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The supercell method is used to study the variation of the photonic bandgaps in one-dimensional photonic
crystals under random perturbations to thicknesses of the layers. The results of both plane wave and analytical
band structure and density of states calculations are presented along with the transmission coefficient as the
level of randomness and the supercell size is increased. It is found that with the supercell size fixed at 1024 unit
cells, higher bandgaps disappear first as the randomness is gradually increased. The lowest bandgap is found to
persist up to a randomness level of 55%. However, as the supercell size is increased all bandgaps are observed
to approach pseudogaps but with very low density of states. It is shown that harmonics of a relatively small
cluster of closely spaced defects largely account for the bulk of the modes that populate the photonic bandgaps.
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I. INTRODUCTION

Since the pioneering work of Yablonovitch1 and John,2

research on photonic crystals �PCs� has enjoyed a nearly ex-
ponential increase. The manufacture of PCs at the optical
regime has become a reality.3 Manufacturing brings with it
the practical reality of random errors introduced during the
manufacturing process and it is the effect of these random
errors on the desirable features of PCs, namely photonic
band gaps, that we wish to address in this paper.

Bandgaps in PCs depend on two crucial properties: an
infinite and perfect translational symmetry. Clearly, in real
life no crystal is infinite in size or perfectly periodic. When
randomness is introduced in the geometry of the PC, one
quantity of interest is the size of the bandgaps as the level of
randomness is increased, and whether the bandgaps of the
bulk perfect PC will survive the randomness. Same consid-
erations apply for a finite PC. In fact, even for a perfect but
finite PC, one needs to give up the notion of a bandgap and
has to be content with severe depressions in transmittance
instead. In this paper, we will consider both finite imperfect
PCs by examining the dependence of their transmittance on
randomness, and bulk imperfect PCs by determining their
density of states �DOS� under varying degrees of random-
ness, using the supercell method. In particular, we will dem-
onstrate the dramatic dependence of the size of the supercell
on the DOS.

Although much has been done4–10 regarding imperfect
two- and three-dimensional PCs, we feel that a study of the
problem for one-dimensional �1D� PCs is warranted because
of the inherent simplicity of the geometry and because of the
availability of a variety of extremely accurate mathematical
tools which allow a detailed study of the problem without
having to compromise accuracy. For instance, because the
electric field and its first derivative are continuous across the
interface, and because of the low dimensionality of the 1D
PC, the convergence problem that plagued band structure
calculations for many 3D PCs �Refs. 11,12� is essentially
nonexistent for 1D structures. Thus, we were able to use the
old trusted plane wave �PW� method to find the band struc-

ture and the DOS for supercell sizes not even imaginable in
three- or even two-dimensional supercell calculations.4,6,7

One can obtain better than 0.1% convergence with as few as
�30 plane waves per unit cell in the supercell. The transmis-
sion coefficient can also be calculated for nearly arbitrary
supercell sizes. Finally, one can calculate the band structure
and the imaginary part of the wave vector using a semiana-
lytical approach for very large supercells.

The 1D PC is, in many ways, the “infinite square-well”
problem of photonic crystals. It contains the essential fea-
tures of its bigger cousins in two and three dimensions with-
out the mathematical complexities and the accompanying nu-
merical uncertainties11,12 that can sometimes overshadow the
essentials. For example, with 3D face centered cubic struc-
tures, it becomes practically impossible, due to convergence
problems, to increase the supercell size beyond 2�2�2 �or
at most 3�3�3� conventional cubic unit cells which con-
tain only 32 primitive cells per supercell �or 108�, since typi-
cally at least �1000 terms per primitive cell are necessary to
ensure sufficient convergence for inverse opal structures. It is
not obvious from the start whether a randomness analysis
with such small supercell sizes would yield results that are
physically meaningful.7 In 2D calculations of imperfect PCs,
larger supercells with sizes up to �15�15 have been
employed6 thanks to lower computational requirements for
2D problems.

