
Polarization properties of a periodically-modulated metal film in regions
of anomalous optical transparency

A. V. Kats,* M. L. Nesterov, and A. Yu. Nikitin
Usikov Institute for Radiophysics and Electronics, National Academy of Sciences of Ukraine, 61085 Kharkov, Ukraine

�Received 27 June 2005; revised manuscript received 8 September 2005; published 9 November 2005�

We present an analytical treatment of the resonance optical effects in which an arbitrarily polarized wave is
incident at an arbitrary angle onto a periodically-modulated metal film in the conical mount. We show that
under enhanced light transmittance conditions, not only intensity, but also the polarization of both reflected and
transmitted waves undergoes significant changes. An in-depth investigation of the polarization transformation
including the polarization conversion for both zeroth and nonzeroth diffraction orders is carried out. Besides,
we derive novel polarization reciprocity relations.
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Over the past few years, a number of important experi-
ments have been made owing to major breakthroughs in
manufacturing periodical nanostructures �nanoparticle ar-
rays, metal films with nanoholes, etc.�. Specifically, in 1998,
it was shown that metal films with subwavelength holes pos-
sess an enhanced light transmission �ELT�.1 The recent mea-
surements have also indicated that the enhanced transmission
through hole arrays in a zeroth diffraction order possesses a
strong polarization dependence upon the symmetry of the
array.2–5 The polarization analysis of the diffracted light
plays a key role in understanding the true nature of ELT
phenomena and elucidates the role of surface electromag-
netic waves �known as surface plasmon-polariton �SPP� in
optics� excitation.6

In the paper, we present a detailed analytical study of
polarization properties of ELT phenomena for a metal film
having one-dimensional �1D� periodic modulation. We con-
sider briefly a two-dimensional �2D� case that has been ba-
sically investigated in the experiments. In fact, a number of
results concerning the 2D case may well be described while
considering appropriate 1D structures. This is due to the fact
that 2D Fourier harmonics �which correspond to some 1D
periodical substructures� responsible for SPP excitation by a
one-step scattering process play a key role in the polarization
effects under consideration. Other Fourier harmonics are far
less important. An analytical approach is developed, allow-
ing us to deal with the modulation of an arbitrary type and
shape. We derive reflected and transmitted radiation polariza-
tion dependencies for periodicity formed by the permittivity
modulation �for instance, holes and/or slits filled with other
metal or a semiconductor, or nanowires and/or nanoparticle
periodic arrays being introduced into the film�. In addition,
we discuss differences in polarization dependencies for per-
mittivity and relief modulated films.

Consider an arbitrary polarized plane monochromatic
wave with electric field amplitude Ei and wave vector ki,
which is incident onto a periodically-modulated metal film of
thickness d surrounded by dielectric media having permit-
tivities ��, �=±, from the medium corresponding to �=−. We
imply that the periodicity is caused by the modulation of the
surface impedance of the film, �=1/��, where � is the di-
electric permittivity, the corresponding vector of the recipro-
cal grating is g, see Fig. 1.

The fields we seek in the form of the Fourier-Floquet
expansion �we omit the time-dependent exp�−i�t� every-
where� are as follows:

E��r� = ��,−Ei exp�ikir�

+ �
m

Em
� exp�ikmtr + ik��mz�z − ��,+d�� , �1�

for z�d�z�0� if �= + �−�; r= �x ,y ,z�. Here subscript t indi-
cates that it is tangential to the film faces components of
vectors. The mth order wave vector is km

