentum Seff�Fe2+�. Finally, we notice
that the approximate relationship TC� p1/3 still holds for not-
too-small hole concentrations, since the paramagnetic sus-
ceptibility �D is roughly proportional to 1/T �in the case that
the effective spin angular momentum Seff is independent of
temperature�, and at the same time, the density of states of
holes on the Fermi surface 
F is roughly proportional to p1/3.
This behavior fails for Fe2+ at small hole concentrations be-
cause �D�Fe2+� approaches a constant value. Further, we can
see that for high hole concentrations p�0.8�1020 cm−3, the
relationship TC� p1/3 also fails, due to the effect of spin-orbit
interaction.

In Fig. 5, we plot the Curie temperatures as functions of
hole concentration for Cd0.95M0.05Se �wurtzite structure,
M =Co, Fe, and Mn�. We see that the Curie temperatures
show similar behaviors as in Fig. 4. As we have discussed
previously, the behavior of the Curie temperature as a func-
tion of hole concentration is primarily determined by the
p-d exchange constants �, the effective spin angular momen-
tum Seff, and the density of states 
F on the Fermi surface.
The similar relationship 
F� p1/3 and the similar behavior of
� and Seff�T� in wurtzite semiconductors lead to similar de-
pendence of the Curie temperature on the hole concentration.

From the above discussions, we see that Curie tempera-
tures for Fe2+-doped DMSs are quite different from those for
Mn2+ ones. Therefore, we show Curie temperatures of some
Fe2+-doped III-V and II-VI DMSs �zinc-blende structure� in
Fig. 6. We can find a similar chemical trend to those of
Mn2+-doped DMSs. That is, the Curie temperatures increase
with decreasing spin-orbit splitting �which enhances the

FIG. 4. Curie temperatures as functions of the hole concentra-
tion for zinc-blende structure Ga0.95M0.05P with M =Co, Fe, and
Mn, crystal parameter of Ga0.95Co0.05P is �=4750 cm−1, 	
=−134 cm−1.

FIG. 5. Curie temperatures as functions of the hole concentra-
tion for wurtzite structure Cd0.95M0.05Se with M =Co, Fe, and Mn.

FIG. 6. Curie temperatures as functions of the hole concentra-
tion for some semiconductors doped with 5% of Fe2+.
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density of states 
F on the Fermi surface as in Eq. �14��,
decreasing lattice constant of the host semiconductor, in-
creasing p-d exchange energy, and increasing hole effective
mass �which also leads to an increase of 
F�. It can be seen in
Fig. 6 that Zn0.95Fe0.05S has the highest Curie temperature,
because of its small lattice constant and large hole effective
mass. Again, the relationship TC� p1/3 fails at either high or
low hole concentrations. The failure at small hole concentra-
tions comes from the failure of the relationship �D�1/T at
low temperatures, while the failure at high hole concentra-
tions comes from the influence of spin-orbit split-off bands.
Therefore, the relationship TC� p1/3 breaks down due to the
deviation of �D from the 1/T law for non-Mn2+-doped
DMSs. Even for Mn2+-based DMSs, it is also modified by
the spin-orbit interaction and nonparabolic band structure.
Therefore, it is very important to take into account both the
k ·p interaction and spin-orbit splitting in the host semicon-
ductor in real Curie temperature calculations.

IV. CONCLUSIONS

Based on a modified mean-field model, we calculate the
Curie temperatures of Fe2+- and Co2+-doped DMSs and their
dependence on the hole concentration. We find that the Curie
temperatures increase with an increase of hole concentration
and the relationship TC� p1/3 also approximately holds for
Fe2+- and Co2+-doped DMSs for moderate hole concentra-
tions. For either low or high hole concentrations, however,
the p1/3 law is violated due to the anomalous magnetization
of Fe2+ and Co2+ ions and the nonparabolic nature of the hole
bands. Further, the values of TC of Fe2+- and Co2+-doped
DMSs are significantly higher than those of Mn-doped
DMSs due to the larger exchange interaction strength.
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APPENDIX

In the DMSs, the magnetic ion is surrounded by other
ions, giving rise to an electrostatic potential called the crys-
talline potential �or crystal potential�. Thus, without includ-
ing the influence of carriers, the total Hamiltonian of the
magnetic ion in order of decreasing magnitude is

H = H0 + VC + 	L� · S� + �BB� · �L� + 2S�� , �A1�

where H0 is the free-ion Hamiltonian excluding of spin-orbit
interactions, VC is the crystalline potential, the third term is
the spin-orbit coupling term �L and S are orbital and spin
angular momentum�, and the last term is the Zeeman inter-
action where we approximate the electron g-factor, gs
2.
Here we use the method of operator equivalents introduced
by Stevens19,28 to solve the crystal potential problem. As de-
scribed in Ref. 19, the crystal potential in a cubic environ-
ment can be written in the form

Vc = Vc�Td� + Vc�C3v� �A2�

=� c − 2a

60
��35L


4 − 30L�L + 1�L

2

+ 25L

2 − 6L�L + 1� + 3L2�L + 1�2�

− �a
�2

6
�	L+

3 + L−
3,L



+ b�L�L + 1�
3

− L

2� , �A3�

where

L± = L� ± iL�, �A4�

	u,v
 = uv + vu , �A5�

and a, b, and c are constants, �, �, and 
 are coordinate axes
with 
 along �1 1 1�.19 To describe the energy levels of tran-
sition ions in the site of symmetry Td or C3v, we use the
representation in which L
 is diagonal, i.e.,

L
�� = ���, �A6�

�=L,L−1, …,−�L−1�, −L.
Then we can exactly diagonalize the �2L+1�� �2L+1�

matrix whose elements are �����Vc����. We denote the
ground state by �0� and choose its energy as 0. Then the
excited states and corresponding energy levels are denoted
by �1�,�2�, …,�n� and �i �i=1,2 ,3 ,…�, respectively. Of
course, the ground state and excited states may be further
split when considering

H� = 	L� · S� + �BB� · �L� + 2S�� . �A7�

To the second order, the matrix elements of the Hamiltonian
H� for the ground state are

�0 j,Ms��H��0i,Ms� = �0 j,Ms��H��0i,Ms�

− �
nk

�
Ms�

�
k

�n
−1�0 j,Ms��H��nk,Ms��

��nk,Ms��H��0i,Ms� , �A8�

where the subscripts j,k in �0 j�,�nk� are used to distinguish
degenerate states.

Now we analyze the energy levels of Fe2+ and Co2+ in a
cubic environment. The electronic configuration of Fe2+ is
�3d�,6 and according to Hund’s rules, the ground state of the
free ion is 5D4. The fivefold orbital degeneracy of Fe2+ first
splits into an orbital triplet T2�Td� and a lower orbital doublet
E�Td� under the crystal field of Td symmetry �Fig. 1� �the
analysis of the C3v symmetry crystal field is similar�. The
tenfold E�Td� and 15-fold T2�Td� are further split by the spin-
orbit interaction. Thus, since the lowest energy level is non-
degenerate, Fe2+ in the crystalline environment will only
show Van Vleck paramagnetism at low temperatures. The
electronic configuration of Co2+ is �3d�,7 and the ground
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state of the free ion is 4F9/2 . In a crystal of Td symmetry, the
sevenfold orbital degeneracy of Co2+ splits into an A2�Td�
singlet and T2�Td� and T1�Td� triplets �Fig. 2�. For large crys-

tal field splitting, we need only consider the split of the ten-
fold E�Td� for Fe2+ and the fourfold A2�Td� for Co2+ by the
spin-orbit coupling and the Zeeman interaction.
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