Artifacts due to the small supercell size are bound to be
inextricably intertwined with the physically significant bulk
features of the imperfect PC. We show in Sec. II B that a
superlattice constant of order A�10a can be misleading in
predicting the effects of randomness on the bandgaps. At
large supercell sizes, we observe very interesting phenomena
that cannot be observed with small superlattice constants. It
is important to realize that the supercell is merely a compu-
tational instrument: with the supercell method one still cal-
culates the bands of an infinite perfect PC. The randomness
is only within the supercell, but on a global scale, it is still a
perfectly periodic structure with the supercell repeating itself
ad infinitum. Since this infinite superperiodic structure is cer-
tainly not the physical structure that one is interested in, one
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needs to be careful in distinguishing the artifacts of the su-
perperiodic structure from the physical properties of the
structure that one models within the supercell. To resolve the
supercell artifacts from the physical features brought about
by randomness, one needs to ensure that the interaction be-
tween neighboring supercells, which, to a good approxima-
tion, is proportional to the surface area of the supercell, be
small compared to the bulk properties of the imperfect PC,
which can be taken to be proportional to the volume of the
supercell. Hence, on purely dimensional grounds, one can
argue that the surface to volume ratio of the supercell 1 /A,
where A is the superlattice constant, should be small com-
pared to the typical length scale of the problem, namely, the
inverse wavelength at the center of the gap. We allowed the
supercell size N to vary from N=2 to N�9000, and one can
clearly see the supercell artifacts gradually diminishing while
the bulk features become more prominent in the limit as
N→�. On the other hand, 1D structures can have features,
such as a bandgap for any geometry and any refractive index
contrast, that are certainly not shared by 2D or 3D PCs, so
one needs to be cautious in extrapolating the 1D results to
2D and 3D systems.

II. THE IMPERFECT PC

The precise distribution of randomness in the geometry of
a PC would surely depend on the details of the specific
manufacturing process. In the interest of simplicity, we chose
the simplest distribution, the uniform distribution, in our
study. As the unit cell, we chose a unit “supercell” that con-
sisted of up to �16 000 unit cells. The thicknesses of the
layers were perturbed by a given percent, by adding random
numbers chosen from a uniform distribution. As the unper-
turbed structure, we chose the quarter-wave stack that has,
for a given dielectric contrast, the largest relative gap be-
tween the first and the second bands, as can be seen in Fig. 1.
In what follows, we will consider this structure with a dielec-
tric contrast of 13 as our perfect PC. For 1D PCs, one further
has the luxury of calculating the bandgaps using an analyti-

cal method.13 This approach also permits the calculation of
the imaginary part of the wave vector in the forbidden gap
region and allows a reliable assessment of the accuracy of
the plane wave method for the problem at hand.

We also investigated the transmission coefficient for a 250
unit cell quarter-wave stack structure. The transmission co-
efficient was calculated by simply matching the boundary
conditions for the electric and the magnetic fields at each
interface between the slabs in the multilayer structure.

A. Density of states calculation with the PW method

Maxwell’s equations for waves propagating in the x direc-
tion in a medium with a dielectric constant ��x� that depends
only on x, can be reduced to

�2E

�x2 −
1

c2��x�
�2E

�t2 = 0, �1�

where E is parallel to the slabs. With ��x� periodic along x
with lattice constant a, and translationally invariant along y
and z

��x� = �
g

��g�eigx with ��g� =
1

a
�

0

a

��x�e−igxdx ,

where g=m2� /a is a reciprocal lattice vector with m=0,
�1, �2,…, and E�x� can be written as

E�x� = eikx�
g

E�g�eigx, �2�

where −� /a�k�� /a. For a given k, this yields an
�-dimensional generalized eigenproblem

Q2E =
�2

c2 �E �3�

or by multiplying both sides from the left by Q�−1, one ob-
tains the ordinary eigenproblem

�Q�−1Q��QE� =
�2

c2 �QE� , �4�

where Q��k+g��gg�, �gg����g−g��, and �−1 is the inverse
of the matrix �. For a given value of k, a truncation of this
�-dimensional ordinary, eigenvalue problem yields, by re-
taining only the g vectors with �g��gmax, the band structure
� j�k� and the modes Ejk�g�. We choose a structure where the
dielectric constant alternates between two values �1 and �2
each with thickness d1 and d2, respectively.