� = �kmt ,k��mz�,

kmt = kt
i + mg, k��mz = ��k2�� − kmt

2 , k = �/c . �2�

Within the film, we seek the electric field, Ē�r�, in the form

Ē�r� = �
m,�=±

Ēm
� exp�ikmtr + �z/�� ,

where � is the decay length in the metal, �= �k�−���	�−1

�oblique brackets and a prime or double prime denote spatial
averaging and the real or imaginary part of a complex num-
ber, respectively�. This representation is equivalent to ne-
glecting the modulation in the film �cf. Ref. 7�. Then from
the Maxwell equations and the boundary conditions, it fol-
lows an infinite system of linear algebraic equations for the

amplitudes Em
� , Ēm

� , which may be written in the matrix form

as D̂Ê= F̂. Here, D̂ is the matrix coupling the field harmonics

through the periodical modulation, Ê is the vector including

all field harmonics, and F̂ is the source term proportional to
the incident field. In spite of existence of the small param-
eter, ���r��	1, resulting in smallness of the nondiagonal ma-
trix elements, ordinary perturbation method fails due to SPP
excitation. An appropriate method for solving the system is
provided by the resonance perturbation theory �cf. Refs. 7
and 8�. It consists of subdividing the initial system into the

resonance, R̂Êr+ ÛÊN= F̂r, and nonresonance, N̂ÊN+ L̂Êr

= F̂N, subsystems where R̂ denotes the resonance part �it op-
erates on transverse magnetic �TM� field components only�,
N̂ is the nonresonance part, and Û, L̂ are mixed parts of

matrix D̂. The subindex r corresponds to resonance diffrac-
tion orders here and below. The nonresonance subsystem can
be solved analytically, expressing the nonresonance field am-

plitudes in terms of the resonance ones, ÊN= N̂−1�F̂N− L̂Êr�,
using N̂−1 series expansion. Excluding then ÊN from the reso-
nance subsystem, we arrive at a closed finite system for the
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resonance field amplitudes, D̃
ˆ

Êr= F̃
ˆ
, where D̃

ˆ
= R̂− ÛN̂−1L̂,

F̃
ˆ

= F̂r− ÛN̂−1F̂N. The reduced resonance system can be ob-
tained in the vicinity of an arbitrary resonance with neces-
sary accuracy and can be solved explicitly. Then, we obtain
all field amplitudes. In a majority of cases of interest, it is
sufficient to retain the quadratic-in-modulation amplitude

terms in submatrix D̃
ˆ

and linear terms in renormalized right-

hand side term F̃
ˆ
, so that D̃

ˆ
= R̂+O��̃2�, and F̃

ˆ 
 �̃, where �̃
presents the modulated part of the surface impedance.

To deal with an arbitrary polarized incident radiation, let
us introduce a polarization decomposition for waves in di-
electric media. Using polarization unit vectors em

��
 in �th
media,

em
��+ =

ez � kmt

kmt
, em

��− =
em

��+ � km
�

k���

,

where 
=− and 
=+ correspond to TM�p� and TE�s� polar-
ization and analogous unit vectors for the incident field, e


�changing km
� and kmt

� to ki and kt
i, and setting �=−�, the

above vector amplitudes are

Ei = �



E
e
, Em
� = �




Em
��
em

��
.

Due to linearity of the problem, the polarization amplitudes
of the diffracted waves are related to those of the incident

wave by transformation matrices T̂m
� , formed by the polar-

ization transformation coefficients �TCs�, Tm
��

�,

Em
��
 = �


�

Tm
��

�E
�. �3�

We will concentrate mainly on the case of a single-
diffraction-order resonance in the limit of a thick film, exp�
−���	1, where �=k�−��	d is the dimensionless film
thickness �its real part defines the thickness in the decay
lengths�. This means that the condition krt�K� �where K�

=���+��
2�0�

2���� denotes the wave number of an
unmodulated-film SPP� holds for a single diffraction order r.
Then the rth-order polarization matrix12 for r�0 reads as

