
Nearly closed ballistic billiard with random boundary transmission

Igor Rozhkov and Ganpathy Murthy
Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA

�Received 11 July 2005; revised manuscript received 27 September 2005; published 28 November 2005�

A variety of mesoscopic systems can be represented as billiard with a random coupling to the exterior at the
boundary. Examples include quantum dots with multiple leads, quantum corrals with different kinds of atoms
forming the boundary, and optical cavities with random surface refractive index. We study an electronic billiard
with no internal impurities weakly coupled to the exterior by a large number of leads. We construct a super-
symmetric nonlinear � model by averaging over the random coupling strengths between bound states and
channels. The resulting theory can be used to evaluate the statistical properties of any physically measurable
quantity. As an illustration, we present results for the local density of states.
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When the size L of a two-dimensional mesoscopic struc-
ture is reduced beyond the elastic mean free path l of the
electrons, all the scattering takes place at the boundary. An
electron may escape through the boundary, get reflected back
specularly, or participate in both processes. In addition to
quantum dots,1 which can exhibit both diffusive and ballistic
behavior,2,3 there are mesoscopic billiards which are ballistic
by construction. Examples include quantum corrals,4 optical
corrals,5 optical resonant cavities,6 and the artificial atoms
proposed in Ref. 7.

A quantum dot has boundary losses, unless the confining
potential is chosen to be infinitely high. Such losses are usu-
ally modeled by coupling to a number �possibly infinite� of
open channels,8 although the precise details of coupling are
generally unknown. In this paper we focus on internal bal-
listic dynamics of a clean circular dot which is nearly closed,
i.e., it is weakly coupled to a large number of leads. The
crucial ingredient in our model is the randomness of the
transmission coefficients. It enables us to carry out an en-
semble average using the supersymmetry method9 and, as a
side-benefit, acts as a natural regularizer, helping us avoid
the technical difficulties of previous supersymmetric ap-
proaches to closed ballistic systems.3,10 The resulting theory
is a “surface” �-model, which resembles the conventional
diffusive � model,9 but has the “diffusion” modes confined
at the boundary of the dot. These can be associated with
classical whispering gallery trajectories, which run along the
walls of the system and are known to strongly influence
transport through mesoscopic structures.11

Furthermore, as pointed out in Ref. 12, the ballistic ana-
logs of density relaxation modes in diffusive samples origi-
nate from trajectories which remain close to each other in
configuration space. Given the almost closed nature of our
dot, the whispering gallery modes11 �WGMs� are expected to
impact the long-time characteristics of the internal dynamics
and to play a major role in quantum interference effects. By
contrast, the “starlike” and “asterisk” trajectories, which ap-
proach the lead mouth at small angles to the boundary nor-
mal and are more likely to exit the billiard, cannot
contribute13 to the response functions. In other examples4,7

the electrons do not decay into well-defined leads, but be-
cause of the significant similarities between the three nano-
structures our approach will apply, mutatis mutandis, to them
as well. To be specific, the long-lived modes which play a

chief role in their internal dynamics have the same classical
origin.

A quantum dot in which electrons are confined by a hard
wall potential but can escape into leads14 can be described by
the non-Hermitian effective Hamiltonian

Heff = H0 �
i

2 �
n=1

Nleads

B̂n�Cn
, �1�

Here, H0 is the Hamiltonian of the closed quantum dot and
�Cn

is a surface � function with uniform support on the cross
section Cn which separates the nth lead from the billiard. It is
important to note that the leads have been “integrated out.”
In other words, one replaces an open dot with plane wave
boundary conditions in the asymptotic region and Dirichlet
conditions along the rest of the boundary, with a closed dot

and simplified boundary conditions.14 The operators B̂n are
defined through their action on an arbitrary function

B̂n��r� = �
Cn

�
i

Mn
channels

�n
�i�vn

�i��n
�i��r��n

�i��r����r��dr�,

where �n
�i��1 is a coupling coefficient, vn

�i� is a transverse
velocity, and �n

�i� is a normalized eigenfunction of transverse
motion for ith channel in nth lead.

Thus, the solution of the original open dot problem re-
duces to the solution of

�E − Heff�GR,A�r,r�� = ��r − r�� , �2�

for the retarded �advanced� Green’s function GR,A, with Neu-
mann boundary conditions ��xnvr�GR,A�r ,r���Cn

=0, where xn

is a unit vector parallel to the waveguide walls, and vr is the
velocity operator. It acts from the side of the lead.