The choice of the lattice constant a=d1+d2 is not unique.
Although the choice a=d1+d2 is the most obvious and the
most convenient, the lattice constant can be chosen as any
integer multiple of d1+d2, A�Na. With a choice for A with
N	1, and following the same formalism one can write

��x� = �
G

��G�eiGx

with

FIG. 1. The relative gap width vs the filling ratio f for a 1D PC
made of slabs of alternating dielectric constant of �1=1 and �2

=13. The lowest gap has a maximum for f =1−	�1 /�2=0.72, which
is the quarter-wave stack value. For this value of f , the even num-
bered gaps, the second, fourth, etc., which are in general nonzero
for an arbitrary value of f are all closed.
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��G� =
1

A
�

0

A

��x�e−iGxdx

and

E�x� = eiKx�
G

E�x�eiGx,

where G=m�2� /A�, with m=0, �1, �2,…, and −� /A�K
�� /A. Clearly, to get results with the same level of accu-
racy as before, i.e., with N=1, one would now need to in-
clude N times as many plane waves in the expansion, which
simply increases the computational burden, both in terms of
storage and computing time. The band structure for N=1, 2,
3 and 250 are displayed in Fig. 2 for a perfect PC. The
folding of the bands in the first Brillouin zone for each N,
makes the appearance of the bands rather different for each
case, although the DOS and the eigenfunctions E would be
independent of the choice of the supercell size. The fre-
quency is plotted in units of 2� /a for all cases, so the fre-
quency scale is not affected with the result that the bandgaps
are at the same frequency, as would be expected.

To calculate the DOS, we choose a uniform mesh in
k-space to calculate the bands and then choose a small fre-
quency window 
� and count the number of modes whose
frequencies fall within that window. We add random pertur-
bations to the thicknesses of the layers in the supercell such
that

d1,2 = d1,2
0 
1 + 2p�u −

1

2
�
 , �5�

where d1,2
0 are the unperturbed values of the thicknesses of

the layers, i.e., the quarter-wave stack values, u is a uni-
formly distributed random number in the interval �0, 1�. We
control the amount of disorder by varying the percent ran-
domness parameter p between 0 and 1. p=0 corresponds to
perfectly periodic structures, and p=1 corresponds to a
100% fluctuation where d1, d2 can range between 0 and
twice their unperturbed values. When disorder is introduced,
gaps appear between every fold for N	1.

In Fig. 3 we plot the upper and lower limits for the lowest
three bandgaps as a function of the percent randomness p,
calculated with a supercell size of N=1024. Note that since
for quarter-wave stack structures the even numbered gaps are

closed, the bandgaps in this figure are in fact the first, third
and the fifth bandgaps of a 1D PC with arbitrary values for
the layer thicknesses. The third gap centered at �a /2�c
=1.59 closes around p3=0.1, the second gap centered at
�a /2�c=0.96 closes around p2=0.18, and the lowest gap
centered at �a /2�c=0.32 closes around p1=0.55. The ratios
of the critical values of randomness p1 : p2 : p3 agree well with
the ratios of the corresponding center gap frequencies
�3 :�2 :�1. This can be understood using the simple argu-
ment that when the random fluctuations in the thicknesses of
the layers become comparable to the wavelength of the gap
center, the bandgap disappears since the destructive interfer-
ence responsible for the existence of the forbidden band de-
pends on the long-range periodicity at that scale.

B. Analytical method

As discussed in detail in Ref. 13, for n dielectric layers
with thicknesses d1 ,… ,dn, with dielectric constants
�1 ,… ,�n, for a given �, one can obtain the transfer matrix,
defined by


E0

E1

 = 
M11 M12

M21 M22


 E2n

E2n+1

 , �6�

where

FIG. 2. The band structure of a perfect 1D PC with different choices of supercell size N. The parameters of the structure are those of a
quarter-wave stack �1=13, �2=1, and d1 /d2=	�2 /�1. The points � and M of the “Brillouine zone” correspond to K=0 and K=� /A,
respectively. When randomness is introduced, small gaps appear between each and every fold.