�Tr
��++ Tr

��+−

Tr
��−+ Tr

��−− = �O��̃r�cos  cos �r0 O��̃r�sin �r0

Lr
� cos  sin �r0 − Lr

� cos �r0
 , �4�

where the resonance factor Lr
� is

Lr
� = −

2��̃r

�r
��̃r��̄ − ��,+�r��cosh ��−�1+��/2, �5�

�̃r�� = �r�� tanh � + �0 + Gr
�, �6�

�r = �̃r�+�̃r�− − �r
2 cosh−2 �, �r = �0 + Gr

+ + Gr
−, �7�

Gr
� = − �

N

�̃r−N�̃N−r

�N��
�cos2 �rN + �� sin2 �rN�N��

2 � , �8�

and �̄�−�. In these formulas,  is the angle of incidence,
�m�� is the normalized z component of the wave vector cor-
responding to mth field harmonic, �m��=�k��mz /k��, �nm is
the angle between the tangential components of wave vectors

of nth and mth field harmonics, �nm= �knt ,kmt̂ �. Here �̃n is
nth complex amplitude of ��r� Fourier expansion, �0 is the

mean impedance value, �0= ��	, �̃0�0. The summation in �8�
is performed over all diffraction orders except for those cor-
responding to the resonance ones �with diffraction order r�.
We neglect the small value ��0� as compared with ��N����1,
which is valid well away from grazing incidence. In the reso-
nance vicinity, coefficients Tr

��+
 are small in comparison
with Tr

��−
, because SPP is p polarized. Poles of the reso-
nance coefficient Lr

� ��r=0� give us the dispersion relation
for SPP modes existing in the modulated film. Depending on
the dielectric surrounding of the film, the SPP excited in rth
order may be either single-boundary �SB� localized at the
interface between the metal and �th media �when �+��−� or
double-boundary �DB� localized at both interfaces of the film
�when �+=�−�.13 DB SPPs, in turn, are subdivided into the
short-range �SR� and long-range �LR� waves �cf. Ref. 6�.

We would like to stress that the TCs Tr
��++,

Tr
��−−�Tr

��+− ,Tr
��−+� are proportional to cosine �sine� of the

angle �r0 between the plane of incidence and the propagation
direction of the resonance diffraction wave. This property is
easy to understand. Namely, since the SPP magnetic field Hr

�

is perpendicular to the propagation direction and parallel to
the boundary, SPP excitation results from the projection of
the incident wave magnetic field Hi onto the direction of the
vector Hr

�. When the incident wave is p polarized, the vector
Hi is perpendicular to the plane of incidence so that the
projection of Hi�=Ht

i� onto Hr
� is proportional to cos �r0. For

s polarization, Hi lies in the incident plane, Ht
i �k0t, so that

the projection Hi onto Hr
� is proportional to cos  sin �r0 �see

Fig. 1�b��. These arguments clear up a simple angular depen-
dence of coefficients Tr

��−−, Tr
��−+ �and Tr

��+−, Tr
��++ as well� �see

Fig. 2�b��.
Consider first the case of a SB SPP excitation at the in-

FIG. 1. �Color online� Diffraction on the periodically-modulated
metal film. The resonance occurs at the metal-superstrate interface
in the rth diffraction order, krt=K−.
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terface between �th media and a metal, which is of interest
due to the possibility of a nonzeroth-order ELT.7 Then �r��

�−i�0� and �r��̄�1. Equality Im��̃r���=0 for given r defines
the resonance curve in , �r0 plane. This curve corresponds
to the extreme value of diffracted wave amplitudes. For other
parameters being fixed, this equation may be solved for  as
=��r0� �see Fig. 2�. The maxima of the resonance ampli-
tudes correspond to the equality between the radiation losses
�which exist even for a harmonic grating, being of order

��̃r�2�14 and the dissipation losses in the metal �it is deter-
mined by �0��. This best matching condition defines the opti-

mal value of �̃r, ��̃r�opt
��0�. For the optimal grating ampli-

tude, we have �̃r��
�0�, �̃r��̄
1 �see Ref. 7�, thus obtaining
the maximal value of the resonance factor �Lr

+�max


e−�� /��0�.
If the diffraction order r corresponds both to the homoge-

neous outgoing wave in the �th media �k��rz is real� and to the
SB SPP on the −�th media boundary, then SPP excitation
results not only in zeroth-order ELT �and a specular reflec-
tion decrease�, but in a far greater leakage effect. Specifi-
cally, for metal-superstrate SPP excitation, an rth order
propagating wave provides the nonzeroth-order ELT. Due to
p polarization of the SPP, the corresponding homogeneous
outgoing wave is likewise p polarized. Therefore, in the
nonzeroth-order channel, we obtain a plane-polarized wave
having a transparent vector form,