Just as in studies of chaotic scattering,15 the key tool in
calculations of response functions of ballistic �or disordered�
systems with leads is the operator �E−Heff�−1. In the frame-
work of the supersymmetry method it can be treated in the
same way as �E−H0�−1, as was done in Ref. 14, where non-
perturbative calculations were carried out for disordered
dots. Note, that we pursue the nonuniversal, i.e., “nonrandom
matrix theory” regime.

For a ballistic dot the dynamics is governed by the opera-
tor H0= �p− �e /c�A�2, where we assumed no potential and a
constant magnetic field. The latter is introduced to break time

PHYSICAL REVIEW B 72, 193311 �2005�

1098-0121/2005/72�19�/193311�4�/$23.00 ©2005 The American Physical Society193311-1

http://dx.doi.org/10.1103/PhysRevB.72.193311


reversal symmetry, which simplifies the application of the
supersymmetry method, and makes the illustration of our
approach more transparent.

We intend to calculate averages over the Gaussian distri-
bution of dimensionless coupling coefficients �n

�i�. The rela-
tion of these coefficients to sticking probabilities, transmis-
sion coefficients and other commonly used parameters can
be found in Ref. 15 in the context of the Hamiltonian ap-
proach to chaotic scattering. More insight on the physical
meaning of these coefficients can be gained from Refs. 16.

Before commencing our supersymmetric derivation, we
make a few simplifying assumptions. These assumptions can
all be relaxed without affecting the physics, but are needed to
simplify the technical details. We allow only one open chan-
nel in each lead and express the coupling coefficients as a
sum of constant and stochastic parts �n= �̄+ �̃n. For the sta-
tistics of �̃n we assume that ��̃n	=0, ��̃n�̃m	=x2�nm, and that
all higher moments factorize into second moments. Next, we
“eliminate the leads,”14 passing to the Hamiltonian given by
Eq. �1�.

Upon introduction of four-component supervectors
��r�T= 
S1�r� ,�1�r� ,S2�r� ,�2�r��, and supermatrices
L=diag
1,1−1,1�, 	=diag
1,1−1,−1� �see, for example,
Ref. 17�, the supersymmetric generating functional reads18

�Z�J�	�̃n
=� d�*d�e−L����e−L����	�̃n

, �3�

where �¯	�̃n
indicates averaging over random couplings to

the leads

L��� = i� �†�r�ĤL��r�dr

+
�̄

2 �
n=1

N

vn�
Cn

�†�yn��n�yn��n�yn��	L��yn�� ,

L���� = �
n=1

N
�̃nvn

2
�

Cn

�†�yn��n�yn��n�yn��	L��yn��

with Ĥ=Ĥ0I4+ i
	 �
 is infinitesimally small� Ĥ0
=−�2 /2m−E, �n�y�=�2/dn sin��y /dn� �for hard-wall lead
of width dn�. Here 
Cn

stands for a double integration over yn

and yn�, the transverse coordinates along the crossection Cn
�perpendicular to the walls of a waveguide�; the product
dyndyn� will be omitted in what follows.

Averaging over �̃n produces

�e−L����	�̃n
= e�n=1

N x2vn
2/8
�

Cn

�†�yn���yn���yn��L��yn���2

.
Then, using the Hubbard-Stratonovich transformation, we
decouple the “interaction terms,” introducing supersymmet-
ric fields Qn�yn ,yn�� defined at each crossection Cn. To sim-
plify the form of the action we further assume that the leads
have identical width d and are attached everywhere along the
perimeter of the dot. We choose the total number
N=2�R /d �R is the radius of the circle enclosing the dot� of
leads to be large, and therefore d�R. We also assume iden-
tical velocities vn=v. In the limit N→
, the density field Q
becomes continuous. It turns into a function of a single
variable—the polar angle �.

After the Gaussian integration over ��r� variables, an
important supermatrix which needs to be determined is the
effective Green’s function G�r ,r��. It satisfies

�− Ĥ0 − i
mxva

2

��r − R�
r

Q̃����G�r,r�� = i��r − r�� ,

where Q̃���=Q���− ��̄ /2xmd�	 and a=4Rd. The generating
function takes the form

�Z�J�	� =� DQeF�Q�+F
�G�,

with the free energy

F�Q� = Str� drdr�

��−
m2a

2
Q���2��r − R�

r
��r − r�� + ln − iG−1�r,r��� ,

�4�

and the symmetry breaking term F
�G�=−Str
 ln�I4

+
	G�r ,r���drdr�. The functional integration over Q��� is
performed in saddle point approximation, which requires the
solution of