FIG. 3. The upper and lower band edges for the lowest three
gaps calculated with a supercell of size N=1024, as a function of
the disorder parameter p.
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M = D0
−1��

l=1

n

DlPlDl
−1�Dn+1 �7�

with

Dl = 
 1 1

	�l − 	�l

 and Pl = 
ei	�l�dl/c 0

0 e−i	�l�dl/c

 .

Imposing the Bloch condition on the E field, one obtains


E0

E1

 = eiKA
 E2n

E2n+1

 . �8�

Comparing with Eq. �6�, the eigenvalues of the transfer
matrix are seen to be eiKA. Then, for t���M11+M22� /2��1,
K is real and is given by K= �1/A�cos−1 t, while for t	1, K
is complex with KrA=� and KiA=−ln�t−	t2−1�. 1 /Ki is the
decay length of the evanescent mode, and is a measure of the
strength of the bandgap. For finite PCs, it is desirable to have
KiA
1 to have a significant drop in transmittance. The ad-
vantage of the exact method is that the supercell size N can
be increased to values that are practically impossible using
the PW method. While with the PW method, using 30 plane
waves per unit cell of the supercell, the memory require-
ments scale as ��30N�2, and the time requirements scale as

��30N�3, the exact method requires a very small amount of
memory. The only disadvantage of the analytical method
over the PW method is that, while in the PW method one
chooses a real K and calculates the frequencies correspond-
ing to that value of K, in the analytical method, one chooses
the frequency � and calculates the real and imaginary parts
of K, Kr, and Ki, corresponding to that value of �. If the
bands are nearly flat, as is the case for very large supercell
sizes, then one needs to sample the frequency interval of
interest in very tiny increments in � in order to “catch” a
propagating mode. Thus the computation time can become
very large. Also for large values of N, the transfer matrix M
can have very large elements so one requires very high pre-
cision in order to calculate the transmission resonance fre-
quencies. We used quadruple precision �128-bit� floating
point variables and functions in the Intel FORTRAN compiler
in order to be able to resolve the transmission resonances for
supercell sizes up to N=8192. For large values of N, even
128-bit precision is not sufficient, with the result that Ki can-
not be made to completely vanish due to insufficient preci-
sion. Nevertheless, the propagating modes appear as sharp
cusps in the Ki vs � graph which can easily be identified
�Fig. 4�. For N�8000, one needs more than 128-bit preci-
sion to even see the cusps in Fig. 4. For larger values of N,
we used MATHEMATICA for its arbitrary precision capabilities.

FIG. 4. The imaginary part of the wave vector Ki and the band structure for selected values of the supercell size N for a randomness level
of 10%. The band structure was calculated using the PW method and Ki was calculated with the analytical method. Note the slight shift of
the bands due to PW convergence. As N grows, the third bandgap that lies between 1.474��a /2�c�1.719 in the perfect PC is more and
more populated with transmission resonances, thereby narrowing the gap. For very large values of N, the bandgap appears to settle down to
1.58��a /2�c�1.61, although there is good indication that it would close at larger supercell sizes. For N=2048 and N=8192, the bands are
not calculated as the PW method isn’t practical for such large supercells. Instead, horizontal lines are drawn at the locations of the cusps of
the Ki vs � plot to guide the eye. Note that the propagating bands rapidly approach measure zero as N is increased �Ref. 5�.
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However, compared to compiled code, MATHEMATICA is
slower by several orders of magnitude, so we had to stop at
around N=32 000.

To understand the bulk features of imperfect PCs using
the supercell method, one would need a large supercell, in
fact the larger the better. As the supercell size is increased,
small bandgaps begin to appear over regions that used to
have propagating modes. One would normally expect the
gaps of the perfect crystal to gradually shrink in size, rather
than have more gaps, so this result seems somewhat puzzling
at first sight. However, as the supercell size is increased, the
statistical fluctuations decrease, and the pass bands become
increasingly more densely populated.