Er
� = − �krt�−1Lr

��krt � Hi�zer
��−,

for an arbitrary polarization of the incident wave.
The zeroth-order polarization matrix is

�T0
��++ T0

��+−

T0
��−+ T0

��−− = �TF
��+ 0

0 TF
��−

+ �2 cos � cos  sin2 �r0 − cos � sin 2�r0

− � cos  sin 2�r0 2� cos2 �r0
L0�r

� , �9�

where

L0�r
� = −

����̃r�̃−r

cos ��r
��̃r��̄ + ��̃r�� − �r��cosh ���−1�

� �cosh ��−�1+��/2. �10�

� is the angle of propagation of zeroth-order wave in �th
dielectric media relative to the z axis �in the superstrate −
��. TF

��
 corresponds to the transmission �reflection� coeffi-
cient for �= + �−� of s�p� polarized wave for 
= + �−� in case
of a nonmodulated film. It is well known that �TF

−�
��1 and
�TF

+�
�� ��0�e−��	1 for a thick film. Polarization TCs
T0

��+−�p→s� and T0
��−+�s→p� vanish both for sin �r0=0 and

cos �r0=0 �see Fig. 2�a��. Therefore, there is no polarization
conversion of a purely p-polarized or s-polarized wave if the
propagation direction of the excited SPP is parallel or per-
pendicular to the plane of incidence.

From �9�, we derive the polarization reciprocity relations
for the zeroth-order channel,

T0
��−+ = �

cos 

cos �

T0
��+−, � = ± . �11�

Under the conditions of a single-diffraction-order resonance,
these relations are valid for an arbitrary grating shape �cf.
Ref. 8 for the half-space problem�, the generalization for
multiple resonance case will be discussed elsewhere. The
reflectance cross-polarization coefficients differ only by the
sign both for symmetric ��−=�+� and nonsymmetric ��−

��+� surrounding. The transmittance cross-polarization co-
efficients are of the same sign, but differ by the multiplier
cos /cos + for the nonsymmetric case. The relations �11�
generalize those of Ref. 9 in two aspects: they are proved for
�i� the nonsymmetric dielectric surroundings and �ii� arbi-
trary modulation shape.

It is remarkable that the transmitted zeroth-order wave is
always linear-polarized independently of the film parameters
and of the incident wave polarization. Indeed, the conditions
of linear polarization of the zeroth-order wave in �th media,

FIG. 2. �Color online� Polarization dependence upon the SPP tilting angle for the single-order resonance, r=1, in the harmonically
modulated film. The film thickness and the dimensionless grating vector are ��=3, g /k=1.2K−, �0=0.133i+0.000 71 �Ag at 1.06 �m�. �a�
corresponds to zeroth-order transmittance and/or reflectance under DB resonance for �−=�+=1, �̃±1=2.65i��0�. Circular �triangular� symbols
correspond to �T0

+�+−�2 ��T0
−�+−�2� numerically simulated dependency. Small symbols are for a LR mode, big ones are for a SR mode. Curves

are the normalized sin2�2�10�. �b� corresponds to nonzeroth-order transmittance under SB resonance for �−=1, �+=2.31 �quartz�, �̃±1

=1.25i��0�. Circular �triangular� symbols correspond to �T1
+�−−�2 ��T1

+�−+�2� numerically simulated dependency. Solid �dashed� curve is the
normalized squared cos  sin��10��cos��10��.
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which are the zero values of corresponding polarization ma-

trix determinant, det T̂0
� =0, and Im�T0

��−+ / T0
��++�=0, are ful-

filled identically for �=+ �if one neglects a small term TF
+�
 in

comparison with the resonance one in �9��. To be more pre-
cise, the polarization of the outgoing zeroth-order wave is
elliptical, but with a very high ratio of the ellipse semiaxes,
which is of order �0�

−1. It is convenient to write the zeroth-
order transmitted wave in a vector form,

E0
+ = − 2L0�r

+ �krt � Hi�z

k0tkrt
2 ���krt � k0t�êk0

+�e0
+�+ − �krt · k0t�e0

+�−� .