QSP��� =
xv
2m

G�R,R,�,�,QSP���� . �5�

Assuming the solution to be diagonal and coordinate inde-
pendent, we arrive at usual structure of the saddle point
QSP���=Q0	. In order to analyze the fluctuations, the con-
stant Q0 and the diagonal Green’s function supermatrix
GSP�r ,r�� are necessary. Thus, we mapped the original prob-
lem with random boundary condition onto the effective prob-
lem specified by the differential equation

��2 − s2�GSP�r,r�,�,��� = −
2mi��r − r����� − ���

r
, �6�

and the uniform boundary condition

�

�r
GSP��r,r�,�,����S− = i

bQ̃0

R
GSP��r,r�,�,����S−, �7�

where s2=−2mE, b=m2avx, and S− is the inner surface of
the dot. For both inner �r�R� and outer �r�R� domains the
solutions are readily obtained and matched together. Below
we will only need the solution for the inner domain, which
can be written in terms of the modified Bessel functions Il
and Kl of lth order19

GSP�r,r�,s2� =
im

�
�

l

Il�sr��
alIl�sr�� + Kl�sr���eil��−���, �8�

and coefficients al are given via

al =
− ibQ0�Kl�sR� + sRKl��sR�

ibQ0�Il�sR� − sRIl��sR�
.

Then, Q0 is obtained from the stationary point condition �Eq.

�5��. Dropping the imaginary part of Q̃0, since it can be ab-
sorbed into E, we get
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�
n

In
2�g̃�

�fIn�g̃��2 + �g̃In��g̃��2 =

2��1 +
�̄

2xmdQ̃0
�

xvb
. �9�

Next, we set g̃=sR, f =bQ̃0, and evaluate the sum over n in
Eq. �9� asymptotically in the following limit g̃�1, f / g̃�1.
We replace the sum with the integral, switch to the new
variable �=� / g̃, use uniform expansion for the Bessel
function I��� /�� �Ref. 20� and expand the integrand
in 1/ g̃; see Ref. 19 for the details. After the substitution
g̃→−ig�s→−ik� the left-hand side of Eq. �9� becomes
� /2�f2−g2 to the leading order in 1/g. Therefore, we have

an algebraic equation for f �or Q̃0�, which can be solved with
the help of the condition k2− �� /d�2=m2v2.

At this point we introduce several relevant energy scales
in “natural” units �=c=1: Thouless energy ET=k / �mR�,
mean level spacing of a closed dot �=1/ �mR2�, and a total
resonance width �= �̄ / �mdR� related to the modal decay rate
of a dot having identical coupling coefficients �̄ to all N
channels. In our almost closed dot we have the following
hierarchy of scales: ET����. Therefore, the set of dimen-
sionless parameters specifying the problem completely is
given by g=ET /�=kR�1 �dimensionless conductance�,
M=� /��1 �modal overlap� together with �̄, x, and v. Any
other constants which enters Eqs. �4� and �5�, can be ex-
pressed in terms of these five. Hereafter we continue to use

the old set of parameters, including f and Q̃0, to keep the
notation compact. The energy scales we just specified are to
be used in comparison of our predictions to experimental and
numerical results.

Now, we turn to the fluctuations around the saddle point,
which can be decomposed into a transverse piece �Q�t�

�along the saddle point manifold9� and a longitudinal piece
�Q�l� �orthogonal to the saddle point manifold�. The part of
the action corresponding to the �Q�t� �anticommuting with Q�
is given by21

Ft��Q� = − m2a�
0

2�

„�Q�t����…2d� + �mxva

2
�2

� �
0

2� �
0

2�

G�Q�G�− Q��Q�t�����Q�t�����d�d��.

Expanding in angular harmonics

�Q�t���� = �l=−




Ql

�t� exp
il��/2�

and using the Ward identity �relation between product and
difference of G�Q� and G�−Q�� it is possible to show that the

massive term in Ft��Q� is proportional to mR�̄ /�xQ̃0�1.
Then, applying the same technique, as in the solution of Eq.
�9�, we find that, to the leading order in 1/g, the free energy
is quadratic in �Q�t���� for vanishingly small 
, and arrive at

Ft��Q� � − D0�
0

2� � ��Q�t�

��
�2

d� ,

D0 = �mxva�

4Q̃0
�g�2g2 + f2�

f3�f2 − g2
.