In Fig. 4 we display the behavior of Ki as N is increased.
As N becomes larger what used to be a photonic bandgap
becomes more and more populated with transmission reso-
nances, and the forbidden gap edges gradually approach each
other, narrowing the gap. It is possible that as N→�, the
whole bandgap region will be populated, albeit extremely
sparsely, and instead of the bandgap, we will have a region
where the DOS is extremely small—but nonzero neverthe-
less. We were able to increase up to N=32 768 and the band-
gap was reduced as N became larger, although the decrease
for very large N values was very small. To actually see the
gap narrow even more would require an impractically large
N. It is quite obvious that a superlattice constant of
A�10a is quite insufficient and yields an artificially large
bandgap. One begins to get a more realistic picture for
A�100a.

The number of transmission branches in any finite fre-
quency interval is proportional to N. The number of modes
per branch can be calculated using

n1��� = �
branch

dK

d�
d� =

�

A
=

�

Na
.

Thus the total number of propagating modes �per unit vol-
ume� is constant. As N→�, these branches approach mea-
sure zero, and the group velocity approaches zero. It has
been argued5 that these propagating modes cannot actually
carry energy, and that the whole frequency region, in effect
would be reflecting in the infinite imperfect PC limit.

Equally interesting is what happens to the propagating
regions of the perfect PC. Small gaps appear in these regions
and the propagating bands degenerate into many extremely
narrow propagating branches. For finite but large PCs, be-
cause Ki in the once-propagating regions is still much
smaller than that in the gap regions as seen in Fig. 5, the long
exponential tail of these mildly evanescent modes still tun-
nels through the finite PC and thus contributes to transmis-
sion in these regions. The passbands of the perfect PC too
turn into small stopbands so the sharp distinction between
the two types of bands is gradually blurred as randomness
increases, and both types of bands become partly reflecting
and partly transmitting. In the bandgap regions of the perfect
PC, the density of these transmission resonances is extremely
small compared to that in the propagating regions, and these
regions still appear to be more like bandgaps with a large,
but still finite, supercell. Hence, it seems plausible to con-

clude that one cannot speak of a “true bandgap” for imper-
fect PCs, but only of large depressions in the DOS, which, in
practice, would serve the same purpose as bona fide band-
gaps �see Fig. 6�. For instance, for a cavity made of an “im-
purity” embedded in a PC, localized cavity modes would
eventually leak out through the PC “walls” of finite thick-
ness, regardless of how perfect the PC walls are, because of
the finite thickness of the walls. For such an application,
what is important is that the lifetime of the cavity mode be
much larger than the relevant time scale. Since the lifetime
of the cavity mode is a function of the transmittance, for a
given value of transmittance, one would simply need to use
thicker walls as the random perturbations are increased.

C. Transmittance

Practical applications must necessarily use finite sized
PCs, and for such structures, a quantity of more relevance is
the transmittance. We calculate the transmittance by consid-
ering a PC of N unit cells, and each layer is perturbed as
described earlier. The transmission coefficient is calculated
by imposing the boundary conditions for E D, B, and H at
each layer boundary. This yields a set of 2n+2 linear equa-
tions for the unknowns E1 ,… ,E2n+2. Setting the incident
field E0=1, and assuming vacuum dielectric values for the
incident and transmitted fields, �0=�n+1=1, one obtains, R
=E1

2 and T=E2n+2
2 for the reflection and transmission coeffi-

cients, respectively. Alternatively, one could also obtain R
and T from the transfer matrix as detailed in Ref. 13 but with
our approach, we can also obtain the Ei within each layer.
For a given frequency in the gap region, the dependence of
ln T on the number of layers N is approximately linear for all
values of the randomness parameter p, as is the case13 for the
perfectly periodic finite crystal �Fig. 7�. However, depending
on the level of randomness ln T can change by many orders
of magnitude. In practice, this would mean that in order to
obtain a given value of transmittance using an imperfect PC,
one would now have to use a thicker PC.