In the case of SB SPP excitation, the zeroth-order transmit-
tance is small as compared to the nonzeroth-order one, since

their resonance factors ratio is L0�r
+ /Lr

+��̃r. Therefore, only
the excitation of DB SPP �in the symmetrically surrounded
film� corresponds to the most pronounced zeroth-order ELT

effect, when the resonance conditions are �̃r��= �̃r��̄��0� �see
Ref. 7�. Then for the maximal value of the resonance factor,
we have �L0�r

+ �max
��0��e
−�� /�0� for the optimal modulation

amplitude.
In contrast to the transmitted zeroth-order wave, the re-

flected one is elliptically polarized with the semiaxes being
dependent upon the parameters �modulation harmonic ampli-
tudes, the angle of incidence, and the wavelength�. It be-
comes linear polarized only for the specific parameters.
These parameters may be found from the above formulas,
and are close to those for the corresponding half-space
problem,8 with accuracy O�e−2���.

For the corrugated films, the structure of the solution is
similar, but the polarization dependence is different. As the
analysis indicates, it is necessary to replace angle �r0 in the

above expressions with the angle �g , k̂0t�. Nevertheless, the
statement concerning the independence of the polarization of
the transmitted radiation �it is always linear for both zeroth
and nonzeroth diffraction channels� upon the polarization of
the incident light remains valid for this type of modulation as
well.

As for 2D structures, the specific solution presented in the
paper is equally applicable to them if SPP is excited in a
single-diffraction order �r1 ,r2� �this means that at each inter-
face there is no more than one excited SPP, but not a set of
them, as it occurs in case of a high symmetry, for instance,

for the normal incidence onto the lattice possessing C4 or C6

symmetry�. The modification of our formulas for the 2D case
consists of all the diffraction indexes m �corresponding to the
tangential components of wave vectors ktm of the form �2��
being replaced by the multi-indexes �m1 ,m2� �corresponding
to those of the form kt�m1,m2�=kt

i+m1g1+m2g2, where g1, g2

are reciprocal lattice vectors�. Accordingly, the polarization
dependencies are defined by the angle between kt

i and
kt�r1,r2�. In case of a multiple SPP excitation at both interfaces
or at one of them, the contribution to the polarization of the
transmitted waves is defined by the linear combination of the
excited SPP magnetic fields. For instance, square symmetry
of the modulation corresponds to the excitation of one or two
standing SPP at normal incidence. In this instance, the polar-
ization of the transmitted radiation does not depend upon
orientation of the incident plane, coinciding with the polar-
ization of the incident wave. This is in accordance with the
experiment.10

We have provided an insight into the energy and polariza-
tion properties of reflectance and the enhanced light trans-
mittance through modulated metal films. We have derived
the novel reciprocity relation, which generalizes the one dis-
covered recently for the polarization transformation matrix,
and found that the light transmitted through the film in the
ELT case is approximately linear polarized for the arbitrary
polarization of the incident plane wave both in zeroth and
nonzeroth diffraction orders �finiteness of the illuminated re-
gion and the beam divergence can be easily taken into ac-
count and results in the effects being partly observed in the
experiments �cf. Refs. 4, 5, and 11��. The results thus ob-
tained highlight both the basic properties of the ELT effect
from the stand point of theoretical physics, allowing one to
design necessary experiments specifically for incline inci-
dence, and the optic devices offering unique prescribed prop-
erties. We would like to emphasize the analytical approach,
as opposed to the numeric one, that enabled us to consider
the effects for modulation of an arbitrary type and shape,
thereby expressing the solution in terms of the Fourier am-
plitudes of the periodical structures, and to find the structures
responsible for the maximal effects of the polarization trans-
formation.
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