To finish the construction of the nonlinear � model, we in-
tegrate out the longitudinal modes, which decouple at this
order in 1/g from the transverse ones, and set �Q�t�=Q.
Next, we expand the symmetry breaking terms F
�G�Q�� to
the lowest order in 
. The result is given by �Z�J�	�

=
DQe−F�Q�, with the free energy

F�Q� = Str� drdr���D0� �Q

��
�2

+
�̄

xmd
	 �

�
��r − R�

r
��r − r�� +� d��
	Q����a�r,r�,���� ,

a�r,r�,��� = i
mdxv

2
Gsp�R,��,r��Gsp�r,R,��� , �10�

where r� �r�� is a maximum �minimum� of �r� and �r��. The
supermatrix Q satisfies a nonlinear constraint Q2=Q0

2I4 and
can be parametrized as suggested in Refs. 9, 17 for the diffu-
sive case. The n-point correlations can be generated from the
functional given by Eq. �10�, which is the main result of this
paper. Just as in case of the supersymmetric nonlinear �
model of Ref. 9, the diffusion modes clearly play an impor-
tant role in the superintegrals representing correlators.

A physically measurable quantity which does not depend
on fluctuations around the saddle point is average local
density of states �LDOS� ���r�	�=−�1/��Im�G�r ,r� ,E�	�.
Indeed, this one-point function neither requires the knowl-
edge of the 	-like structure of the saddle point mani-
fold, nor its explicit parametrization. It can be shown
that Im�G�r ,r� ,E�	�= �Im�G�r ,r� ,� ,�� ,s2+ i
�	Q�s=−ik, where
�¯	Q stands for integration with weight exp
−F�Q�� �Eq.
�10��. This integration reduces to evaluating the inte-
grand at the saddle point. Most conveniently, the aver-
age LDOS can be calculated via regularized resol-

vent K̃�r ,s2�=G�r ,r ,� ,� ,s2�−G0�r ,r ,� ,� ,s2�:19 ����r�	�

= �m+Im K̃�r ,s2��s=−ik. The result reads

Im K̃�s2� =
m

�
f�

n

In
2��g�

f2In
2�g� + g2�In��g��2 , �11�

where �=r /R. This expression for Im K̃�s2� can be further
simplified for the limiting cases: �i� ��1/g, when the main
contribution to sum in Eq. �11� comes from the terms with
small n and �ii� ��1/g, when we can employ the uniform
expansions of In. The results are summarized in Fig. 1.

Thus, we have constructed a nonperturbative theoretical
framework to analyze one particular realization of a whole
class of nanostructures: a nearly closed system with ballistic
internal dynamics interacting randomly with the outside
world through the boundary. Our approach introduces a natu-
ral regularizer, which enables us to circumvent the concep-
tual difficulties of previous approaches to closed ballistic
systems.10 We find that the resulting theory, encapsulated by
Eq. �10�, can be characterized by diffusive modes confined to
the boundary and interacting nonlocally with the interior �see
the last term of Eq. �10��. The supersymmetric functional
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was constructed with the help of large angular momentum
modes identified as the WGM. These modes are exponen-
tially less likely to escape13 compared to the modes with
incidence directions close to the lead normals, and conse-
quently, they dominate response functions at large times. Our
framework should allow us to compute the statistical prop-
erties of any physically measurable quantity, though techni-
cal difficulties may impose strong limits. It should be clear
that our approach is also applicable, with minor modifica-
tions, to other examples belonging to this class of systems.

Finally, the extension of this approach to generic billiards
with smooth walls �to be published elsewhere� is also pos-

sible, although it is more technically involved.26 At first sight
the nonlinear supersymmetric � model �NLS�M� for the
rough billiards proposed in Ref. 22 looks very similar to the
NLS�Ms we derived here for open circular billiard �and for
open rough billiard in Ref. 26�. However, there are several
differences between two models, which can be summarized
as follows. The diffusion and �one-dimensional� localization
in angular momentum l space described in Ref. 22 is guar-
anteed by small changes in l as the particle bounces off the
walls. In our case, because of the sharp edges of the region
which connects the leads to the dot the WGM trajectories
may have much larger l increments along the way. As a result
our model describes diffusion and localization in position
�angle �� space rather than angular momentum space.

Another issue is the role of electronic interactions. One of
the possible ways to take them into account in diffusive and
ballistic systems with large dimensionless conductance, is to
use a “universal Hamiltonian,”23 which was shown to be the
renormalization group fixed point for weak interactions.24,25

We hope to extend our analysis to the interacting ballistic
case by using the large-N approach of Ref. 25. We leave
these questions for future work.
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