Although there is a strong relationship between the trans-
mittance of a finite imperfect PC, and the modes of the su-
perlattice formed by choosing the same exact finite PC as the
unit supercell, this relationship is not perfect in the sense that
the existence of a propagating mode of the supercell does not
necessarily imply a large value for T. A close examination of
the ln T and Ki vs � plots in Fig 5 will reveal that, on a large
scale, the transmission has a dip where Ki is large, and when
Ki is small the transmittance is nearly unity. However, a
closer look at a finer scale in Fig. 5, one sees that ln T can
still be not as large as what one might expect from Ki. There
is a subtle reason for this: The unit supercell can be chosen
as any contiguous region of length A of the underlying su-
perperiodic structure, and the band structure is not affected
by the choice of the supercell. However, for transmission
calculations, one has to use a particular segment of length A
of this underlying superperiodic structure and depending on
the choice, one would, in general, get a different transmit-
tance for a given frequency. If a localized mode of the su-
percell is far from the incident side, then that mode may not
show up on the transmittance spectrum. For instance, with a
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single air slab defect centered at the supercell, one would
observe both the transmission peak and the supercell mode.
Shifting the supercell by A /2 would split the defect at both
ends of the supercell. While the supercell calculations are not
affected by this cyclic permutation of the slabs, the transmis-
sion peak would disappear because the incident wave would
see a perfectly periodic finite PC.

We shifted the supercell by small amounts for a given
random structure and calculated the transmission spectrum
for a single realization, as well as the maximum transmis-
sion, for each frequency, of all continuously cyclic permuta-
tions of ��x�. While the peaks of the maximum value of ln T
agreed perfectly well with the supercell modes, some of the
supercell modes did not appear in the transmission peaks of
the single realization. This artifact of the supercell method
clearly is not limited to 1D PCs and there can be significant
differences between the supercell calculations and the trans-

mission calculations for all PCs depending on just how the
finite sample used in transmittance is cut out of the underly-
ing superperiodic structure. A mode which is present for the
bulk PC may not yield a high transmission value, because it
would not couple to the mode due to incidence conditions.
Similar coupling problems were reported by Robertson et
al.14 for 2D PCs.

III. DEFECT MODES

In the imperfect PC model we studied, the thickness of
each layer of the perfect PC was perturbed by a certain
amount, in effect creating a defect at each lattice site. Thus,
another way of attacking the imperfect PC problem is by
starting from isolated single defects, and by gradually in-
creasing the density of defects. Therefore it would make
good sense to understand how a single defect affects the

FIG. 5. �Left� ln T and Ki vs � for a supercell of size N=32 for a randomness level of 10%. �Right� Closeup for 0.8��a /2�c�0.9
which contains the lower edge of the second gap at 0.83��a /2�c�1.08. The solid curve is for a particular ordering of the slabs of the
supercell, while the dotted curve is the maximum value of ln T for all possible cyclic permutations of ��x�. The missing peak for the
particular ordering is present in the supercell modes and in ln Tmax.
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band structure and the transmittance of an otherwise perfect
PC. In Fig 8, we display the modes of a single defect of
width W=1.52a sandwiched between 7 unit cells of perfect
PC on either side. Each mode extends over a range of �9a.
The first, third, and fifth harmonics of the defect modes fall
nearly at the centers of the three gaps so these are the most
sharply localized modes. When the mode frequency is near
the gap edge, the modes are more widely distributed. One
therefore would need a supercell of size of the order of 10a
to contain a single center-gap mode properly within the
supercell.15 Increasing the supercell size further has essen-
tially no effect on the single defect modes, except making the
transmission peak sharper. Thus the supercell method works
exceptionally well for a single defect, and the transmittance

and the supercell calculations agree well, provided the super-
cell chosen contains the defect modes reasonably well. When
the defect modes from neighboring supercells overlap, one
observes significant unphysical artifacts.

A. Modes of a single defect

We investigated the single-defect modes and their har-
monics for various air slab defect sizes. Fig. 9�a� is a plot of
the frequencies of the lowest harmonics as a function of
W /a, where a is the lattice constant and W is the defect
width. A simple clamped string of length W would have
modes such that W=n� /2, where n=1,2,…, is the harmonic
index. Then the nth harmonic frequency of the defect mode
would be given by

��na

2�c
� =

n

2
� a

W
�, n = 1,2,3,… . �9�

We see from Fig. 9 that the defect mode frequencies agree
perfectly with this simple model at the centers of the gaps,
although there are significant deviations near the band edges.
Figure 9�a� helps us understand, albeit qualitatively, the basic
mechanism for the closing of the gaps. The value of W /a
= �	13/ �1+	13��=0.78287 for which the structure is a per-
fect PC is marked with a vertical dashed line. For single
isolated defects, the limits where W deviates from the perfect
PC value by ±20, ±33.3, and ±100 % are also marked as
vertical dashed lines. At the 20% limit, the third harmonic
and the second harmonic frequencies completely populate
the third gap, the third harmonic frequencies moving in from
above, and the second harmonic frequencies from below the
center of the third gap, meeting at the gap center at 20%

FIG. 6. The DOS and ln T vs frequency for various levels of randomness. ln T �solid curve� is the average for an ensemble of 100 random
structures for each level of randomness. Also shown as dashed curves are ln T±�, where � is the standard deviation of ln T for the ensemble
used.

FIG. 7. The dependence of ln T on N for different values of the
randomness parameter p for the center gap frequency of the first
gap wa /2�c=0.32.
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randomness. Thus, had the defects been so sparsely located
that the modes of individual defects had essentially no over-
lap, the third bandgap would have closed at a randomness
level of 20%. Similarly, the second gap would have closed at
a randomness level of 33%, with the second harmonic modes
populating the upper half of the bandgap while the lowest

harmonic modes populate the lower half. The lowest gap
would have closed at a randomness level of 100%, with the
first harmonic modes seeping into the gap from above. The
modes that populate the first gap from below do not seem to
be associated with any of the harmonics, as given by Eq. �9�.
These modes, whose frequencies are centered at the gaps for

FIG. 8. The transmission E fields for the lowest five defect mode harmonic frequencies for an air slab defect of width W=1.52a �upper
row� sandwiched between eight unit cells of PC on each side, and for a dielectric slab defect of W=1.52a /	13=0.4215a �lower row�. The
gray bars indicate dielectric slabs with �=13. The parameters of the structure are those of a quarter-wave stack, �1=13, �2=1, and d1 /d2

=	�2 /�1. The two types of defects have the same optical path length and yield harmonics at exactly the same frequencies. The E field of the
air slab defect modes nearly vanish at the boundaries of the defect, thus resembling modes of a string clamped at both ends, while, for the
dielectric slab defect modes, it is the slope of the E field that nearly vanishes at the boundaries, similar to the modes of a string with both
ends free. The modes for both types of defects, however, extend over several lattice constants at both sides. For the chosen defect width, the
first, third, and the fifth harmonics fall nearly at the centers of the three bandgaps, and hence the corresponding modes are localized, while
the second and the fourth harmonics are within pass bands, although the characteristic standing wave pattern inside the defect is still visible
for these modes. The frequencies of the higher harmonics are nearly exact integer multiples of the fundamental mode, as expected.

FIG. 9. The frequencies of the localized defect modes as a function of W, the defect width, for clusters of �a� one, �b� three, and �c� nine
identical defects as calculated from the peaks of the transmission spectrum �dotted curves�. The spacing between the air defects is only one
dielectric slab for the defect clusters. The vertical dashed line is when the defect slab has a width that is equal to the perfect PC value. The
vertical dashed lines show values of W /a for which the deviation from the perfect PC value is the percentage indicated. The solid curves are
the various harmonic frequencies of a 1D cavity given by Eq. �9�, with n=1 corresponding to the fundamental frequency. The modes around
W /a=0 do not belong to an air slab defect. They are the modes of a dielectric slab of twice the normal width when the air slab width
vanishes and the two neighboring slabs fuse to form a single dielectric slab defect. The horizontal gray bars are the bandgap regions of the
perfect PC. Notice how the individual defect modes are transformed into bands as the cluster size increases. Increasing the cluster size further
has little effect on the widths of the bands and hence on the size of the bandgaps. Although these curves were calculated for air slab defects,
one obtains the same curves also for dielectric slab defects, provided W is replaced with the optical path length of the defect W	�d.
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W=0, are the modes of the defect one would have when the
air defect vanishes and the two neighboring dielectric slabs
fuse to form a single dielectric slab defect with a width that
is twice the perfect PC value. We find that all three gaps
close at much lower values of randomness than predicted by
the single-defect model: 55, 18, and 11 %, respectively, for
the first, second, and third gaps. So one would need to refine
the model for a better understanding as to how the gaps
close.

B. Modes of a cluster of identical defects

The disorder we study is evenly distributed over the entire
crystal: the widths of each and every slab in the PC is ran-
domly perturbed. Therefore it is not surprising that the single
isolated defect model makes quantitatively inaccurate predic-
tions. To refine the single-defect model, we considered a
cluster of several equally spaced identical defects sand-
wiched between large enough perfect PC on both sides. We
calculated the transmission spectra of these defect clusters as
the interdefect spacing within the cluster was varied. Figure
10 is a plot of the transmission resonance modes for two
identical defects with the interdefect spacing varied. The
single defect modes, say the fundamental mode are degener-
ate when the spacing between neighboring defects is large
enough so as to make the overlap of modes from neighboring
defects insignificant. When the interdefect spacing is made
smaller, however, the degeneracy is lifted and one observes
the individual defect mode frequencies splitting into bands.

With a cluster of three defects separated by only one di-
electric slab, each single-defect harmonic splits into three
branches. With these additional modes, the bandgaps now
close at 15, 25, and 76 % for the third, second, and first
bandgaps, respectively �Fig. 9�b��. With nine defects the
splitting of each harmonic is much more prominent as can be
seen in Fig. 11. With an interdefect spacing of one dielectric
slab from each other, we obtain the much better estimates 13,
22, and 66 %, for the critical values of randomness at which
the third, second, and first gaps close, respectively �Fig.
9�c��. Increasing the cluster size further to 27 and 81 had

little effect on the critical randomness values. Although these
figures are still not exact, it is remarkable that the simple
deterministic model built from a cluster of �10 closely
spaced defects can account for the outstanding features of a
complex stochastic problem. This can be exploited for inves-
tigating the effects of randomness in two- and three-
dimensional PCs, since the supercell method is much more
suitable for finding the modes of a few defects. Notice that
the critical values of randomness at which the gaps close
have the ratio 1:3:5 as expected from the ratio of the center
gap frequencies for the three gaps.

IV. CONCLUSION

We studied the behavior of the photonic bandgaps and the
transmittance for an imperfect PC using the supercell method
combined with both the plane wave method and the analyti-

FIG. 10. The E fields for the fundamental modes of two defects, each of width W=1.52a, separated by various distances. The parameters
of the structure are as in Fig. 7. Note the splitting of the single defect modes as the defect spacing is reduced.

FIG. 11. Splitting of the lowest harmonic defect frequency for a
cluster of nine equally spaced identical air slab defects, each of
width W=1.52a, sandwiched between large perfect PCs on either
side. The abscissa is the number of dielectric slabs between the air
defects. Note the wide splitting as the defect separation becomes
smaller.
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cal method. Our results indicate that as randomness is in-
creased, the distinction between the stopbands and the pass-
bands of the perfect PC becomes increasingly blurred, with
propagating modes appearing within the stopbands and the
imaginary wave vector Ki gradually decreasing. Conversely,
the passbands of the perfect PC gradually turn into stop
bands with the imaginary wave vector Ki increasing and the
density of propagating modes decreasing as randomness is
increased. The whole frequency region tends to become re-
flecting at high values of randomness, with the propagating
branches approaching measure zero. The bandgaps of the
perfect PC are replaced by a DOS that is extremely small for
small values of randomness. Unlike previously believed, the
bandgaps do not narrow with increasing randomness, even-
tually closing at a certain randomness level. Rather, they turn
into pseudogaps and the DOS gradually increases within the
gaps while decreasing in the passband regions with increas-
ing disorder. Using a small supercell, one gets artificially

large bandgaps for a given randomness level and this can be
misleading as to the size or the presence of bandgaps. The
higher frequency bandgaps are populated first with the low-
est gap closing at around a randomness level of 55%.

We also investigated the modes of single defects and
small clusters of defects and found that the closing of the
bandgaps can be understood quite well by the harmonics of
the modes of small, closely spaced defect clusters appearing
within the gap regions of the perfect PC. This can be a crude
but useful tool in analyzing disordered 2D and 3D PCs.
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